JPH064273B2 - Method for stretching crystalline polymer material - Google Patents

Method for stretching crystalline polymer material

Info

Publication number
JPH064273B2
JPH064273B2 JP63034978A JP3497888A JPH064273B2 JP H064273 B2 JPH064273 B2 JP H064273B2 JP 63034978 A JP63034978 A JP 63034978A JP 3497888 A JP3497888 A JP 3497888A JP H064273 B2 JPH064273 B2 JP H064273B2
Authority
JP
Japan
Prior art keywords
stretching
temperature
quenching
polymer material
immediately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63034978A
Other languages
Japanese (ja)
Other versions
JPH01210327A (en
Inventor
和郎 中山
彰 海藤
久明 金綱
功 田中
稔雄 戸来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shin Etsu Chemical Co Ltd, Nippon Steel Corp filed Critical Agency of Industrial Science and Technology
Priority to JP63034978A priority Critical patent/JPH064273B2/en
Publication of JPH01210327A publication Critical patent/JPH01210327A/en
Publication of JPH064273B2 publication Critical patent/JPH064273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、高強度高弾性率高分子材料を得るための結
晶性の熱可塑性高分子材料の延伸方法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a method for stretching a crystalline thermoplastic polymer material to obtain a polymer material having high strength and high elastic modulus.

従来の技術 一般に高分子材料の成形には、溶融状態にある材料を金
型でそのまま固めたり、圧力を加えて金型へ流し込んだ
り、ダイから押出したりする方法が用いられている。
2. Description of the Related Art Generally, for molding a polymer material, a method of solidifying a material in a molten state as it is in a mold, pouring it into a mold by applying pressure, or extruding from a die is used.

これらの方法で成形された高分子材料は分子鎖の配向性
が低く乱れており材料の機械的物性は低くとどまってい
る。
The polymer material molded by these methods has a low orientation of molecular chains and is disordered, and the mechanical properties of the material remain low.

従って高強度高弾性率高分子材料を得るには、延伸や圧
延等の方法により特定の方向に材料を変形させ分子鎖を
高く配向させることが必要である。
Therefore, in order to obtain a high-strength, high-modulus polymer material, it is necessary to deform the material in a specific direction by a method such as stretching or rolling so that the molecular chains are highly oriented.

圧延法は、厚物高分子材料にも適用可能であるが高い変
形比が得られず、ローラー通過後の弾性回復(スプリン
グバック)を伴ない寸法精度が悪い。
The rolling method can be applied to thick polymer materials, but a high deformation ratio cannot be obtained, and dimensional accuracy is poor due to elastic recovery (springback) after passing through the roller.

紡糸延伸法は非常に高い変形比が得られ高強度高弾性率
高分子材料の製造が可能となっているが、設備費等のト
ータルコストが高くそのまま製品コストに跳ね返ってお
り、汎用高分子を原料とする場合には経済的メリットが
充分ではない。
Although the spinning and drawing method can obtain a very high deformation ratio and enables the production of high-strength and high-modulus polymer materials, the total cost such as equipment cost is high and it is directly returning to the product cost. When used as a raw material, the economic merit is not sufficient.

引抜き延伸法においては、機構が単純であり設備費等を
安く抑えられる可能性が高いが、引抜き張力が材料の破
断強度よりも小さくなくてはならないという制約がある
ため、引抜き速度が低く、活発な応用展開には至ってい
ない。
In the draw-drawing method, the mechanism is simple and there is a high possibility that equipment costs can be kept low, but there is a constraint that the pull-out tension must be smaller than the breaking strength of the material, so the pull-out speed is low and It has not been applied yet.

特開昭60-15120号公報はこの様な引抜き延伸法の短所の
改善を図ったもので、一定の温度条件下において材料を
引抜く過程では、歪み硬化が起こり材料が破断し難くな
ることを利用し、高い変形比を得る方法を提示したもの
である。
Japanese Unexamined Patent Publication No. 60-15120 is intended to improve the disadvantages of such a drawing and drawing method, and in the process of drawing a material under a constant temperature condition, strain hardening occurs and it is difficult for the material to break. This is a method for obtaining a high deformation ratio by utilizing it.

しかし、前記引抜き延伸法は、引抜き速度が著しく低い
もので、高密度ポリエチレンの場合、引抜き速度が通常
0.04、最大でも0.5m/分と著しく低く、0.5m/分の引抜
き速度で得られる変形比は非常に低いという生産性の面
での大きな問題を残している。
However, in the above-mentioned drawing and stretching method, the drawing speed is extremely low.
It is 0.04, which is extremely low at 0.5 m / min at maximum, and the deformation ratio obtained at a drawing speed of 0.5 m / min is very low, which leaves a big problem in terms of productivity.

発明が解決しようとする課題 この発明は、機構が単純な引抜き延伸法に着目し、従来
の問題である著しく低い引抜き速度の制約を解消して生
産性を向上させ、熱延伸を併用することで高い変形比を
備えた結晶性の熱可塑性高分子材料の延伸方法を確立す
ることを目的としたものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention focuses on a simple drawing / drawing method with a simple mechanism, improves the productivity by eliminating the problem of a remarkably low drawing speed, which is a conventional problem, and uses hot drawing together. It is intended to establish a method for stretching a crystalline thermoplastic polymer material having a high deformation ratio.

課題を解決するための手段、作用 本発明は、シートまたは棒材(以下、素材と略す)とな
る結晶性の熱可塑性高分子材料を加熱した引抜き工具に
通過せしめて延伸強化を行う方法において、引抜き工具
の出口直後で延伸物を急冷処理し引き抜くことにより、
高速延伸を行い延伸比8以上とすること、及び素材に適
当な熱と張力を加えて行う熱延伸を施して延伸強化を行
う方法において、熱延伸終了直後の素材に急冷処理を施
し高速延伸を行うことを組合わせたものである。ここ
で、延伸比8以上と規定したのは、後述する実施例に示
すように本発明の延伸方法によれば延伸比8以上の延伸
材料が得られるためである。
Means for Solving the Problems, Action The present invention is a method for stretching and strengthening a sheet or a bar (hereinafter, abbreviated as a material) by passing a crystalline thermoplastic polymer material through a heated drawing tool, Immediately after exiting the drawing tool, by quenching and drawing the stretched material,
In the method of performing high-speed drawing to a draw ratio of 8 or more, and performing hot-stretching by applying appropriate heat and tension to the material to perform draw-strengthening, the material immediately after the hot-drawing is subjected to a rapid cooling treatment to achieve high-speed drawing. It is a combination of things to do. Here, the reason why the stretching ratio is specified to be 8 or more is that a stretching material having a stretching ratio of 8 or more can be obtained by the stretching method of the present invention as shown in Examples described later.

また、前者の引抜き工具を用いる工程(I)と、後者の
熱延伸域を持つ工程(II)を連続で、或るいは任意に組
合せてなる多段延伸工程により、生産性良く高強度高弾
性率高分子材料を得ることを特徴とする結晶性の熱可塑
性高分子材料の延伸方法である。
Further, the former step (I) using a drawing tool and the latter step (II) having a heat drawing zone are continuously or arbitrarily combined to obtain a high-strength, high elastic modulus with high productivity. A method for stretching a crystalline thermoplastic polymer material, which comprises obtaining a polymer material.

本発明による結晶性の熱可塑性高分子材料の延伸方法を
第1図により詳細に説明する。
The method for stretching the crystalline thermoplastic polymer material according to the present invention will be described in detail with reference to FIG.

まず第一に、予熱された素材1を加熱した引抜き工具2
(例えばダイス、ロール)に通し、引抜き工具の間隔を
調節し引抜くことで、素材は延伸される。
First of all, the drawing tool 2 that heats the preheated material 1
The material is stretched by passing it through (for example, a die or a roll) and adjusting the distance between the drawing tools to perform drawing.

第二に、素材は引抜き工具の出口直後の急冷域3を通る
ことにより、予熱及び引抜き工具により付与された温度
から急冷される。
Second, the material is preheated and quenched from the temperature imparted by the drawing tool by passing through the quenching zone 3 immediately after the exit of the drawing tool.

素材となる熱可塑性高分子材料は、一般にそれ自身の温
度が高くなると機械的物性(強度、剛性等)は大きく低
下する。
In general, the thermoplastic polymer material used as a material has a large decrease in mechanical properties (strength, rigidity, etc.) when the temperature of itself increases.

仮に延伸物に急冷処理を施さず急冷域を通過させない場
合には、引抜き工具の出口直後の素材の温度は引抜き工
具温度に近い温度となってるため、その位置での延伸物
の強度は本来の強度よりも低いものとなっており、引抜
き速度Vを上昇させることに伴う引抜き張力の上昇に耐
えることができず破断に至る。
If the drawn product is not subjected to the quenching process and does not pass through the quenching zone, the temperature of the material immediately after the outlet of the drawing tool is close to the drawing tool temperature, so the strength of the drawn product at that position is Since the strength is lower than the strength, the pulling tension cannot be increased due to the increase in the pulling speed V, which leads to fracture.

また引抜き張力が一定の場合であっても、素材の冷却速
度は変らないから、引抜き速度の上昇により引抜き工具
の出口近傍に位置する素材の温度が上昇し、やはり破断
に至る。
Further, even if the drawing tension is constant, the cooling rate of the material does not change, so that the temperature of the material located in the vicinity of the outlet of the drawing tool rises due to the increase of the drawing speed, and the material also breaks.

そこで引抜き工具の出口直後に急冷域3を設け、素材を
急冷処理することにより、引抜き工具の出口直後位置で
の素材の強度を本来の強度にまで回復させることによ
り、引抜き速度を上昇させることが可能となる。
Therefore, a quenching zone 3 is provided immediately after the exit of the drawing tool to quench the material, thereby recovering the strength of the material at the position immediately after the exit of the drawing tool to the original strength, thereby increasing the drawing speed. It will be possible.

さらに引抜き工具通過後の素材は、歪み硬化及び一定方
向の分子配向が起こっており、素材の強度は引抜き工具
通過前の素材の強度よりも高くなっている。
Further, the material after passing the drawing tool undergoes strain hardening and molecular orientation in a certain direction, and the strength of the material is higher than the strength of the material before passing the drawing tool.

また素材1は、融点(Tm)に近づくほど変形抵抗が小
さくなる熱可塑性材料であるため、引抜き工具温度をT
mに接近させると、引抜き張力も当然低下するが、急冷
処理を施さない場合、引抜き張力を低下させるに充分な
温度まで引抜き工具温度を上昇させることは非常に困難
である。
Further, since the material 1 is a thermoplastic material whose deformation resistance becomes smaller as it approaches the melting point (Tm), the temperature of the drawing tool is set to T
Although the drawing tension is naturally lowered when it is brought closer to m, it is very difficult to raise the temperature of the drawing tool to a temperature sufficient to reduce the drawing tension when the quenching treatment is not performed.

しかし、急冷処理を施すことにより、引抜き工具温度を
上昇させることが可能であった。
However, it was possible to raise the temperature of the drawing tool by performing the quenching process.

例えば、高密度ポリエチレンを素材として引抜き延伸を
行った場合、引抜き工具温度を高く設定した方が引抜き
張力を低く保つことができる。
For example, when high-density polyethylene is used as the material for drawing and stretching, the drawing tension can be kept low by setting the drawing tool temperature high.

急冷処理を施した場合は、引抜き工具温度(Tr)を11
0℃に設定することが可能であるが、急冷処理を施さな
い場合にはTrを90℃以上に設定することが出来ず、こ
の場合の引抜き速度は急冷処理を施した場合と比べ著し
く低い温度となった。
When quenching is applied, pull out tool temperature (Tr) to 11
It is possible to set the temperature to 0 ° C, but if the quenching treatment is not applied, Tr cannot be set to 90 ° C or higher. In this case, the drawing speed is much lower than that when the quenching treatment is applied. Became.

融点近傍では、素材に急冷処理を施すことにより見かけ
上の延伸は可能であるが、素材の組織中の非晶鎖が配向
されにくくなり(結晶は簡単に配向するが)、延伸によ
る素材の高強度高弾性率化の発現効果が低下する。ま
た、さらに温度を上げると融解に至る。
In the vicinity of the melting point, it is possible to stretch the material apparently by quenching it, but it becomes difficult for the amorphous chains in the structure of the material to be oriented (the crystals are easily oriented), and the stretching of the material The effect of increasing strength and elastic modulus is reduced. Further, if the temperature is further raised, melting will occur.

本発明の延伸方法で用いられる素材は、例えば、ポリエ
チレン、ポリプロピレン、ポリアセタール、ポリビニル
アルコール等の一般に結晶性を示す熱可塑性高分子材料
であり、用いる材料の分子量や分子量分布については、
繊維、フィルム、成形品として用いられているものであ
れば特段の限定はない。
The material used in the stretching method of the present invention is, for example, polyethylene, polypropylene, polyacetal, a thermoplastic polymer material generally showing crystallinity such as polyvinyl alcohol, and the molecular weight and molecular weight distribution of the material used are
There is no particular limitation as long as it is used as a fiber, a film, or a molded product.

素材は引抜き延伸の場合、引抜き工具温度近傍まで予熱
しておくことが必要であり、素材の温度を、素材に10GP
aの荷重をかけて1℃/分で昇温した時の変形開始温度
以上であり、示差走査熱量計(DSC)融解曲線の立上
がり温度を越えない温度に温度調節することが一層好ま
しい。
When the material is drawn and stretched, it is necessary to preheat it to a temperature near the drawing tool temperature.
It is more preferable to adjust the temperature to a temperature not lower than the deformation start temperature when the load of a is raised at 1 ° C./min and not exceeding the rising temperature of the differential scanning calorimeter (DSC) melting curve.

仮に素材1を予熱せずに延伸を行い引抜き速度を高くす
ると、得られる素材の厚みが大きくばらつき、かつ引抜
き張力が高くなり安定した引抜き延伸が出来なくなる。
If the material 1 is stretched without preheating and the drawing speed is increased, the thickness of the material to be obtained varies greatly, and the drawing tension becomes high, so that stable drawing and stretching cannot be performed.

引抜き工具2の間隔は、素材の厚み(もしくは外径)未
満であれば良いが、断面率tr/to≦0.5とすることが変
形比を上げるために好ましい(tr:引抜き工具の間隔、
to:素材の厚みもしくは外径)。
The interval of the drawing tools 2 may be less than the thickness (or outer diameter) of the material, but it is preferable to set the cross-section rate tr / to ≦ 0.5 in order to increase the deformation ratio (tr: interval of the drawing tools,
to: material thickness or outer diameter).

引抜き工具2の加熱は、素材1が引抜き工具を通過完了
するまでの間、予熱で付与された素材温度を保つために
必要であり、引抜き工具温度を素材に10GPaの荷重をか
けて1℃/分で昇温した時の変形開始温度以上であり、
示差走査熱量計(DSC)融解曲線の立上がり温度を越
えない温度範囲に温度調節することが一層好ましい。
The heating of the drawing tool 2 is necessary to maintain the material temperature given by preheating until the material 1 finishes passing through the drawing tool, and the drawing tool temperature is set to 1 ° C by applying a load of 10 GPa to the material. Is higher than the deformation start temperature when the temperature is raised in minutes,
It is more preferable to adjust the temperature to a temperature range not exceeding the rising temperature of the differential scanning calorimeter (DSC) melting curve.

急冷処理の冷却方式は接触式、非接触式を問わず、冷却
媒体はガス、液体、空気、水、及び電子冷却等のいずれ
であってもよく特段の限定はない。
The cooling method of the rapid cooling treatment may be a contact type or a non-contact type, and the cooling medium may be any of gas, liquid, air, water, electronic cooling, etc., and there is no particular limitation.

冷却媒体自身の温度は、引抜き工具の加熱温度以下の温
度であるが、素材1のガラス転移温度(Tg)が室温以
上の場合はTg以下の温度、またTgが室温以下の場合
は室温以下の温度に冷却媒体自身の温度を設定すること
が一層好ましい。
The temperature of the cooling medium itself is lower than or equal to the heating temperature of the drawing tool, but is lower than or equal to Tg when the glass transition temperature (Tg) of the material 1 is room temperature or higher, and lower than or equal to room temperature when Tg is room temperature or lower. It is more preferable to set the temperature of the cooling medium itself to the temperature.

また、本発明に於ける急冷処理とは、引抜き工具の出口
直後(出口から延伸方向長さ2cm〜5cm程度)の領域に
おいて素材の温度が室温以下となる冷却処理であり、冷
却速度が50℃/秒以上であることが好ましく、引抜き
速度が高くなれば冷却速度も当然高く設定しなければな
らない。
Further, the quenching treatment in the present invention is a cooling treatment in which the temperature of the material becomes room temperature or lower in the region immediately after the outlet of the drawing tool (the length from the outlet is about 2 cm to 5 cm in the stretching direction), and the cooling rate is 50 ° C. / Sec or more is preferable, and the higher the drawing speed, the higher the cooling rate must be set.

本発明は、熱延伸法とも組合わせることができる。熱延
伸法は、第1図の工程(II)に示したように任意の張力
を素材に与えた状態で直接熱延伸域4中を通過させ、そ
の出口直後で素材に急冷処理を施すことにより、熱延伸
域通過後の素材を室温以下まで冷却する方法で、延伸物
本来の強度に戻し、熱延伸の安定化を図ることとなる。
The present invention can also be combined with the hot stretching method. In the hot drawing method, as shown in the step (II) of Fig. 1, the material is directly passed through the hot drawing zone 4 in a state where an arbitrary tension is applied to the material, and the material is rapidly cooled immediately after its exit. By the method of cooling the raw material after passing through the hot drawing zone to room temperature or lower, the original strength of the drawn product is restored and the hot drawing is stabilized.

例えば、急激な延伸変形により白化した状態にある素材
(ミクロボイドが発生して白色に見える状態:破断の前
兆)も工程(II)のようにして急冷処理を施すことで破
断せずに耐えることができるが、急冷処理を施さないと
白化後直ちに破断に至る。
For example, a material that is in a whitened state due to a sudden stretching deformation (a state in which microvoids appear to appear white: a sign of breakage) can be endured without being broken by performing a rapid cooling treatment as in step (II). Although it is possible, if it is not subjected to quenching treatment, it will break immediately after whitening.

また熱延伸域4内では主に分子鎖の高配向化が起こる
が、熱延伸域4出口での素材の組織中では、分子鎖の配
向と同時に残留する熱による組織の再編成(戻り)が起
こっており、急冷処理は組織の再編成(戻り)を極力抑
え、分子鎖の高配向化した状態にある素材組織をそのま
ま固定化させることにも役立っており、急冷処理のよる
引張り弾性率及び引張り強さの上昇が確認された。
In the thermal drawing zone 4, the orientation of the molecular chains is mainly increased. However, in the structure of the material at the exit of the thermal drawing zone 4, the reorganization (return) of the tissue due to the residual heat at the same time as the orientation of the molecular chains occurs. The rapid cooling process is also effective in suppressing the reorganization (return) of the structure as much as possible and also fixing the material structure in the highly oriented state of the molecular chain as it is. An increase in tensile strength was confirmed.

第6図は引張り弾性率(E)に及ぼす熱延伸後の急冷処
理の効果を示したもので、同じ延伸比26において、素材
に急冷処理を施した場合の素材のEは4500Kgf/mm2(図
中記号△印)であるのに対して、素材に急冷処理を施さ
なかった場合の素材のEは3600Kgf/mm2(図中○印)で
あり、急冷処理が高配向化した素材組織をそのまま固定
化させることに寄与していることがわかる。
Fig. 6 shows the effect of quenching treatment after hot drawing on tensile elastic modulus (E). When the material is quenched at the same draw ratio 26, E of the material is 4500 Kgf / mm 2 ( The symbol E in the figure shows the E of the material when the material is not quenched, which is 3600 Kgf / mm 2 (○ in the figure). It can be seen that it contributes to immobilization as it is.

また、高い変形比を得るために必要に応じて、結晶性高
分子材料の素材を予熱した後に、加熱した引抜き工具を
通過せしめて延伸し、その直後に急冷処理を施すことを
特徴とする工程(I)と結晶性高分子材料の素材を熱延
伸する過程に於いて、その延伸直後に急冷処理を素材に
施すことを特徴する工程(II)の工程を連続して行う
か、あるいは前記工程(I)と工程(II)を任意に組み
合わせて多段延伸を行うことにより、高速下で素材を高
倍率に変形させることができる。
Further, if necessary to obtain a high deformation ratio, after preheating the raw material of the crystalline polymer material, passing through a heated drawing tool and stretching, immediately followed by a quenching process In the process of thermally drawing the raw material of (I) and the crystalline polymer material, the process of step (II) characterized by subjecting the material to a quenching treatment immediately after the drawing is continuously performed, or the above-mentioned process By arbitrarily combining (I) and step (II) and performing multi-stage drawing, the material can be deformed at a high magnification at a high speed.

工程(I)及び工程(II)の組合わせ及びそれぞれの工
程の繰返しの回数は制限しないが、引抜き速度Vが0.5m
/分以上で高い変形比を得ようとすると、各工程を一回
では一回当たりの素材の変形量が大きくなり、急激な変
形が生じ延伸が不安定となるため、一回当りの変形比を
抑え、工程(I)及び工程(II)の回数を増やして安定
化を図る方が好ましい。
The number of times of combining the steps (I) and (II) and repeating each step is not limited, but the drawing speed V is 0.5 m.
If you try to obtain a high deformation ratio at more than 1 minute / minute, the deformation amount of the material per one time will be large, and sudden deformation will occur and stretching will become unstable. It is preferable to suppress the above and increase the number of steps (I) and (II) for stabilization.

熱延伸域4の熱媒体としては、ガス、液体、空気、水、
及びエネルギー波等が利用可能であり、特に限定はな
い。
The heat medium in the heat drawing zone 4 includes gas, liquid, air, water,
And energy waves can be used, and there is no particular limitation.

熱延伸域4内の圧力も常圧、加圧のいずれであってもよ
く、特に限定はしない。
The pressure in the heat drawing zone 4 may be either normal pressure or increased pressure, and is not particularly limited.

熱媒体の温度範囲は、素材に10GPaの荷重をかけて1℃
/分で昇温した時の変形開始温度以上であり、示差走査
熱量計(DSC)融解曲線の立上がり温度を越えない温
度範囲に温度調節することが好ましい。
The temperature range of the heat medium is 1 ℃ with a load of 10GPa applied to the material.
It is preferable to control the temperature within a temperature range not lower than the deformation start temperature when the temperature is raised at a heating rate of 1 / min and not exceeding the rising temperature of the differential scanning calorimeter (DSC) melting curve.

実施例 次ぎに実施例によって本発明をさらに詳細に説明する。EXAMPLES Next, the present invention will be described in more detail by way of examples.

なお、各実施例において引抜き工具として、鋼製のブレ
ードダイ(先端25mmR、幅100mm)、或いはロール(半
径25mm、幅100mm)、を用いた。
In each example, a steel blade die (tip 25 mmR, width 100 mm) or roll (radius 25 mm, width 100 mm) was used as the drawing tool.

延伸材の引張り試験には、インストロン型引張り試験機
((株)島津製作所製オートグラフAG5000A)を使
い、JIS K 7113-1980に従って測定した。
For the tensile test of the drawn material, an Instron type tensile tester (Autograph AG5000A manufactured by Shimadzu Corporation) was used and measured according to JIS K 7113-1980.

また第1表の各記号の意味するところは次の通りであ
る。
The meaning of each symbol in Table 1 is as follows.

Tf:素材1の予熱温度、℃ Tf':熱延伸域4の雰囲気温度、℃ Tr:引抜き工具2の加熱温度、℃ tr/to:引抜き工具の間隔trと素材の厚みtoの
比率 V:その条件下で得られた最大引抜き速度、m/分 λ:延伸比、変形前の素材断面積を変形後の素材断面積
で除した値 λ:第一段の延伸における延伸比 λ:第二段の延伸における延伸比 E:引張り弾性率、Kgf/mm2 σ:引張り強さ、Kgf/mm2 ここで使用した素材は三種類であり、ペレットを溶融押
圧し後シートに成形したものであり、以下に種類と寸法
を示す。
Tf: preheating temperature of the material 1, ° C Tf ': ambient temperature of the heat drawing zone 4, ° C Tr: heating temperature of the drawing tool 2, ℃ tr / to: ratio of the distance tr of the drawing tool to the thickness to of the material V: its Maximum drawing speed obtained under the conditions, m / min λ: Stretch ratio, value obtained by dividing the material cross-sectional area before deformation by the material cross-sectional area after deformation λ 1 : Stretch ratio in the first-stage stretching λ 2 : Stretching ratio in two-stage stretching E: Tensile elastic modulus, Kgf / mm 2 σ: Tensile strength, Kgf / mm 2 There are three kinds of materials used here, melted and pressed into pellets and then formed into a sheet. Yes, the types and dimensions are shown below.

高密度ポリエチレン(HD-PE) 厚み:2mm、幅:15mm 三井石油化学工業、ハイゼック
ス2200J ポリプロピレン(is−PP) 厚み:1mm、幅:15mm 三井東圧化学、ノーブレンFL−
100 エチレン・ビニルアルコール・ランダムコポリマー
(ET−VA) 厚み:2mm、幅:15mm クラレ エバール 実施例1 高密度ポリエチレンを素材として、tr/to=0.15×0.35
の範囲でブレードダイスに素材を挟み、引抜きながら素
材を急冷処理して引抜き延伸を行った。
High Density Polyethylene (HD-PE) Thickness: 2mm, Width: 15mm Mitsui Petrochemical Industry, Hi-Zex 2200J Polypropylene (is-PP) Thickness: 1mm, Width: 15mm Mitsui Toatsu Chemicals, Noblen FL-
100 Ethylene / Vinyl Alcohol / Random Copolymer (ET-VA) Thickness: 2 mm, Width: 15 mm Kuraray Eval Example 1 Using high density polyethylene as the material, tr / to = 0.15 × 0.35
The material was sandwiched between blade dies within the range of, and the material was rapidly cooled while being drawn, and then drawn and stretched.

この時の条件は、Tf=105℃、及びダイスでの変形抵
抗を低くするためにTf=120℃としTf=110℃に設定
し、ブレードダイス出側における素材への急冷処理は、
圧力2Kg/cm2(圧力ゲージ)の室温空気を素材に吹付
け、冷却速度60℃/秒で行った。
The conditions at this time are Tf = 105 ° C. and Tf = 120 ° C. in order to lower the deformation resistance in the die, and Tf = 110 ° C.
Room temperature air having a pressure of 2 kg / cm 2 (pressure gauge) was blown onto the material, and the cooling rate was 60 ° C./second.

最大引抜き速度Vは、10/min.に達した。The maximum drawing speed V reached 10 / min.

結果を第1表及び第2図、第3図(図中記号△印)に示
した。第2図は延伸比(変形比(λと引抜き速度Vとの
関係を示してり、図中の破断ラインはtr/toを0.15
から0.50の範囲でVを上昇させた場合において素材が破
断したところである(Tf及びTrはそれぞれ実施例、
比較例に準ずる)。
The results are shown in Table 1, FIG. 2 and FIG. 3 (symbol Δ in the figure). FIG. 2 shows the relationship between the stretch ratio (deformation ratio (λ and the drawing speed V, and the breaking line in the figure shows tr / to of 0.15
To the 0.50 to 0.50 range, when the V is increased, the material is just about to break (Tf and Tr are examples,
According to the comparative example).

第3図は引張り試験の結果を示したものである。FIG. 3 shows the result of the tensile test.

実施例2 高密度ポリエチレンを用いて、第一段としてtr/to
=0.15でブレードダイスに素材を挟み、Tf=105℃と
して実施例して延伸した素材を、さらに長さ1200mmの延
伸域に張力を加えて通過させ、その直後に素材を急冷処
理して二段延伸を行った。
Example 2 Using high-density polyethylene, as the first stage, tr / to
= 0.15, sandwich the material in a blade die, stretch the material by working out the example with Tf = 105 ° C, apply tension to a stretching area of 1200 mm in length, and immediately after that, quench the material to obtain a two-stage Stretching was performed.

熱延伸出口における素材への急冷処理は、出口から5cm
迄の素材に圧力2Kg/cm2(圧力ゲージ)の室温空気を
吹付けて行った。
5 cm from the exit for quenching the material at the hot drawing exit
The above materials were blown with room temperature air having a pressure of 2 kg / cm 2 (pressure gauge).

また熱延伸域雰囲気温度Tf'は、80〜90℃で行った。The atmosphere temperature Tf 'in the hot stretching region was 80 to 90 ° C.

結果第1表及び第2図、第3図(図中記号■印)に示し
た。
Results The results are shown in Table 1 and FIGS. 2 and 3 (indicated by a symbol ■ in the figure).

比較例1 高密度ポリエチレンを用いて、tr/to=0.15、Tf
=105℃に条件を設定し(実施例1と同一条件)、ダイ
ス出口直後の素材に急冷処理を施さずに引抜いたが、直
ちに破断した。
Comparative Example 1 Using high density polyethylene, tr / to = 0.15, Tf
The condition was set to 105 ° C. (the same condition as in Example 1), and the material immediately after the die exit was pulled out without being subjected to the quenching treatment, but immediately fractured.

また、引抜き速度(V)を0.02m/分と著しく低く保った
が破断して延伸不可能であった。
Further, the drawing speed (V) was maintained at a remarkably low value of 0.02 m / min, but it broke and could not be stretched.

比較例2 高密度ポリエチレンを用いて、ダイス温度Trのみを90
℃に下げ、tr/to=0.15、Tf=105℃に条件を設
定し(Trを除きその他は実施例1と同一条件)、ダイ
ス出口直後の素材に急冷処理を施さずに引抜いた所、V
≦0.07と著しく低い速度であった。
Comparative Example 2 High-density polyethylene was used and only the die temperature Tr was set to 90.
C., conditions were set to tr / to = 0.15, Tf = 105.degree. C. (except for Tr, the same conditions as in Example 1 were used), and the material immediately after the die exit was pulled out without being subjected to quenching treatment.
It was a very low speed of ≦ 0.07.

結果を第1表及び第2図、第3図(図中記号○印)に示
した。
The results are shown in Table 1, FIG. 2 and FIG. 3 (indicated by a symbol ◯).

比較例3 比較例2と同一条件でダイスをロールに変更して引抜い
た。
Comparative Example 3 Under the same conditions as in Comparative Example 2, the die was changed to a roll and drawn.

結果を第1表及び第2図、第3図(図中記号○印)に示
した。
The results are shown in Table 1, FIG. 2 and FIG. 3 (indicated by a symbol ◯).

以上の実施例1、2及び比較例1、2、3において高密
度ポリエチレンを素材とした場合、ダイス温度Trが素
材の融点に近くなると(約120℃近辺)素材組織中の非
晶鎖が配向されにくくなり(結晶は簡単に配向する)、
延伸による素材の高強度高弾性率化の発現効果が低下す
る。
In the above Examples 1 and 2 and Comparative Examples 1, 2 and 3, when the high density polyethylene is used as the material, when the die temperature Tr becomes close to the melting point of the material (around 120 ° C), the amorphous chains in the material structure are oriented. Less likely (crystals are easily oriented),
The effect of increasing the strength and elastic modulus of the material by stretching is reduced.

さらに温度を上げると融解に至る。If the temperature is further raised, it will melt.

ダイス温度Tr<120℃の範囲では、Trはできるだけ
高い方が引抜き張力を低く保つことができる。
In the range of the die temperature Tr <120 ° C., the higher the Tr is, the lower the drawing tension can be kept.

しかし、急冷処理のための急冷域を設けていない比較例
1の場合、Tr=110℃では引抜くことはできず、Vを
0.02m/分と著しく低くしたがこの場合でも破断した。
However, in the case of Comparative Example 1 in which the quenching zone for the quenching process is not provided, it cannot be extracted at Tr = 110 ° C.
Although it was significantly reduced to 0.02 m / min, fracture occurred even in this case.

比較例2の場合、ダイス温度Trを90℃に下げたが、引
抜き速度V>0.1m/分で引抜くとことはできず、Vを0.
03〜0.07m/分と著しく低くすることでようやく引抜く
ことができた。
In the case of Comparative Example 2, the die temperature Tr was lowered to 90 ° C., but it was not possible to draw at a drawing speed V> 0.1 m / min, and V was set to 0.
It was finally able to be pulled out by making it extremely low at 03-0.07m / min.

この時最大延伸比λmax.=23のものが得られたが、安定
して引抜けず2m程引抜いた時点で破断した。
At this time, the one with the maximum stretching ratio λmax. = 23 was obtained, but it did not pull out stably, and it broke at the time of pulling out about 2 m.

安定して連続で引抜くには、λ≦18が適当であった。
(第2図;○印) 比較例3は、ブレードダイスをロールに変えて引抜いた
場合で、比較例2と同様の結果となり、急冷域を有しな
いためにV=0.03〜0.07m/分が限界であった。(第2
図;○印) 実施例1においては、急冷処理のための急冷域を設ける
ことによってTr=110℃に設定することができ、Vを
1〜10.0m/分まで上げることができた。(第2図;△
印) また、実施例2において、引抜き延伸急冷処理と熱延伸
急冷処理を組合わせることにより、第一段の引抜きでλ
=10、第二段の熱延伸でλ=2〜3.6に延伸し、ト
ータルλ=20〜36の高延伸比を得ることができた。(第
2図;■印) 機械的物性は、延伸比λと強い相関を持ち、上記ずれの
方法も大きな差は見られないが、最終到達延伸比の大き
い実施例2においては、λ≒36で引張り弾性率E≒6,00
0Kgf/mm2、引張り強さσ≒65Kgf/mm2に達した。(第2
図、第3図;■印) このように、急冷処理が可能な引抜き工程を用いること
により、従来法に比べて桁違いに高い速度で高延伸比を
達成することができる。
Λ ≦ 18 was suitable for stable and continuous drawing.
(FIG. 2; ◯) In Comparative Example 3, the blade die was changed to a roll and pulled out, and the same result as in Comparative Example 2 was obtained, and V = 0.03 to 0.07 m / min because there was no quenching zone. It was the limit. (Second
In the first example, Tr = 110 ° C. could be set by providing the quenching zone for the quenching process, and V could be increased to 1 to 10.0 m / min. (Fig. 2; △
In addition, in Example 2, by combining the drawing stretching quenching treatment and the hot drawing quenching treatment, λ can be obtained in the first stage drawing.
It was possible to obtain a high stretching ratio of λ = 20 to 36 by stretching 1 = 10 and stretching to λ2 = 2 to 3.6 by the second stage hot stretching. (Fig. 2; mark ■) Mechanical properties have a strong correlation with the draw ratio λ, and although there is no great difference in the above deviation method, in Example 2 in which the final reach draw ratio is large, λ≈36. And tensile elastic modulus E ≒ 6,00
It reached 0 Kgf / mm 2 and tensile strength σ≈65 Kgf / mm 2 . (Second
(FIG. 3, FIG. 3; mark ■) As described above, by using the drawing process capable of quenching, a high stretch ratio can be achieved at an order of magnitude higher speed than the conventional method.

実施例3 ポリプロピレンを素材として、tr/to=0.13でブレ
ードダイスに素材を挟み、引抜きながら素材を急冷処理
して引抜き延伸を行った。
Example 3 Using polypropylene as a material, the material was sandwiched between blade dies at tr / to = 0.13, and the material was rapidly cooled while being drawn and drawn and drawn.

この時の条件は、Tf=115℃、Tr=120℃に設定し、
ブレードダイス出側における素材への急冷処理は、ダイ
ス出口から5cmまでを急冷域とし、圧力2Kg/cm2の室
温空気を素材に吹付けて冷却速度75℃/秒以上で行っ
た。
The conditions at this time are set as Tf = 115 ° C. and Tr = 120 ° C.,
The material was rapidly cooled on the outlet side of the blade die at a cooling rate of 75 ° C./sec or more by blowing room temperature air having a pressure of 2 kg / cm 2 onto the material at a quenching area up to 5 cm from the die exit.

結果を第1表及び第4図、第5図に示した。(図中記号
●印) 第4図は延伸比λと引抜き速度Vとの関係、第5図は引
張り弾性率Eと引張り強さσとの関係を示したものであ
る。
The results are shown in Table 1, FIG. 4 and FIG. (Symbol in the figure) FIG. 4 shows the relationship between the draw ratio λ and the drawing speed V, and FIG. 5 shows the relationship between the tensile elastic modulus E and the tensile strength σ.

比較例4 ポリプロピレンを素材として、tr/to=0.13でブレ
ードダイスに素材を挟み、素材への急冷処理を施さずに
引抜き延伸を行った。
Comparative Example 4 Using polypropylene as a material, the material was sandwiched between blade dies at tr / to = 0.13, and drawn and stretched without subjecting the material to quenching.

この時の条件は、実施例3と同様Tf=115℃、Tr=1
20℃に設定した。
The conditions at this time are Tf = 115 ° C. and Tr = 1 as in Example 3.
It was set to 20 ° C.

結果を第1表及び最大延伸比(λmax.)ならびに最大引
抜き速度(Vmax.)の素材を第4図、第5図(図中記号
○印)に示した。
The results are shown in Table 1 and the materials having the maximum draw ratio (λmax.) And the maximum drawing speed (Vmax.) Are shown in FIGS. 4 and 5 (marked with a circle in the figure).

比較例5 ブレードダイスをロールに変更して比較例3と同一条件
で引抜いた。
Comparative Example 5 The blade die was changed to a roll, and the blade was drawn under the same conditions as in Comparative Example 3.

結果を第1表及び最大延伸比(λmax.)ならびに最大引
抜き速度(Vmax.)の素材を第4図、第5図(図中記号
○印)に示した。
The results are shown in Table 1 and the materials having the maximum draw ratio (λmax.) And the maximum drawing speed (Vmax.) Are shown in FIGS. 4 and 5 (marked with a circle in the figure).

これら実施例3、比較例4、5において急冷処理を施さ
ない比較例4、5の場合、λmax.=13を得るには、V=
0.05と著しくなる。
In the case of Comparative Examples 4 and 5 not subjected to the rapid cooling treatment in Example 3 and Comparative Examples 4 and 5, V =
It becomes remarkably 0.05.

またこの状態でVを高くするとVmax.=1m/分が限界
であり、この場合Vが上昇するに伴ない延伸比λが低下
した。(第4、5図の○、 印) 本発明の方法で急冷域を用いた場合(実施例3、第4、
5図の●印)、Vを2m/分まで上げることができ、λ
=14が得られた。
Further, if V is increased in this state, Vmax. = 1 m / min is the limit, and in this case, as V increases, the stretch ratio λ decreases. (○ in Figures 4 and 5 When a quenching zone is used in the method of the present invention (Examples 3, 4,
5), V can be increased up to 2m / min, λ
= 14 was obtained.

実施例4 エチレン・ビニルアルコールランダムコポリマーを素材
として、tr/to=0.15としたブレードダイスに素材
を挟み、引抜きながら素材を急冷処理して引抜き延伸を
行った。
Example 4 Using ethylene / vinyl alcohol random copolymer as a raw material, the raw material was sandwiched between blade dies having a tr / to = 0.15, and the raw material was rapidly cooled while being drawn, and then drawn and stretched.

この時の条件は、Tf=140℃、Tr=145℃に設定し、
ブレードダイス出側における素材への急冷処理は、ブレ
ードダイス出口から5cmまでを急冷域とし、圧力2Kg/
cm2の室温空気を素材に吹付けて冷却速度は130℃/秒以
上で行った。
The conditions at this time are Tf = 140 ° C. and Tr = 145 ° C.,
For the rapid cooling of the material on the blade die exit side, the quenching area is 5 cm from the blade die outlet, and the pressure is 2 kg /
A room temperature air of cm 2 was blown onto the material, and the cooling rate was 130 ° C / sec or more.

結果を第1表、及び第4図、第5図に示した。The results are shown in Table 1 and FIGS. 4 and 5.

比較例6 エチレン・ビニルアルコールランダムコポリマーを素材
として、tr/to=0.15としたブレードダイスに素材
を挟み、素材を急冷処理せずに引抜き延伸を行った。
Comparative Example 6 Using ethylene / vinyl alcohol random copolymer as a raw material, the raw material was sandwiched between blade dies having a tr / to = 0.15, and the raw material was drawn and stretched without quenching.

この時の条件は、実施例4と同様にTf=140℃、Tr
=120℃に設定した。
The conditions at this time were Tf = 140 ° C. and Tr as in Example 4.
= 120 ° C was set.

結果を第1表、及び第4図、第5図に示した。The results are shown in Table 1 and FIGS. 4 and 5.

急冷処理を施さない場合、V=0.25m/分、λmax.=5
(第4、5図の△印)であるが、実施例4において急冷
処理を施した場合、V=1m/分、λmax.=8(第4、5
図の▲印)が得られ、速度、延伸比とも著しく向上し
た。
Without quenching, V = 0.25m / min, λmax. = 5
(Marked with Δ in FIGS. 4 and 5), when the quenching process is performed in Example 4, V = 1 m / min, λmax. = 8 (4, 5)
The ∘ mark in the figure was obtained, and both the speed and the stretching ratio were remarkably improved.

また、λ=8において、引張り強さσ=28Kgf/mm2が得
られた。
Further, at λ = 8, a tensile strength σ = 28 Kgf / mm 2 was obtained.

実施例5 高密度ポリエチレンを用いて、第一段としてtr/to
=0.35としたブレードダイスに素材を挟み、Tf=120
℃、Tr=110、V=10m/分の条件で引抜きながら、ダ
イス出口から5cm迄の素材に急冷処理を施し、得られた
延伸素材を第二段としてtr/to=0.15、Tf=125
℃、Tr=118℃、V=5m/分に設定したブレードダイ
スに挟み引抜きながらダイス出口から5cm迄の素材に急
冷処理を施し二段延伸を行った。
Example 5 Using high-density polyethylene, the first step is tr / to
Tf = 120 by sandwiching the material between the blade dies with = 0.35
While pulling out under conditions of ℃, Tr = 110, V = 10m / min, the material up to 5cm from the die exit is subjected to quenching treatment, and the obtained drawn material is used as the second stage, tr / to = 0.15, Tf = 125.
The material up to 5 cm from the die exit was subjected to a rapid cooling treatment while sandwiched by a blade die set to ℃, Tr = 118 ° C., V = 5 m / min, and then two-stage stretched.

第一段及び第二段の素材への急冷処理は、いずれも圧力
2Kg/cm2の室温空気を素材に吹付けて冷却速度60℃/
秒以上で行った。
Both the first-stage and second-stage materials are rapidly cooled by blowing room temperature air with a pressure of 2 kg / cm 2 onto the material and cooling rate 60 ℃ /
It took more than a second.

これにより得られた延伸素材は、第一段でλ=14、第
二段でλ=1.5となり、最終的にλ=21のものであっ
た。
The stretched material thus obtained had λ 1 = 14 in the first stage and λ 2 = 1.5 in the second stage, and finally had λ = 21.

以上の実施例において、得られた高分子配向延伸体は、
透明性を示し、また、かなり高い複屈折率を示す。ま
た、引張り試験においても、降状点を示さず原料素材の
強度より15倍以上も高い値で破断する。
In the above examples, the obtained polymer oriented stretched body,
It exhibits transparency and a fairly high birefringence. Also in the tensile test, it does not show a yield point and breaks at a value 15 times higher than the strength of the raw material.

これらの延伸高分子材料は、ロープ、ネットなどのテン
ションメンバーとして、また複合材料の強化材としての
利用分野がある。
These stretched polymeric materials have application fields as tension members such as ropes and nets, and as reinforcing materials for composite materials.

発明の効果 従来の引抜き延伸法では、生産性の面において、引抜き
速度が著しく低いという大きな欠点を持っていたが、本
発明における急冷処理を素材に施すことにより、高い変
形比を維持したまま高い引抜き速度下での良生産性の引
抜き延伸が可能となった。
EFFECTS OF THE INVENTION The conventional drawing-drawing method has a big drawback that the drawing speed is extremely low in terms of productivity, but by subjecting the material to the quenching treatment in the present invention, it is high while maintaining a high deformation ratio. It has become possible to perform drawing with good productivity under drawing speed.

また急冷処理を施した素材は、それを施さない素材と比
較して、同じ変形比において、引張り弾性率(E)、引
張り強さ(σ)に差を生じ、急冷処理を施した素材のE
及びσが、それを施さない素材のE及びσよりも高くな
った。
Further, the material subjected to the quenching treatment has a difference in tensile elastic modulus (E) and tensile strength (σ) at the same deformation ratio as compared with the material not subjected to the quenching treatment, and the E of the material subjected to the quenching treatment is different.
And σ were higher than E and σ of the material which was not applied.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の説明図で(1)は引抜き延伸・急冷
処理工程、(2)は熱延伸・急冷処理工程、(3)は工程(1)
と工程(2)の組合わせを示し、第2図及び第4図は引抜
き速度と延伸比の関係を示す図、第3図及び第5図は延
伸比と引張り弾性率及び引張り強さの関係を示す図、第
6図は急冷処理による引張り弾性率及び引張り強さの変
化(高密度ポリエチレン)を示す図である。 1・・・素材、2・・・引抜き工具、3・・・急冷域、
4・・・熱延伸域。
FIG. 1 is an explanatory view of the method of the present invention, (1) is a drawing / quenching process step, (2) is a hot drawing / quenching process step, and (3) is a step (1).
2 and 4 show the relationship between the drawing speed and the draw ratio, and FIGS. 3 and 5 show the relationship between the draw ratio and the tensile elastic modulus and the tensile strength. And FIG. 6 are views showing changes in tensile elastic modulus and tensile strength (high-density polyethylene) due to the rapid cooling treatment. 1 ... material, 2 ... drawing tool, 3 ... quenching area,
4 ... Hot drawing zone.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 功 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式會社第1技術研究所内 (72)発明者 戸来 稔雄 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式會社第1技術研究所内 審査官 田中 久直 (56)参考文献 特開 昭63−81023(JP,A) 特開 昭50−12152(JP,A) 特開 昭52−29874(JP,A) 特開 昭59−38239(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Isao Tanaka 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Co., Ltd. Technical Research Institute (72) Toshio Torai 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Address Nippon Steel & Steel Co., Ltd. Technical Research Institute No. 1 Hisashi Nao Tanaka (56) References JP 63-81023 (JP, A) JP 50-12152 (JP, A) JP 52-29874 (JP, A) JP 59-38239 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】結晶性高分子材料のシートまたは棒材を予
熱した後に、加熱した引抜き工具を通過せしめて延伸
し、その直後に急冷処理を施すとともに延伸比8以上と
することを特徴とする結晶性の熱可塑性高分子材料の延
伸方法。
1. A crystalline polymer material sheet or rod is preheated, then passed through a heated drawing tool to be stretched, and immediately after that, a quenching process is performed and a stretching ratio is 8 or more. A method for stretching a crystalline thermoplastic polymer material.
【請求項2】結晶性高分子材料のシートまたは棒材を予
熱した後に、加熱した引抜き工具を通過せしめて延伸
し、その直後に急冷処理を施す工程(I)と、結晶性高
分子材料のシートまたは棒材を熱延伸する域を通過さ
せ、その出口直後で素材に急冷処理を施す工程(II)の
工程を連続して行うか、あるいは前記工程(I)と工程
(II)を任意に組み合わせて多段階で行うとともに延伸
比8以上とすることを特徴とする結晶性高分子材料の延
伸方法。
2. A step (I) of pre-heating a sheet or rod of a crystalline polymer material, passing it through a heated drawing tool and stretching it, and immediately followed by a quenching treatment, and a step of applying the crystalline polymer material. The sheet or bar is passed through a zone where it is hot-stretched, and immediately after its exit, the step (II) of subjecting the material to rapid cooling is continuously performed, or the steps (I) and (II) are optionally performed. A method for stretching a crystalline polymer material, which is characterized in that the combination is performed in multiple stages and a stretching ratio is 8 or more.
JP63034978A 1988-02-19 1988-02-19 Method for stretching crystalline polymer material Expired - Lifetime JPH064273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034978A JPH064273B2 (en) 1988-02-19 1988-02-19 Method for stretching crystalline polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034978A JPH064273B2 (en) 1988-02-19 1988-02-19 Method for stretching crystalline polymer material

Publications (2)

Publication Number Publication Date
JPH01210327A JPH01210327A (en) 1989-08-23
JPH064273B2 true JPH064273B2 (en) 1994-01-19

Family

ID=12429234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034978A Expired - Lifetime JPH064273B2 (en) 1988-02-19 1988-02-19 Method for stretching crystalline polymer material

Country Status (1)

Country Link
JP (1) JPH064273B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210249A (en) * 2006-02-10 2007-08-23 Sekisui Chem Co Ltd Manufacturing method for stretched thermoplastic polyester-based resin sheet
JP2007216609A (en) * 2006-02-20 2007-08-30 Sekisui Chem Co Ltd Manufacturing method for stretched thermoplastic polyester-based resin sheet
JP2007216424A (en) * 2006-02-14 2007-08-30 Sekisui Chem Co Ltd Stretched thermoplastic polyester resin sheet having recessed part and its laminated sheet
JP2007245479A (en) * 2006-03-15 2007-09-27 Sekisui Chem Co Ltd Laminated molding
JP2008018597A (en) * 2006-07-12 2008-01-31 Sekisui Chem Co Ltd Method for producing oriented thermoplastic polyester resin sheet
JP2008023770A (en) * 2006-07-19 2008-02-07 Sekisui Chem Co Ltd Manufacturing method of stretched thermoplastic polyester resin sheet
JP2008023771A (en) * 2006-07-19 2008-02-07 Sekisui Chem Co Ltd Manufacturing method of stretched thermoplastic polyester resin sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101142073B (en) * 2005-03-15 2010-06-02 积水化学工业株式会社 Process for production of stretched thermoplastic polyester resin sheet and laminated molded article
JP4874611B2 (en) * 2005-09-16 2012-02-15 積水化学工業株式会社 Method for producing stretched thermoplastic polyester resin sheet
JP4874845B2 (en) * 2007-03-27 2012-02-15 積水化学工業株式会社 Method for producing drawing-drawn thermoplastic resin sheet
JP5064895B2 (en) * 2007-06-06 2012-10-31 積水化学工業株式会社 Method for producing stretched thermoplastic polyester resin sheet
JP5243825B2 (en) * 2008-03-24 2013-07-24 積水化学工業株式会社 Method for producing stretched thermoplastic polyester resin sheet
JP5533651B2 (en) * 2008-07-03 2014-06-25 コニカミノルタ株式会社 Organic piezoelectric material manufacturing method, ultrasonic transducer, and ultrasonic medical diagnostic imaging apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012152A (en) * 1973-06-05 1975-02-07
JPS5229874A (en) * 1975-09-02 1977-03-07 Sumitomo Bakelite Co Process for molding transparent polypropylene products
JPS5938239A (en) * 1982-08-26 1984-03-02 Japan Synthetic Rubber Co Ltd Production of high-molecular piezoelectric film
IL82632A (en) * 1986-08-18 1991-05-12 Technicon Instr Method and apparatus for drawing thermoplastic tubing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210249A (en) * 2006-02-10 2007-08-23 Sekisui Chem Co Ltd Manufacturing method for stretched thermoplastic polyester-based resin sheet
JP2007216424A (en) * 2006-02-14 2007-08-30 Sekisui Chem Co Ltd Stretched thermoplastic polyester resin sheet having recessed part and its laminated sheet
JP2007216609A (en) * 2006-02-20 2007-08-30 Sekisui Chem Co Ltd Manufacturing method for stretched thermoplastic polyester-based resin sheet
JP2007245479A (en) * 2006-03-15 2007-09-27 Sekisui Chem Co Ltd Laminated molding
JP2008018597A (en) * 2006-07-12 2008-01-31 Sekisui Chem Co Ltd Method for producing oriented thermoplastic polyester resin sheet
JP2008023770A (en) * 2006-07-19 2008-02-07 Sekisui Chem Co Ltd Manufacturing method of stretched thermoplastic polyester resin sheet
JP2008023771A (en) * 2006-07-19 2008-02-07 Sekisui Chem Co Ltd Manufacturing method of stretched thermoplastic polyester resin sheet

Also Published As

Publication number Publication date
JPH01210327A (en) 1989-08-23

Similar Documents

Publication Publication Date Title
JPH064273B2 (en) Method for stretching crystalline polymer material
US4414266A (en) Method of manufacture of reinforced sheet plastics material and the production of moulded articles therefrom
EP1859916B1 (en) Process for production of stretched thermoplastic polyester resin sheet
US3394045A (en) Polypropylene sheet and method
US5891379A (en) Roll forming of thermoplastics
EP1453647B1 (en) Process for fabricating polypropylene sheet
JPS6015120A (en) Manufacture of crystalline polymeric sheet
US4514351A (en) Process for the manufacture of articles of high mechanical strength from thermoplastic synthetic resins
US5211899A (en) Process for production of polypropylene sheets or films
Burke et al. Uniaxial roll‐drawing of isotactic polypropylene sheet
US4310485A (en) Method of improving the flatness of compression-rolled plastic film
JPH0572250B2 (en)
JP3021262B2 (en) Forming method of crystalline foamed polyethylene terephthalate sheet
EP0711649B1 (en) Plastic strap and method of manufacturing same
US6391432B1 (en) Process for processing a semicrystalline thermoplastic
JPH03295630A (en) Method for extruding and stretch forming crystalline thermoplastic material and apparatus thereof
JPS6169431A (en) Stretching method of poly(beta-hydroxybutyric acid) molded product
EP0323179A3 (en) Poly(arylene sulfide) sheet and production process therepoly(arylene sulfide) sheet and production process thereof of
Endo et al. Superdrawing of polytetrafluoroethylene virgin powder above the static melting temperature
JP2815260B2 (en) Fiber manufacturing method
US20030166778A1 (en) Micro-composite polymer/polymer materials with semicrystalline dispersed phase and preparation method
JPH0358902B2 (en)
JPS60236724A (en) Tubular blank
EP0036757A1 (en) Process and apparatus for producing biaxially attenuated thermoplastic film
CN117901390A (en) High-temperature-resistant label film product and preparation method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term