JPS6015120A - Manufacture of crystalline polymeric sheet - Google Patents

Manufacture of crystalline polymeric sheet

Info

Publication number
JPS6015120A
JPS6015120A JP12392583A JP12392583A JPS6015120A JP S6015120 A JPS6015120 A JP S6015120A JP 12392583 A JP12392583 A JP 12392583A JP 12392583 A JP12392583 A JP 12392583A JP S6015120 A JPS6015120 A JP S6015120A
Authority
JP
Japan
Prior art keywords
sheet
temperature
ratio
rollers
drawn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12392583A
Other languages
Japanese (ja)
Other versions
JPH035297B2 (en
Inventor
Akira Kaido
海藤 彰
Kazuo Nakayama
和郎 中山
Hisaaki Kanetsuna
金綱 久明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP12392583A priority Critical patent/JPS6015120A/en
Publication of JPS6015120A publication Critical patent/JPS6015120A/en
Publication of JPH035297B2 publication Critical patent/JPH035297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline

Abstract

PURPOSE:To obtain the titled sheet that has a smooth surface, and is transparent, and high in strength and elasticity modulus, by passing a crystalline polymeric sheet stock sheet between a pair of rollers that have been heated to a specified temperature, and drawing the sheet at a draw ratio of down to a specified value. CONSTITUTION:A crystalline polymeric stock sheet is passed between a pair of rollers that have been heated to a temperature down to a transformation start temperature T1, which is measured when a load of 10MPa is applied to the stock sheet and the stock sheet is heated at a rate of 1 deg.C/min, but not exceeding the kick-off temperature T2 of the melting curve of measurements by differential scanning and is drawn at a draw ratio of down to 2.5 and preferably at a drawing speed of not more than 500mm./min to obtain the intended sheet. It is preferable to preheat the stock sheet.

Description

【発明の詳細な説明】 本発明は、引抜成形法により、平滑な表面をもつ、透明
で、強度と弾性率の高い結晶性高分子シートを製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a transparent crystalline polymer sheet with a smooth surface, high strength, and high modulus of elasticity by a pultrusion method.

一般に高分子材料を成形する場合に、溶融状態で金型に
流し込んだり、口金から押出したりする方法が用いられ
ている。これらの方法で成形した高分子材料は、分子鎖
の配向性が低く、結晶間を結ぶタイ分子数も少ないため
、強度や弾性率は高くない。従って、高強度、高弾性率
のシートを製造するためには、延伸や圧延のような方法
により、特定の方向にシートを変形させ、分子鎖を配向
させることが必要である。特に、圧延は、厚い高分子シ
ートにも適用できる可能性があるが、非晶鎖の弾性回復
によりローラー通過直後の厚さの戻り、いわゆるスプリ
ングバックを伴うため、精度の良い加工が行われないう
え、大きな変形比が得られない。一方、引抜成形におい
ては、引抜応力が材料の破断強度より小さくなければな
らないという制約があり、高分子シートの引抜成形は試
みられていない。
Generally, when molding a polymer material, a method is used in which the material is poured into a mold in a molten state or extruded from a die. Polymer materials molded using these methods have low molecular chain orientation and a small number of tie molecules connecting crystals, so they do not have high strength or elastic modulus. Therefore, in order to produce a sheet with high strength and high elastic modulus, it is necessary to deform the sheet in a specific direction by a method such as stretching or rolling to orient the molecular chains. In particular, rolling has the potential to be applied to thick polymer sheets, but because the elastic recovery of amorphous chains causes the thickness to return immediately after passing through the rollers, so-called springback, it is difficult to process with high precision. Moreover, a large deformation ratio cannot be obtained. On the other hand, in pultrusion molding, there is a restriction that the pultrusion stress must be smaller than the breaking strength of the material, and pultrusion molding of polymer sheets has not been attempted.

本発明者らは、このような事情に鑑み、結晶性高分子シ
ートを引抜成形により成形し、高強度、高弾性率を示す
結晶性高分子シートを製造する方法を開発するために種
々研究を重ねた結果、結晶性高分子シートを引き抜(過
程においてひずみ硬化が起こってシートが破断しにくく
なるため、ある所定の温度条件下においては引抜成形に
よりシートを高変形比に変形させることが可能であるこ
と、引抜成形により成形したシートは優れた力学的性質
を示すことを見出し、この知見に基づいて本発明をなす
に至った。
In view of these circumstances, the present inventors conducted various research in order to develop a method for manufacturing a crystalline polymer sheet that exhibits high strength and high elastic modulus by forming a crystalline polymer sheet by pultrusion molding. As a result of stacking, the crystalline polymer sheet is pulled out (strain hardening occurs during the process, making the sheet difficult to break, so under certain temperature conditions, the sheet can be deformed to a high deformation ratio by pultrusion. It was discovered that the sheet formed by pultrusion exhibits excellent mechanical properties, and based on this knowledge, the present invention was completed.

すなわち、本発明は、結晶性高分子原反シートを、その
シートに]0MPaの荷重を加えて1℃/分の昇温速度
で昇温した時の変形開始温度以上で、示差走査熱量測定
融解曲線の立ち上り温度を超えない温度に加熱した一対
のローラーを通じて少なくとも延伸比2.5倍以上に引
き抜くことを特徴とする結晶性高分子シートの製造方法
を提供するものである。
That is, the present invention is capable of melting a crystalline polymer raw sheet by differential scanning calorimetry at a temperature higher than the deformation start temperature when the sheet is heated at a heating rate of 1° C./min with a load of 0 MPa applied to the sheet. The present invention provides a method for producing a crystalline polymer sheet, which is characterized in that the sheet is drawn through a pair of rollers heated to a temperature not exceeding the rising temperature of the curve to a drawing ratio of at least 2.5 times or more.

本発明方法で用いる樹脂は、ポリエチレン、ポリプロピ
レン、ポリアセタール樹脂、ナイロン、その他の結晶性
の高分子である。また、用いる樹脂の分子量や分子量分
布については、一般に繊維、フィルム及び成形品として
用いられているものであれば特定の制限はない。
The resin used in the method of the present invention is polyethylene, polypropylene, polyacetal resin, nylon, or other crystalline polymer. Furthermore, there are no particular restrictions on the molecular weight or molecular weight distribution of the resin used, as long as it is generally used for fibers, films, and molded products.

本発明方法においては、結晶性高分子をシート状に成形
し、一定の幅に切り出す。次に、そのシートを所定の温
度に維持した一対のローラーを通して引き抜くが、この
場合ローラー間隔をシートの延伸比が少な(とも2.5
倍以上になるように調整する必要がある。ここにいう延
伸比とは、引き抜いた後のシートの長さと引き抜く前の
シートの長さとの比を意味する。
In the method of the present invention, a crystalline polymer is formed into a sheet and cut into a certain width. The sheet is then pulled through a pair of rollers maintained at a predetermined temperature, with the distance between the rollers being adjusted to a low stretching ratio (both 2.5
It needs to be adjusted to more than double. The stretching ratio here means the ratio of the length of the sheet after being drawn to the length of the sheet before being drawn.

本発明方法は、所定の温度条件下において行う必要があ
る。すなわち、ローラーの温度を、10MPaの荷重を
かけて1°C/分の昇温速度で昇温した時の変形開始温
度以上で示差走査熱量測定融解曲線の立ち上り温度を超
えない温度に設定する必要がある。ここにいう変形開始
温度とは、10 MPaの荷重を加えて1°C/分の昇
温速度で昇温した時のひずみ一温度曲線が、低温側の直
線部分からずれる温度をいう。主な結晶性高分子のびず
み一温度曲線と変形開始温度(Tl)のめ方を第1図に
示した。また、示差走査熱量測定融解曲線の立ち上り温
度とは、融解曲線の低温側の変曲点における接線とベー
スラインの延長線との交点の温度をいう。主な結晶性高
分子の示差走査熱量測定融解曲線と、その立ち上り温度
(T2)のめ方を第2図に示した。示差走査熱量測定融
解曲線は、Perkin Elmer DSC−2型示
差走査熱量測定装置を用いて、5°C/分の昇温速度で
測定した。ローラーの温度がTlより低いと引抜応力が
太き(なり、引抜成形が困難になる。また、T2以上の
温度においては、シートの融解が起こり、引抜方向への
分子鎖の配向を付与することはできない。
The method of the present invention needs to be carried out under predetermined temperature conditions. In other words, the temperature of the roller needs to be set to a temperature that is higher than the deformation start temperature when the temperature is raised at a heating rate of 1 °C/min with a load of 10 MPa, but does not exceed the rising temperature of the differential scanning calorimetry melting curve. There is. The deformation start temperature herein refers to the temperature at which the strain-temperature curve deviates from the straight line portion on the low temperature side when the temperature is increased at a temperature increase rate of 1°C/min with a load of 10 MPa applied. Figure 1 shows the strain-temperature curves and deformation onset temperatures (Tl) of major crystalline polymers. Further, the rising temperature of the differential scanning calorimetry melting curve refers to the temperature at the intersection of the tangent at the inflection point on the low temperature side of the melting curve and the extension of the baseline. FIG. 2 shows differential scanning calorimetry melting curves of major crystalline polymers and how to calculate their rise temperatures (T2). Differential Scanning Calorimetry Melting curves were measured using a Perkin Elmer DSC-2 differential scanning calorimeter at a heating rate of 5°C/min. If the temperature of the roller is lower than Tl, the drawing stress becomes thick (and pultrusion becomes difficult).In addition, at a temperature of T2 or higher, the sheet melts and the molecular chains are oriented in the drawing direction. I can't.

従って、ローラーの温度を、T1以上で毛を超えない温
度に設定することが必要である。
Therefore, it is necessary to set the temperature of the roller to a temperature that is higher than T1 and does not exceed the temperature of the hair.

主な結晶性高分子のT1とT2の値を次表に示し次に添
付図面によって本発明方法を説明する。
The T1 and T2 values of main crystalline polymers are shown in the table below, and the method of the present invention will be explained with reference to the accompanying drawings.

第3図は、本発明の実施態様を示す断面図であり、素材
シート1を所定の温度に加熱しである一対のローラー2
2の間から張力を加えて引き抜き、目的のシートを得る
。素材シートは予熱部3において予熱しておくのが望ま
しい。ローラー22の間隔は調整可能であり、種々の厚
さの引抜シートを得ることができる。各ローラーの温度
は、10MPaの荷重を加えて1°C/分の速度で昇温
した時の変形開始温度以上で示差走査熱量測定融解曲線
の立ち上り温度を超えない温度に設定する。好ましい引
抜速度は、樹脂の種類と分子量によって異なるが、速す
ぎるとローラー間でシートが破断しやすくなるため、引
抜速度は500 mm 7分以下にするのが望ましい。
FIG. 3 is a sectional view showing an embodiment of the present invention, in which a pair of rollers 2 are used to heat the material sheet 1 to a predetermined temperature.
Apply tension from between 2 and pull it out to obtain the desired sheet. It is desirable that the material sheet be preheated in the preheating section 3. The spacing between the rollers 22 is adjustable, allowing drawn sheets of various thicknesses to be obtained. The temperature of each roller is set to a temperature that is higher than the deformation start temperature when a load of 10 MPa is applied and the temperature is increased at a rate of 1°C/min, and does not exceed the rising temperature of the differential scanning calorimetry melting curve. The preferred drawing speed varies depending on the type and molecular weight of the resin, but if it is too fast, the sheet is likely to break between the rollers, so the drawing speed is desirably 500 mm 7 minutes or less.

所定の延伸比を得るためにローラーの間隔を選ぶことが
必要であるが、ローラーの間隔は素材シート−の厚さの
7〜40%程度にするのが好ましく、ローラーの間隔が
狭すぎるとシートの破断をもたらし、広すぎると充分な
変形比ているため、圧延に見られるようなローラー通過
直後の厚さの戻り(スプリングバック)が抑えられ、む
しろローラー通過後にもシートが延伸されるため、高変
形比が得られる。素材シートは、分子鎖が無配向状態に
あるが、引抜成形により分子鎖が引抜方向に高配向し、
微結晶間を結ぶタイ分子の数も増加する。このような構
造上の変化は、シートの力学的性質に大きな影響を及ぼ
す。引張試験における応力−ひずみ曲線において、素材
シートの多くは降伏点を示すが、引抜成形により高変形
比に変形したシートは破断点まで降伏しない。
It is necessary to select the spacing between the rollers in order to obtain a predetermined stretching ratio, but it is preferable that the spacing between the rollers is approximately 7 to 40% of the thickness of the material sheet.If the spacing between the rollers is too narrow, the sheet will If the sheet is too wide, the deformation ratio is sufficient, which prevents the sheet from returning (springback) immediately after passing the rollers, as seen in rolling, and rather stretches the sheet even after passing the rollers. A high deformation ratio can be obtained. The molecular chains of the material sheet are in a non-oriented state, but due to pultrusion, the molecular chains become highly oriented in the drawing direction.
The number of tie molecules connecting microcrystals also increases. Such structural changes have a significant impact on the mechanical properties of the sheet. In the stress-strain curve in a tensile test, most of the material sheets show a yield point, but sheets that have been deformed to a high deformation ratio by pultrusion do not yield to the breaking point.

また、延伸比の増加に伴い、伸度が減少し、引張強度と
弾性率が増加する。引抜成形により最大延伸比まで変形
したシートの強度と弾性率が素材シートのそれらの値の
5〜30倍になることが、多くの結晶性高分子について
見出された。また、素材シートには球晶組織が存在して
いるため不透明であるが、引抜過程で球晶組織が破壊さ
れるため引抜シートの透明性は極めて良い。
Also, as the stretching ratio increases, the elongation decreases and the tensile strength and elastic modulus increase. It has been found for many crystalline polymers that the strength and modulus of the sheet deformed by pultrusion to the maximum stretch ratio are 5 to 30 times the values of the raw sheet. Furthermore, the material sheet is opaque due to the presence of a spherulite structure, but since the spherulite structure is destroyed during the drawing process, the transparency of the drawn sheet is extremely good.

本発明方法をシートの溶融押出成形と組み合わせて実施
すれば、連続的に高強度、高弾性率のシートを得ること
ができるので、工業的な結晶性高分子シートの製造方法
として好適である。
If the method of the present invention is carried out in combination with sheet melt extrusion molding, a sheet with high strength and high modulus of elasticity can be obtained continuously, so it is suitable as an industrial method for producing crystalline polymer sheets.

次に実施例によって、本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、各実施例において、外径50mm、幅70mmノ
ステンレス鋼製の一対のローラー温度いた。
In each example, a pair of stainless steel rollers with an outer diameter of 50 mm and a width of 70 mm were used.

伸度、引張強度及び弾性率は、インストロン型引張試験
機(東洋ボールドウィン(株)製、テンシロン UTM
−IIT−100+を用い、J I 5K7113−1
980に従って測定した。各測定値の意味するところは
次のとおりである。
Elongation, tensile strength, and elastic modulus were measured using an Instron type tensile testing machine (manufactured by Toyo Baldwin Co., Ltd., Tensilon UTM).
- Using IIT-100+, J I 5K7113-1
Measured according to 980. The meaning of each measurement value is as follows.

破断伸度:引張破断時におけるひずみ値降伏伸度:降伏
時におけるひずみ値 引張強度:引張破断時における荷重を試験片の元の断面
積で除した値 降伏強度:降伏時における荷重を試験片の元の断面積で
除した値 弾性率:変形開始点における引張応力のひずみに対する
比 実施例1 粘度平均分子量4万の高密度ポリエチレン(三井石油化
学工業(株)製、登録商標名「ハイゼックス2200J
J]および粘度平均分子量6万3千の高密度ポリエチレ
ンC三井石油化学工業(株)製、登録商標名[ハイゼッ
クス5000BJ lのシートについて引抜成形を行っ
た。素材シートの厚さはいづれも1 mmで、幅は22
00 Jの場合20 mm、5000 Bの場合30 
mmである。素材シートを75°C1100°Cまたは
120°Cに加熱したローラーの間を通して引き抜いた
。ローラーの温度を100℃に設定した時のローラーの
間隔(tr)と素材シートの厚さくto)との比(tr
/lo)と引抜応力、(引抜張力/素材シートの断面積
)、延伸比および引抜シートの厚さく1)と素材シート
の厚さとの比(t/lo)との関係を第4図にグラフと
して示す。図中、Oは2200 Jで引抜速度50mm
/分、口は5000 Bで引抜速度50mm/分、は5
000 Bで引抜速度10mm/分における測定値であ
る。図から明らかなように2200Jの場合、t / 
to <:: tr/ toであり、引抜シートの厚さ
がロール間隔より薄く、最大25倍程度の高い延伸比が
得られる。一方、5000Bの場合はt / toζt
r / toであり、引抜シートの厚さとロール間隔は
ほぼ等しく、最大14倍程度の延伸比が達成される。
Elongation at break: Strain value at tensile break. Yield elongation: Strain value at yield. Tensile strength: The value obtained by dividing the load at tensile break by the original cross-sectional area of the test piece. Value divided by the original cross-sectional area Elastic modulus: Ratio of tensile stress to strain at the deformation start point Example 1 High-density polyethylene with a viscosity average molecular weight of 40,000 (manufactured by Mitsui Petrochemical Industries, Ltd., registered trade name "HIZEX 2200J")
J] and a sheet of high-density polyethylene C having a viscosity average molecular weight of 63,000 manufactured by Mitsui Petrochemical Industries, Ltd. and having a registered trademark name [Hyzex 5000BJl] was subjected to pultrusion molding. The thickness of each material sheet is 1 mm, and the width is 22 mm.
20 mm for 00 J, 30 for 5000 B
It is mm. The material sheet was passed through rollers heated to 75°C, 1100°C, or 120°C and pulled out. The ratio of the distance between the rollers (tr) and the thickness of the material sheet (to) when the roller temperature is set to 100°C
Figure 4 shows the relationship between the drawing stress (pulling tension/cross-sectional area of the material sheet), the stretching ratio, and the ratio of the thickness of the drawing sheet (1) to the thickness of the material sheet (t/lo). Shown as In the figure, O is 2200 J and the drawing speed is 50 mm.
/min, opening is 5000B, drawing speed is 50mm/min, is 5
000 B and a drawing speed of 10 mm/min. As is clear from the figure, in the case of 2200J, t/
to <:: tr/ to, the thickness of the drawn sheet is thinner than the roll spacing, and a high drawing ratio of about 25 times at most can be obtained. On the other hand, in the case of 5000B, t/toζt
r/to, the thickness of the drawn sheet and the roll spacing are approximately equal, and a maximum drawing ratio of about 14 times is achieved.

2200 Jの場合は、後延伸部においてかなり変形が
起こっているが、5000Bの場合は、変形域がロール
間に限定されている。
In the case of 2200 J, considerable deformation occurs in the post-stretching section, but in the case of 5000 B, the deformation region is limited between the rolls.

引抜シートの力学的性質と延伸比との関係を第5図に示
した。図中、○は2200 Jでローラー温度100°
C1△は2200J テo −ラ一温度75°C1<l
は、2000 J ノ素材シート、ロバ5000 B 
テo −ラ一温度100°C,[)は5000 Bの素
材シートについての測定結果である。
The relationship between the mechanical properties of the drawn sheet and the stretching ratio is shown in FIG. In the figure, ○ indicates 2200 J and roller temperature 100°.
C1△ is 2200J Theo-ra-temperature 75°C1<l
2000 J material sheet, Roba 5000 B
Temperature: 100°C, [) is the measurement result for a 5000B material sheet.

また、図中、黒(ぬりつぶした記号は、降伏強度と降伏
伸度を示し、白い記号は引張強度、破断伸度および弾性
率を表わす。
In addition, in the figure, black symbols indicate yield strength and yield elongation, and white symbols indicate tensile strength, elongation at break, and elastic modulus.

素材シートおよび延伸比が小さい引抜シート(5000
Bの場合は5倍以下、2200 Jの場合は9倍以下)
は引張試験における応力−ひすみ曲線において降伏点を
示すが、それ以上の延伸比に引き抜いたシートは引張試
験において降伏しないまま破断した。延伸比の増加に伴
い、破断伸度が減少し、引張強度、降伏強度および弾性
率が上昇する。
Material sheet and pultruded sheet with small stretching ratio (5000
5 times or less for B, 9 times or less for 2200 J)
shows a yield point in the stress-strain curve in a tensile test, but sheets drawn to a higher stretching ratio break without yielding in the tensile test. As the stretching ratio increases, the elongation at break decreases and the tensile strength, yield strength and elastic modulus increase.

2200Jの場合、ローラー温度75°Cおよび100
°Cにおいて0.6−0.7GPaの引張強度と40G
Pa程度の弾性率を示すシートが得られた。また、5(
XXEの場合は、ローラー温度100°Cにおいて、引
張強度と弾性率はそれぞれ0.43 GPaと14GP
aに達した。
For 2200J, roller temperature 75°C and 100
Tensile strength of 0.6-0.7GPa and 40G at °C
A sheet having an elastic modulus of approximately Pa was obtained. Also, 5(
In the case of XXE, the tensile strength and elastic modulus are 0.43 GPa and 14 GPa, respectively, at a roller temperature of 100°C.
reached a.

実施例2 粘度平均分子量2.17 x 105のポリプロピレン
(三井東圧化学(株)製、商標名ノーブレンFL−10
0)の厚さ1 mmのシートを幅30 mmに切り、ロ
ーラー温度110°Cと135°Cにおいて引抜成形を
行った。ローラーの間隔と素材シートの厚さとの比(t
r/lO)と引抜応力、延伸比および引抜シートの厚さ
と素材シートの厚さとの比(t/lo)との関係を第6
図に示した。図中、○はローラー温度135°C1引抜
速度50mm/分、口はローラー温度135°C1引抜
速度500 mm 7分、△はローラー温度110°C
1引抜速度50mm/分についての測定結果である。
Example 2 Polypropylene with a viscosity average molecular weight of 2.17 x 105 (manufactured by Mitsui Toatsu Chemical Co., Ltd., trade name Noblen FL-10)
A 1 mm thick sheet of 0) was cut to a width of 30 mm, and pultrusion molding was performed at roller temperatures of 110°C and 135°C. The ratio of the distance between the rollers and the thickness of the material sheet (t
The relationship between the drawing stress, the drawing ratio, and the ratio of the thickness of the drawn sheet to the thickness of the material sheet (t/lo) is shown in the sixth
Shown in the figure. In the figure, ○ indicates roller temperature 135°C, pulling speed 50 mm/min, opening indicates roller temperature 135°C, drawing speed 500 mm, 7 minutes, and △ indicates roller temperature 110°C.
1 These are measurement results at a drawing speed of 50 mm/min.

図から明らかなように、ローラー間隔が同じ場合、ロー
ラー温度が高いほど、また、引抜速度が速いほど延伸比
が大きくなり、すなわち、後延伸域における変形が起こ
りやすい。また、引抜応力はローラー温度が低いほど、
また、変形比が大きいほど大きくなる。
As is clear from the figure, when the roller spacing is the same, the higher the roller temperature and the faster the drawing speed, the higher the stretching ratio, that is, the more deformation occurs in the post-stretching region. In addition, the lower the roller temperature, the lower the pull-out stress.
Moreover, the larger the deformation ratio is, the larger the deformation ratio becomes.

ポリプロピレンの引抜シートの力学的性質と延伸比との
関係を第7図に示した。図中、○はローラー温度135
°C1△はローラー温度110°C1〈は素材シートに
ついての測定値である。黒くぬりつぶした記号は降伏伸
度と降伏強度を表わし、白い記号は破断伸度、引張強度
および弾性率を表わす。
FIG. 7 shows the relationship between the mechanical properties of a drawn polypropylene sheet and the stretching ratio. In the figure, ○ indicates roller temperature 135
°C1△ is a roller temperature of 110 °C1〈 is a measured value for a material sheet. Black symbols represent yield elongation and yield strength, and white symbols represent elongation at break, tensile strength, and elastic modulus.

延伸比5倍以上の引抜シートは引張試験において降伏す
ることなく破断する。ただし低延伸比−ど引張強度や弾
性率が高くなる傾向が認められるが、各温度で得られる
最大延伸比はローラー温度が高い方が大きく、ローラー
温度135°Cにおいて、弾性率11GPaの引抜シー
トが得られた。
A drawn sheet with a stretching ratio of 5 times or more breaks without yielding in a tensile test. However, there is a tendency for the tensile strength and elastic modulus to become higher at lower draw ratios, but the maximum draw ratio obtained at each temperature is larger when the roller temperature is higher. was gotten.

実施例3 ポリオキシメチレン(共重合体でメルトインデックス2
.5、ポリプラスチックス(株)製、登録商標名[ジュ
ラコンM−25J lの厚さ1mm、幅15mmのシー
トについて、ローラー温度140°Cにおいて引抜成形
を行った。ローラーの間隔と素材シートの厚さとの比(
tr/lO)と引抜応力、延伸比および引抜シートの厚
さと素材シートの厚さとの比(t/lo)との関係を第
8図に記号○と・で示した。○と・はそれぞれ引抜速度
50mm/分および10mm/分における測定値である
。最大13.5倍の延とシートの厚さがほぼ等しくなる
。 il、、’ポリオキシメチレンの引抜シートの延伸
比と力学的性質との関係を第9図に記号○で示した。ま
た、図中記号・はポリオキシメチレン素材シートの降伏
伸度と降伏強度を表わす。引張試験において素材シート
は降伏点を示すが、引抜シートは降伏することなく破断
する。引張強度IGPa11弾性″ ・1′。
Example 3 Polyoxymethylene (copolymer with melt index 2)
.. 5. Made by Polyplastics Co., Ltd., registered trade name [DURACON M-25J] A sheet of 1 mm thick and 15 mm wide was pultruded at a roller temperature of 140°C. Ratio between roller spacing and material sheet thickness (
The relationship between the drawing stress, the drawing ratio, and the ratio of the thickness of the drawn sheet to the thickness of the material sheet (t/lo) is shown in FIG. 8 by symbols ○ and . ○ and ・ are measured values at a drawing speed of 50 mm/min and 10 mm/min, respectively. The maximum elongation is 13.5 times and the sheet thickness is approximately equal. The relationship between the stretching ratio and the mechanical properties of a drawn sheet of polyoxymethylene is shown in FIG. 9 by the symbol ◯. Further, the symbol .in the figure represents the yield elongation and yield strength of the polyoxymethylene material sheet. In a tensile test, the material sheet shows a yield point, but the drawn sheet breaks without yielding. Tensile strength IGPa 11 elasticity''・1'.

率11GPaの引抜シートが得られた。 ′″″一実施
例4 ナイロン−6(東しく株)製)の厚さ1闘、幅30 m
mのシートについて、ローラー温度150℃において引
抜成形を行った。ローラー間隔と素材シートの厚さとの
比(tr/lO)と、引抜応力、延伸比および引抜シー
トの厚さと素材シートの厚さとの比(t/lo)との関
係を第8図に△で示した。
A drawn sheet with a tensile strength of 11 GPa was obtained. ``''''Example 4 Nylon-6 (manufactured by Toshiku Co., Ltd.) thickness: 1 mm, width: 30 m
A sheet of No. m was pultruded at a roller temperature of 150°C. The relationship between the ratio of the roller interval and the thickness of the material sheet (tr/lO), the drawing stress, the stretching ratio, and the ratio of the thickness of the drawing sheet to the thickness of the material sheet (t/lo) is shown in Fig. 8 by △. Indicated.

tr / to≦0.3においてはt / to) t
r/ toとなり、スプリングバックが起こっており、
また、得られの関係を第9図に△で示した。得られる最
大延伸比は4.5倍で小さいが、引張強度は比較的大き
く、最大0.5 GPaの引張強度を示す引抜シートが
得られた。
When tr/to≦0.3, t/to) t
r/to, springback is occurring,
Moreover, the obtained relationship is shown in FIG. 9 by △. The maximum draw ratio obtained was 4.5 times, which was small, but the tensile strength was relatively high, and a pultruded sheet having a maximum tensile strength of 0.5 GPa was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は10MPaの一定荷重を加えて1°C/分の速
度で昇温した時のひずみ一温度曲線と変形開始温度のめ
方、第2図は主な結晶性高分子の示差走査熱量測定融解
曲線とその立ち上り温度のめ方、第3図は本発明方法の
実施態様の1例を示す断面図、第4図、第6図および第
8図は、それぞれ、ポリエチレン、ポリプロピレンおよ
びポリオキシメチレンとナイロン−6についてのローラ
ーの間隔と引抜応力、延伸比および引抜シートの厚さと
の関係を示すグラフであり、第5図、第7図および第9
図は、それぞれ、ポリエチレン、ポリプロピレンおよび
ナイロン−6とポリオキシメチレンについての延伸比と
力学的性質との関係を示す。 特許出願人 工業技術院長 用田裕部 h−1r 、15 F 峙 都 纒1−m−〉 守 唖−一〉 応 力 111P、L 第 4 図 °:[。。 tr/l。 第 5 図 第 6 図 tr/l。 延伸比 第 712 第 8 図 tr / t。 第 9 図 延伸比 官庁手続 手続補正書 特許庁長官 若 杉 和 夫 殿 L 事件の表示 昭和58年特許願第123925号 2 発明の名称 結晶性高分子シートの製造方法 3、 補正をする者 事件との関係 特許出願人 東京都千代田区霞が関1丁目3番1号 (114)工業技術院長 川 1)裕 部本 指定代理
人 自 発 a 補正により増加する発明の数 0 7、 補正の対象 明細書の発明の詳細な説明の欄 & 補正の内容 (1) 明細書第7ページ第1行の「が得られない。」
の次に改行して以下の文章を加入します。 「また、一般の圧延の場合とは異なり、p−ラ一部の駆
動動力は必要とせず、引き抜きの際、ローラーは必ずし
も回転する必要はない。そして、金属の引き抜きや圧延
の場合は多段で所望の圧延比又は延伸比に達せしめるこ
とが必要であるのに対し、本発明方法では、一対の加熱
ローラーを通して一段でジ1き抜くことができるという
点に特徴がある。もちろん所望の場合には多段で行うこ
とも可能である。」
Figure 1 shows the strain-temperature curve and the deformation onset temperature when a constant load of 10 MPa is applied and the temperature is raised at a rate of 1°C/min. Figure 2 shows the differential scanning calorimetry of major crystalline polymers. Measured melting curves and how to calculate their rise temperatures; Figure 3 is a cross-sectional view showing an example of an embodiment of the method of the present invention; Figures 4, 6, and 8 are diagrams for polyethylene, polypropylene, and polyoxyethylene, respectively; 9 is a graph showing the relationship between roller spacing, drawing stress, drawing ratio, and drawing sheet thickness for methylene and nylon-6, and FIGS.
The figures show the relationship between stretch ratio and mechanical properties for polyethylene, polypropylene and nylon-6 and polyoxymethylene, respectively. Patent applicant Hirobe Yoda h-1r, Director of the Agency of Industrial Science and Technology, 15 F Chito 1-m-〉 Mori 唖-1〉 Stress 111P, L Fig. 4 °: [. . tr/l. Figure 5 Figure 6 tr/l. Stretching ratio No. 712 Fig. 8 tr/t. Figure 9 Stretching Draft of Amendment to Procedures of the Office of the Patent Office Mr. Kazuo Wakasugi, Commissioner of the Patent Office, Case Description 1982 Patent Application No. 123925 2 Name of the Invention Process for Manufacturing Crystalline Polymer Sheet 3, Person Making Amendment Case and Relationship between patent applicant Kawa 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (114) Director of the Agency of Industrial Science and Technology 1) Yubemoto Designated Agent Spontaneous a Number of inventions to be increased by the amendment 0 7, of the specification subject to the amendment Column for Detailed Description of the Invention & Contents of Amendment (1) “Cannot be obtained” in the first line of page 7 of the specification.
After that, add the following text on a new line. ``Also, unlike in general rolling, no driving power is required for the rollers, and the rollers do not necessarily need to rotate during drawing. While it is necessary to reach a desired rolling or drawing ratio, the method of the present invention is characterized in that it can be passed through a pair of heated rollers in one step.Of course, if desired, It is also possible to perform this in multiple stages.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶性高分子原反シートを、そのシートに1.0M
Paの荷重をかけて1°C/分の昇温速度で昇温した時
の変形開始温度以上で示差走査熱量測定融解曲線の立ち
上り温度を超えない温度に加熱した一対のローラーを通
じて、少な(とも延伸比2.5倍以上に引き抜くことを
特徴とする結晶性高分子シートの製造方法。
1. Place a crystalline polymer raw sheet into the sheet with a 1.0M
A small amount (both A method for producing a crystalline polymer sheet, characterized in that it is drawn at a stretching ratio of 2.5 times or more.
JP12392583A 1983-07-07 1983-07-07 Manufacture of crystalline polymeric sheet Granted JPS6015120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12392583A JPS6015120A (en) 1983-07-07 1983-07-07 Manufacture of crystalline polymeric sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12392583A JPS6015120A (en) 1983-07-07 1983-07-07 Manufacture of crystalline polymeric sheet

Publications (2)

Publication Number Publication Date
JPS6015120A true JPS6015120A (en) 1985-01-25
JPH035297B2 JPH035297B2 (en) 1991-01-25

Family

ID=14872733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12392583A Granted JPS6015120A (en) 1983-07-07 1983-07-07 Manufacture of crystalline polymeric sheet

Country Status (1)

Country Link
JP (1) JPS6015120A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857127A (en) * 1986-03-26 1989-08-15 National Research Development Corporation Process for preparing improved oriented polymer films and tapes
US4996011A (en) * 1988-07-09 1991-02-26 Nippon Oil Co., Ltd. Production of polyethylene materials having improved strength and modulus qualities
JPH04323023A (en) * 1991-04-23 1992-11-12 Nippon Steel Corp Manufacture of transparent polypropylene sheet
EP0608137A2 (en) 1993-01-20 1994-07-27 Nippon Oil Company, Limited Process for producing polyethylene material of high strength and high elastic modulus
US6017480A (en) * 1996-03-22 2000-01-25 Nippon Oil Co., Ltd. Process for producing polyolefin materials
JP2005502577A (en) * 2001-09-10 2005-01-27 スリーエム イノベイティブ プロパティズ カンパニー Reinforced fiber reinforced cement composite
WO2006098115A1 (en) * 2005-03-15 2006-09-21 Sekisui Chemical Co., Ltd. Process for production of stretched thermoplastic polyester resin sheet and laminated molded article
JP2007076313A (en) * 2005-09-16 2007-03-29 Sekisui Chem Co Ltd Manufacturing method for stretched thermoplastic polyester-based resin sheet
JP2007237699A (en) * 2006-03-13 2007-09-20 Sekisui Chem Co Ltd Method for manufacturing pultrusion-oriented thermoplastic polyester resin sheet
JP2008238499A (en) * 2007-03-27 2008-10-09 Sekisui Chem Co Ltd Manufacturing method of drawn and stretched thermoplastic resin sheet
JP2008302544A (en) * 2007-06-06 2008-12-18 Sekisui Chem Co Ltd Stretched thermoplastic polyester resin sheet and its manufacturing method
JP2009226779A (en) * 2008-03-24 2009-10-08 Sekisui Chem Co Ltd Manufacturing method of stretched thermoplastic polyester resin sheet
JP2009270354A (en) * 2008-05-08 2009-11-19 Sekisui Chem Co Ltd Reinforcing structure of concrete structure
JP2010274492A (en) * 2009-05-27 2010-12-09 Sekisui Chem Co Ltd Method of manufacturing stretched thermoplastic resin sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215826A (en) * 1983-05-24 1984-12-05 Mitsui Petrochem Ind Ltd Manufacture of super high molecular weight polyethylene film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215826A (en) * 1983-05-24 1984-12-05 Mitsui Petrochem Ind Ltd Manufacture of super high molecular weight polyethylene film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857127A (en) * 1986-03-26 1989-08-15 National Research Development Corporation Process for preparing improved oriented polymer films and tapes
US4996011A (en) * 1988-07-09 1991-02-26 Nippon Oil Co., Ltd. Production of polyethylene materials having improved strength and modulus qualities
JPH04323023A (en) * 1991-04-23 1992-11-12 Nippon Steel Corp Manufacture of transparent polypropylene sheet
EP0608137A2 (en) 1993-01-20 1994-07-27 Nippon Oil Company, Limited Process for producing polyethylene material of high strength and high elastic modulus
US6017480A (en) * 1996-03-22 2000-01-25 Nippon Oil Co., Ltd. Process for producing polyolefin materials
JP2005502577A (en) * 2001-09-10 2005-01-27 スリーエム イノベイティブ プロパティズ カンパニー Reinforced fiber reinforced cement composite
WO2006098115A1 (en) * 2005-03-15 2006-09-21 Sekisui Chemical Co., Ltd. Process for production of stretched thermoplastic polyester resin sheet and laminated molded article
US8617445B2 (en) 2005-03-15 2013-12-31 Sekisui Chemical Co., Ltd. Process for producing oriented thermoplastic polyester resin sheet, and laminate-molded body
JP2007076313A (en) * 2005-09-16 2007-03-29 Sekisui Chem Co Ltd Manufacturing method for stretched thermoplastic polyester-based resin sheet
JP2007237699A (en) * 2006-03-13 2007-09-20 Sekisui Chem Co Ltd Method for manufacturing pultrusion-oriented thermoplastic polyester resin sheet
JP2008238499A (en) * 2007-03-27 2008-10-09 Sekisui Chem Co Ltd Manufacturing method of drawn and stretched thermoplastic resin sheet
JP2008302544A (en) * 2007-06-06 2008-12-18 Sekisui Chem Co Ltd Stretched thermoplastic polyester resin sheet and its manufacturing method
JP2009226779A (en) * 2008-03-24 2009-10-08 Sekisui Chem Co Ltd Manufacturing method of stretched thermoplastic polyester resin sheet
JP2009270354A (en) * 2008-05-08 2009-11-19 Sekisui Chem Co Ltd Reinforcing structure of concrete structure
JP2010274492A (en) * 2009-05-27 2010-12-09 Sekisui Chem Co Ltd Method of manufacturing stretched thermoplastic resin sheet

Also Published As

Publication number Publication date
JPH035297B2 (en) 1991-01-25

Similar Documents

Publication Publication Date Title
JPS6015120A (en) Manufacture of crystalline polymeric sheet
JP2894743B2 (en) High-strength, high-modulus polyolefin composite with improved drawability in the solid state
JPH01210327A (en) Drawing process of crystalline high molecular weight material
JPH0237857B2 (en)
JP2007254633A (en) Stretched thermoplastic polyester-based resin sheet
US6391432B1 (en) Process for processing a semicrystalline thermoplastic
JPS6058829A (en) Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion
JPS6169431A (en) Stretching method of poly(beta-hydroxybutyric acid) molded product
JP5243825B2 (en) Method for producing stretched thermoplastic polyester resin sheet
EP0711649B1 (en) Plastic strap and method of manufacturing same
US3383445A (en) Process for the manufacture of biaxially stretched polyethylene films
JPS59220329A (en) Preparation of ultra-high molecular weight polyethylene sheet
JPH0822564B2 (en) Method for producing polyacetal resin film
JPH06102847B2 (en) Plastic wire and method for producing the same
JPS5843253B2 (en) Polyester fig film
US3461198A (en) Method of preparing uniaxially oriented,flat propylene-ethylene copolymer articles
JPS63252719A (en) Orientated object of polyacetal and its manufacture
JPH05104620A (en) Manufacture of polypropylene oriented matter
JP2000085009A (en) Production of stretched thermoplastic resin sheet and laminate
Lin et al. Assessment of metallocene propylene polymers for cast film applications
JPH03294517A (en) Aromatic polyester fiber having high strength and high modulus of elasticity
JPS63168327A (en) Manufacture of liquid crystalline polyester sheet
JPH04110133A (en) Manufacture of biaxially oriented polyoxymethylene film
JPH0257012B2 (en)
JPH10100246A (en) Manufacture of polyolefin molding