JPH0641676A - Wear resistant composite roll - Google Patents

Wear resistant composite roll

Info

Publication number
JPH0641676A
JPH0641676A JP16475192A JP16475192A JPH0641676A JP H0641676 A JPH0641676 A JP H0641676A JP 16475192 A JP16475192 A JP 16475192A JP 16475192 A JP16475192 A JP 16475192A JP H0641676 A JPH0641676 A JP H0641676A
Authority
JP
Japan
Prior art keywords
shaft member
molten metal
outer layer
steel
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16475192A
Other languages
Japanese (ja)
Other versions
JPH0737656B2 (en
Inventor
Etsuji Shimizu
悦次 清水
Yoshikazu Miyasaka
善和 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yodogawa Steel Works Ltd
Original Assignee
Yodogawa Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yodogawa Steel Works Ltd filed Critical Yodogawa Steel Works Ltd
Priority to JP4164751A priority Critical patent/JPH0737656B2/en
Publication of JPH0641676A publication Critical patent/JPH0641676A/en
Publication of JPH0737656B2 publication Critical patent/JPH0737656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a composite work roll for rolling a metallic sheet excellent in wear resistance by welding an outer layer made of a low allot cast iron contg. hard metallic carbides to the outer circumference of a tough axial member of cast steel or the like. CONSTITUTION:A shaft member 2 for high strength structural purposes made of a steel such as cast steel and forget steel is vertically set in a casting mold 10. A high frequency induction heating coil 8 is energized, and while cooling water is allowed to flow into an inside water passage 9, the molten metal 12 of low alloy cast iron contg., by weight, 1.5 to 2.5% C, 0.3 to 2.0% Si, 0.3 to 2.0% Mn, 4 to 7% Cr, 4 to 8% Mo, 3 to 6% W, 3 to 8% V, 1 to 3% Co, less than 10% Ni (excluding 0%) and Ti so as to satisfy 0.5<Ni+Ti<=2.0%, is poured into a space formed by the casting mold 10 and the shaft member 2. The molten metal 12 is heated and stirred by the coil 8, and in a state in which the surface of the shaft member 2 is melted and they are mutually diffused, the shaft member 2 is lowered in the direction of the arrow A. The molten metal 12 is cooled and solidified by a water-cooled die 4 to form the hard outer layer 3 on the outer circumference of the shaft member 2, thereby, the composite roll for rolling excellent in wear resistance can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として金属板の熱間
や冷間の圧延用複合ロールで、特に熱間圧延用のワーク
ロールとして好適なる耐摩耗性複合ロールに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite roll for mainly hot or cold rolling of metal sheets, and more particularly to a wear resistant composite roll suitable as a work roll for hot rolling.

【0002】[0002]

【従来の技術】特に耐摩耗性が要求される熱間圧延用の
ワークロールとして、従来一般には、遠心鋳造法によっ
て製造された鋳鉄製複合ロールが広く使用されている。
この鋳鉄製複合ロールは、外層を耐摩耗性の大きい炭化
物を晶出させた鋳鉄系の材質で形成する一方、内層であ
る軸部材を靭性の大きいねずみ鋳鉄もしくはダクタイル
鋳鉄により形成するのが一般的であるが、このような複
合ロールを上記の遠心鋳造法によって製造する場合に
は、内外層を形成する材質に制限がある。すなわち、外
層を、W,V,Nb,Ti,Ta,Zr,Hf等の元素
が形成する炭化物を多量に晶出するような材質で形成す
ることは、耐摩耗性の向上に有効であるけれども、この
ような内外層を遠心鋳造法で製造することは、次の理由
により現実的に不可能である。
2. Description of the Related Art As a work roll for hot rolling which is particularly required to have wear resistance, a cast iron composite roll manufactured by a centrifugal casting method has been widely used.
In this cast iron composite roll, the outer layer is formed of a cast iron-based material in which carbide having high wear resistance is crystallized, while the shaft member that is the inner layer is generally formed of gray cast iron or ductile cast iron having high toughness. However, when such a composite roll is manufactured by the above-mentioned centrifugal casting method, there are restrictions on the material forming the inner and outer layers. That is, although forming the outer layer with a material that crystallizes a large amount of carbide formed by elements such as W, V, Nb, Ti, Ta, Zr, and Hf is effective in improving wear resistance, It is practically impossible to produce such inner and outer layers by the centrifugal casting method for the following reason.

【0003】その第1の理由として、上掲したような元
素が形成する炭化物は、外層の溶湯との比重が異なるた
めに、外層の形成中において遠心分離の作用が働く結
果、均一に分散せず偏析を起こしやすいことが挙げられ
る。また、上記の元素には酸化傾向の強いものが多く、
大気中における内層との溶着が非常に困難である。さら
に、遠心鋳造法においては、内層を形成する材料とし
て、黒鉛を晶出させたねずみ鋳鉄もしくはダクタイル鋳
鉄の使用により靭性を確保しているのが一般的であるけ
れども、外層を形成する材料中に上記のような白銑化傾
向の強い元素を多量に含有していると、外層成分が内層
中に若干溶け込むために、内層の黒鉛化を阻害して靭性
を低下し脆くなるという問題がある。さらにまた、内外
層の境界部付近に炭化物が集中して発生するために脆
く、境界部を起点として外層の剥離などの不都合を起こ
し易い。
The first reason is that the carbides formed by the elements listed above have a specific gravity different from that of the molten metal in the outer layer, and as a result of the action of centrifugal separation during the formation of the outer layer, they are uniformly dispersed. Without segregation is likely to occur. In addition, many of the above elements have a strong oxidation tendency,
Welding with the inner layer in the atmosphere is very difficult. Furthermore, in the centrifugal casting method, as the material for forming the inner layer, it is common to secure toughness by using gray cast iron or ductile cast iron in which graphite is crystallized, but in the material for forming the outer layer If a large amount of the above-mentioned element having a strong tendency to white pig iron is contained, the components of the outer layer are slightly dissolved in the inner layer, which hinders the graphitization of the inner layer, lowers the toughness, and becomes brittle. Furthermore, since carbide is concentrated and generated near the boundary between the inner and outer layers, it is brittle, and it is easy to cause inconvenience such as separation of the outer layer from the boundary.

【0004】第2の理由として、内層を形成するねずみ
鋳鉄もしくはダクタイル鋳鉄の引張強さは、一般に55
kg/mm2 程度が限界であり、かつ、伸びの値は1%
以下である。従って、それ以上の値を得ようとすると、
内層に鋼系の材質を使用する必要があり、遠心鋳造法に
よって製造するのが困難である。すなわち、外層溶湯を
鋳込み後、内層溶湯を鋳込んで外層の内側部分を溶融し
て接合するとき、内層の方が外層より高融点であるた
め、内外層成分が溶融・混合状態となる境界部が最終凝
固層となり、その部位に鋳造欠陥を発生し易くなるため
である。
Secondly, the tensile strength of gray cast iron or ductile cast iron forming the inner layer is generally 55.
The limit is about kg / mm 2 and the elongation value is 1%
It is the following. Therefore, if you try to get more than that,
Since it is necessary to use a steel-based material for the inner layer, it is difficult to manufacture by the centrifugal casting method. That is, when the inner layer is melted and the inner part of the outer layer is melted and joined after the outer layer molten metal is cast, the inner layer has a higher melting point than the outer layer, so the inner and outer layer components are in a molten / mixed state. Is the final solidified layer, and casting defects are likely to occur at that portion.

【0005】一方、圧延用ロールとしては、外層材と軸
部材とを焼嵌めもしくは組立てにより一体構造としたも
のも使用されている。しかしながら、近年の圧延用ロー
ルには、一度に多量の圧延を行なうことによって圧延の
合理化を図るためと、被圧延材の寸法精度を向上させる
ために、ロールの耐摩耗性を大幅に向上させることが強
く要求されている。また、被圧延材の寸法精度の向上の
ため、圧延による撓みと逆方向にロール軸を曲げる手段
や、一つの圧延スタンドにおける圧下量を増大させる作
業が広く採用される状態になってきているため、ロール
の軸に付加される曲げ応力が極めて大きくなっており、
これらに対応できるようにロール軸部の強度の向上が要
求されるようになってきている。この場合、上記のよう
な焼嵌めもしくは組立ロールを使用すると、圧延中に外
層と軸部材との間に滑りを生じることや、外層が割れ易
い等の問題があり、そのために、外層と軸部材とは、金
属的に完全に一体接合することが要求される。
On the other hand, as the rolling roll, one having an integral structure by shrink-fitting or assembling the outer layer material and the shaft member is also used. However, in recent years, in order to rationalize the rolling by rolling a large amount at a time on the rolling roll and to improve the dimensional accuracy of the material to be rolled, it is necessary to significantly improve the wear resistance of the roll. Is strongly demanded. Further, in order to improve the dimensional accuracy of the material to be rolled, the means for bending the roll shaft in the direction opposite to the bending caused by rolling and the work for increasing the amount of reduction in one rolling stand are widely adopted. , The bending stress applied to the roll shaft is extremely large,
In order to meet these demands, the strength of the roll shaft has been required to be improved. In this case, when the shrink fitting or the assembly roll as described above is used, there are problems such as slippage between the outer layer and the shaft member during rolling, and the outer layer is easily cracked. And are required to be completely joined together metallically.

【0006】上記のような各要求を同時に満足させるた
めの有効な手段として、例えば特開昭61−60256
号公報に記載されているような鋳かけ肉盛り方法が提案
されている。この方法は、外側を誘導加熱コイルで包囲
した耐火枠と、この耐火枠の下部に同軸状に設置した冷
却型とからなるモールドの内側に、鋼材からなる軸部材
を同軸的に遊嵌させ、この軸部材と上記モールドとの間
に形成された空間に、外層を形成すべき溶湯を注入して
軸部材と溶着させ、この溶湯を冷却し凝固させながら、
軸部材とともに断続的に下方へ移動させることにより、
軸部材の外周に外層溶湯を連続的に鋳かけ肉盛りするも
のである。また、上記の外層溶湯として耐摩耗性を有す
る合金溶湯を使用してなる耐摩耗性複合ロールおよびそ
の製造方法も特開昭62−69666号公報で提案され
ている。
As an effective means for simultaneously satisfying each of the above requirements, for example, Japanese Patent Laid-Open No. 61-60256.
There has been proposed a method for overlaying cast metal as described in Japanese Patent Laid-Open Publication No. In this method, a refractory frame whose outer side is surrounded by an induction heating coil and a mold made of a cooling die coaxially installed in the lower part of the refractory frame are coaxially loosely fitted with a shaft member made of steel, In a space formed between the shaft member and the mold, a molten metal for forming an outer layer is injected and welded to the shaft member, and the molten metal is cooled and solidified,
By intermittently moving downward together with the shaft member,
The outer layer molten metal is continuously cast and built up on the outer periphery of the shaft member. Further, Japanese Patent Application Laid-Open No. 62-69666 proposes a wear-resistant composite roll using a wear-resistant alloy melt as the above-mentioned outer layer melt and a method for producing the same.

【0007】[0007]

【発明が解決しようとする課題】上記した各公報に示さ
れた鋳かけ肉盛り方法による複合ロールや合金溶湯を使
用してなる複合ロールにおいては、耐摩耗性を有する外
層を強靭な鋼材よりなる軸部材の外周に強固に溶着する
ことが可能であり、外層と軸部材との境界部に鋳造欠陥
等を発生することなく、耐摩耗性およびロール軸部の強
度の向上を図ることができるけれども、次の点で未だ問
題があった。
SUMMARY OF THE INVENTION In a composite roll prepared by the method of build-up casting and a composite roll formed by using a molten alloy, the outer layer having wear resistance is made of a tough steel material. Although it can be firmly welded to the outer periphery of the shaft member, the wear resistance and the strength of the roll shaft part can be improved without causing a casting defect or the like at the boundary between the outer layer and the shaft member. , There were still problems with the following points.

【0008】すなわち、第1の問題点は、ロールの使用
時における外層の絞りクラックの発生である。この絞り
クラックの発生原因は、ロールが熱間圧延時に非常に高
温に晒されながら被圧延材に強く局部的に食い込む状態
で使用されるために、ロール表面が摩擦熱および塑性変
形熱などによってオーステナイト化温度以上の高温とな
り、組織がオーステナイト化された後に瞬間的に冷却さ
れることにともない、マルテンサイト変態が起こるため
である。また、第2の問題点は、この種のロールでは、
耐摩耗性の向上のために多くの炭化物を晶出、析出させ
るために、靭性が低く、クラックが入った場合、そのク
ラック深さがすぐに大きくなり、使用寿命が短くなるこ
とにある。
That is, the first problem is the occurrence of drawing cracks in the outer layer when the roll is used. The cause of this drawing crack is that the roll surface is austenite due to friction heat and plastic deformation heat because it is used in a state where it is strongly bitten into the material to be rolled while being exposed to extremely high temperature during hot rolling. This is because the temperature becomes higher than the oxidization temperature and the structure is austenitized and then instantaneously cooled, so that martensitic transformation occurs. The second problem is that with this kind of roll,
Since many carbides are crystallized and precipitated in order to improve wear resistance, the toughness is low, and when cracks occur, the crack depth immediately increases and the service life is shortened.

【0009】本発明は上記実情に鑑みてなされたもの
で、組織の微細化、炭化物の球状化が耐熱クラック性に
大きく関係している点に着目して、高温使用下での耐摩
耗性および耐熱クラック性を十分に向上させることがで
きる耐摩耗性複合ロールを提供することを目的としてい
る。
The present invention has been made in view of the above circumstances, and paying attention to the fact that the refinement of the structure and the spheroidization of carbides are greatly related to the heat crack resistance, and the wear resistance under high temperature use and the wear resistance It is an object of the present invention to provide a wear resistant composite roll capable of sufficiently improving heat crack resistance.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明による耐摩耗性複合ロールは、鋼材より構成
された軸部材の外周に、重量%において、C:1.5〜
2.5%,Si:0.3〜2.0%,Mn:0.3〜
2.0%,Cr:4.0〜7.0%,Mo:4.0〜
8.0%,W:3.0〜6.0%,V:3.0〜8.0
%,Co:1.0〜3.0%,0.5<Ni+Ti≦
2.0%であって、Ni<1.0%(0%は除く)で、
残部がFeおよび不純物からなる組成の溶湯を溶着させ
て外層を形成したものである。
In order to achieve the above object, the wear-resistant composite roll according to the present invention has a C: 1.5-wt% on the outer circumference of a shaft member made of steel.
2.5%, Si: 0.3 to 2.0%, Mn: 0.3 to
2.0%, Cr: 4.0-7.0%, Mo: 4.0
8.0%, W: 3.0 to 6.0%, V: 3.0 to 8.0
%, Co: 1.0 to 3.0%, 0.5 <Ni + Ti ≦
2.0% and Ni <1.0% (excluding 0%),
The outer layer is formed by welding a melt having a composition of Fe and impurities as the balance.

【0011】上記構成の本発明において、外層を形成す
る溶湯組成の各元素の含有量(重量%)の限定の根拠に
ついて、それぞれ説明すると、次の通りである。Cは、
クロム(Cr),バナジウム(V),タングステン
(W),モリブデン(Mo)等と結合して、硬度の高い
MC系、M7 3 系の炭化物を晶出、析出させ、耐摩耗
性を向上させるために必要な元素である。したがって、
その含有量が1.5%未満の場合は、炭化物の量が少な
くて耐摩耗性の十分な向上を望むことができない。ま
た、2.5%を越えると、炭化物の量が多くなりすぎて
靭性が低くなり、耐熱クラック性が低下する。
The grounds for limiting the content (% by weight) of each element of the composition of the molten metal forming the outer layer in the present invention having the above-mentioned structure will be described respectively as follows. C is
By combining with chromium (Cr), vanadium (V), tungsten (W), molybdenum (Mo), etc., MC type and M 7 C 3 type carbides with high hardness are crystallized and precipitated to improve wear resistance. It is an element necessary to make it. Therefore,
When the content is less than 1.5%, the amount of carbides is small and it is not possible to expect sufficient improvement in wear resistance. On the other hand, if it exceeds 2.5%, the amount of carbides becomes too large, the toughness becomes low, and the thermal crack resistance deteriorates.

【0012】Siは、脱酸剤として必要な元素である。
しかし、その含有量が0.3%未満ではその効果が少な
く、また、2.0%を越えると、脆化しやすくなる。M
nは、脱酸作用とともに不純物であるSをMnSとして
固定するために必要な元素である。しかし、0.3%未
満ではその効果が少なく、2.0%を越えると、残留オ
ーステナイトが生じやすくなり、十分な硬度が得られな
い。Crは、基地中に固溶して基地を強化するととも
に、Cと結合してCr系炭化物を形成し、耐摩耗性の向
上に寄与する元素である。しかし、その含有量が4.0
%未満ではその効果が少なく、また、7.0%を越える
と、粗大なCr系炭化物の量が多くなり、靭性が低下す
ると共に、この粗大炭化物の欠落により耐肌荒れ性を劣
化させる。
Si is an element required as a deoxidizing agent.
However, if its content is less than 0.3%, its effect is small, and if it exceeds 2.0%, it tends to become brittle. M
n is an element necessary for fixing S, which is an impurity, as MnS together with the deoxidizing action. However, if it is less than 0.3%, its effect is small, and if it exceeds 2.0%, retained austenite is apt to occur, and sufficient hardness cannot be obtained. Cr is an element that forms a solid solution in the matrix to strengthen the matrix, forms a Cr-based carbide by combining with C, and contributes to improvement in wear resistance. However, its content is 4.0
If it is less than 1.0%, the effect is small, and if it exceeds 7.0%, the amount of coarse Cr-based carbides increases, the toughness decreases, and the lack of coarse carbides deteriorates the surface roughening resistance.

【0013】Moは、基地中に固溶して焼入れ性と高温
特性とを向上するために必要であるとともに、Cと結合
してMo系炭化物を形成し、耐摩耗性の向上に寄与する
元素である。しかし、その含有量が4.0%未満では焼
入れ性の向上が望めず、かつ生成炭化物の量も少ないた
め、耐摩耗性に劣る。また、8.0%を越えると、過飽
和となり、基地の残留オーステナイトを安定化させて十
分な硬度を得ることができない。Vは、Cと結合して微
細で高硬度のVC炭化物を形成し、耐摩耗性の向上に最
も寄与する元素である。しかし、その含有量が3.0%
未満ではその効果が少なく、また、8.0%を越える
と、炭化物の量が多くなり過ぎて靭性が低下するととも
に、均一に分布しなくなる。さらに、溶湯の酸化も激し
くなる。
Mo is an element that is required to form a solid solution in the matrix to improve the hardenability and high temperature characteristics, and at the same time, to combine with C to form a Mo-based carbide and contribute to the improvement of wear resistance. Is. However, if the content is less than 4.0%, improvement in hardenability cannot be expected, and the amount of produced carbide is small, resulting in poor wear resistance. On the other hand, if it exceeds 8.0%, it becomes supersaturated, and the retained austenite of the matrix cannot be stabilized to obtain sufficient hardness. V is an element that combines with C to form a fine and high-hardness VC carbide and contributes most to the improvement of wear resistance. However, its content is 3.0%
If it is less than 1.0%, the effect is small, and if it exceeds 8.0%, the amount of carbides becomes too large and the toughness deteriorates, and it is not uniformly distributed. Furthermore, the oxidation of the molten metal becomes severe.

【0014】Wは、Cと結合して高硬度のW系炭化物を
形成し、耐摩耗性の向上ならびに高温強度の向上に寄与
する元素である。しかし、その含有量が3.0%未満で
はその効果が少なく、また、6.0%を越えると、W系
炭化物の量が多くなり、靭性が低下する。Coは、炭化
物を形成せず、基地に固溶し焼戻し軟化抵抗を与えるこ
とにより、高温強度・硬度を増加させるために必要な元
素である。しかし、その含有量が1.0%未満ではその
効果が少なく、また、3.0%を越えると、焼入れ性が
悪くなる。
W is an element that combines with C to form a high hardness W-based carbide and contributes to the improvement of wear resistance and the improvement of high temperature strength. However, if its content is less than 3.0%, its effect is small, and if it exceeds 6.0%, the amount of W-based carbides increases and the toughness decreases. Co is an element necessary for increasing the high temperature strength and hardness by forming a solid solution in the matrix to give temper softening resistance without forming a carbide. However, if its content is less than 1.0%, its effect is small, and if it exceeds 3.0%, the hardenability deteriorates.

【0015】Niは、組織を微細にするとともに基地に
固溶して基地を強化し、靭性および焼入れ性の向上に寄
与する元素である。しかし、このNiはオーステナイト
安定化元素であり、その含有量が1.0%を越えると、
熱処理後の残留オーステナイトが多くなり、十分な硬度
を得ることができないとともに、割れや肌荒れ発生の原
因となる。Tiは、Cと結合して微細で高硬度のTiC
炭化物を形成し、かつ均一に分布することにより耐摩耗
性の向上に寄与する元素である。しかも、このTiはV
C炭化物を微細かつ球状に晶出させる働きも有する。し
かし、その含有量が2.0%以上になると、炭化物が多
くなり、靭性が低下するとともに、溶湯の酸化が激しく
なる。Ti,Ni,Al,N等を添加することにより、
組織を微細化すると同時に炭化物を球状化し、これによ
り靭性の向上が得られる。しかし、それぞれ単独の添加
よりも複合的に添加する方がその効果が大きく、このう
ちTi+Niの添加が最も有効であり、特に、0.5<
Ti+Ni≦2.0(ただし、Ni<1.0)の範囲
が、組織が微細化し、炭化物の球状化率が高い。
Ni is an element that makes the structure fine and solid-dissolves in the matrix to strengthen the matrix and contribute to the improvement of toughness and hardenability. However, this Ni is an austenite stabilizing element, and if its content exceeds 1.0%,
The amount of retained austenite after heat treatment is increased, sufficient hardness cannot be obtained, and cracks and rough skin occur. Ti is a fine, high-hardness TiC combined with C
It is an element that contributes to the improvement of wear resistance by forming a carbide and by uniformly distributing it. Moreover, this Ti is V
It also has a function of crystallizing C carbides into fine and spherical shapes. However, if the content is 2.0% or more, the amount of carbides increases, the toughness decreases, and the oxidation of the molten metal becomes severe. By adding Ti, Ni, Al, N, etc.,
At the same time as refining the structure, the carbides are made spherical, which improves toughness. However, the combined effect is more effective than the individual addition, and among these, the addition of Ti + Ni is most effective.
In the range of Ti + Ni ≦ 2.0 (however, Ni <1.0), the structure becomes finer and the spheroidization rate of carbide is high.

【0016】以上のように、外層を形成する溶湯組成の
各元素の含有量(重量%)をそれぞれ上記のごとく適正
に限定することにより、CとTiを結合させて高硬度の
MC型炭化物の一つであるTiC炭化物を生成し、分布
させて炭化物の微細化および球状化を図るとともに、N
iを添加することにより、組織の微細化を図り、耐摩耗
性の向上とともに耐熱クラック性に優れた複合ロールを
得ることができる。
As described above, by appropriately limiting the content (% by weight) of each element of the molten metal composition forming the outer layer as described above, C and Ti are combined to form a high hardness MC type carbide. One TiC carbide is generated and distributed to make the carbide fine and spheroidized, and N
By adding i, the structure can be made finer, and a composite roll having improved wear resistance and excellent heat crack resistance can be obtained.

【0017】[0017]

【実施例】以下、本発明の耐摩耗性複合ロールの構成お
よびその製造方法について説明する。図1は本発明の耐
摩耗性複合ロール1を示す縦断面図であり、同図におい
て、2は軸部材であって、この軸部材2は、例えば鋳鋼
や鍛鋼、機械構造用炭素鋼、Cr−Mo鋼、Ni−Cr
−Mo鋼等の高強度の構造用鋼材などから構成されてい
る。3は上記軸部材2の外周に形成された外層であり、
この外層3の組成は後述する。
EXAMPLES The structure of the abrasion-resistant composite roll of the present invention and the method for producing the same will be described below. FIG. 1 is a vertical cross-sectional view showing a wear-resistant composite roll 1 of the present invention. In FIG. 1, 2 is a shaft member, and the shaft member 2 is, for example, cast steel, forged steel, carbon steel for machine structural use, or Cr. -Mo steel, Ni-Cr
-It is composed of a high-strength structural steel material such as Mo steel. 3 is an outer layer formed on the outer periphery of the shaft member 2,
The composition of the outer layer 3 will be described later.

【0018】図2は上記のような構成の耐摩耗性複合ロ
ール1の製造方法に使用する連続鋳かけ肉盛り溶接用製
造装置の一例を示す縦断面図である。架台(図示せず)
に垂直にセットされた鋼材製の軸部材2の外周部に外層
3の厚みを得るのに必要な所定の間隔を隔てて円環状の
水冷型4が配設されている。この水冷型4の上部に黒鉛
系耐火材よりなる緩衝型5および磁界遮断水冷銅板6を
介して耐火材からなる加熱型7がセットされている。こ
の加熱型7の肉厚内には、高周波加熱用コイル8および
その内部に位置するコイル冷却用通水路9が内外二重構
造にして円環状に配置されており、以上の各型4,5,
7をもって連続鋳かけ肉盛り溶接用の鋳型10が構成さ
れている。なお、図2中の11は初期の溶湯流出防止用
の受け板である。
FIG. 2 is a vertical cross-sectional view showing an example of a continuous casting overlay welding manufacturing apparatus used in the method for manufacturing the abrasion-resistant composite roll 1 having the above-described structure. Stand (not shown)
An annular water-cooling mold 4 is arranged on the outer peripheral portion of the steel shaft member 2 set perpendicularly to the outer periphery of the shaft member 2 at a predetermined interval required to obtain the thickness of the outer layer 3. A heating die 7 made of a refractory material is set above the water cooling die 4 via a buffer die 5 made of a graphite refractory material and a magnetic field blocking water-cooled copper plate 6. Within the wall thickness of the heating die 7, a high-frequency heating coil 8 and a coil cooling water passage 9 located inside thereof are arranged in an annular shape having an inner-outer double structure. ,
7, a casting mold 10 for build-up welding by continuous casting is constructed. Reference numeral 11 in FIG. 2 is an initial receiving plate for preventing molten metal outflow.

【0019】このような製造装置による複合ロール1の
製造方法について説明すると、まず軸部材2を鋳型10
内に垂直にセットするとともに、その下端部に昇降機構
(図示せず)を装着する。次に、高周波加熱用コイル8
に通電し、通水路9に冷却水を流通させた状態で、鋳型
10と軸部材2とにより形成される空間内に、外層3を
形成すべき溶湯12を注入する。この溶湯12の表面は
断熱および酸化防止のため溶融フラックス13により被
覆するとともに、高周波加熱用コイル8により加熱攪拌
して、溶湯12が凝固しないようにする。
A method of manufacturing the composite roll 1 by using such a manufacturing apparatus will be described. First, the shaft member 2 is attached to the mold 10.
It is set vertically inside and an elevating mechanism (not shown) is attached to its lower end. Next, the high frequency heating coil 8
The molten metal 12 for forming the outer layer 3 is injected into the space formed by the mold 10 and the shaft member 2 in a state where the cooling water is circulated in the water passage 9 by energizing. The surface of the molten metal 12 is covered with a molten flux 13 for heat insulation and oxidation prevention, and is heated and stirred by the high frequency heating coil 8 to prevent the molten metal 12 from solidifying.

【0020】この状態で、上記昇降機構を介して軸部材
2を矢印A方向に断続的に降下させると、溶湯12も連
動して降下し、緩衝型5、水冷型4に至って、漸次凝固
が開始される。一方、軸部材2の表面は溶湯12の熱に
より一部溶解し、それが溶湯12と混合しながら、溶湯
12の漸次凝固により外層3と完全に溶着一体化され
る。そして、溶湯12の表面の降下につれて、新たに溶
湯12を補給してその表面を一定の水準に保持すること
によって、図1に示すような耐摩耗性複合ロール1を連
続的に製造する。
In this state, when the shaft member 2 is intermittently lowered in the direction of the arrow A through the elevating mechanism, the molten metal 12 is also interlocked and descends to the buffer mold 5 and the water cooling mold 4 to gradually solidify. Be started. On the other hand, the surface of the shaft member 2 is partially melted by the heat of the molten metal 12, and while being mixed with the molten metal 12, it is completely welded and integrated with the outer layer 3 by the gradual solidification of the molten metal 12. Then, as the surface of the molten metal 12 descends, the molten metal 12 is newly replenished to maintain the surface at a constant level, so that the abrasion-resistant composite roll 1 as shown in FIG. 1 is continuously manufactured.

【0021】次に、本発明の実施例及び比較例について
詳細に述べる。表1に示す本発明の実施例1〜5及び比
較例1〜8まで組成の外層3を形成する溶湯12と直径
300mmのSCM材の軸材2を用い、図2に示す装置
を用いて複合ロールを製造した。軸材は溶湯との溶着を
よくするために800℃に予熱しておき、溶湯は155
0℃で鋳型10内に鋳込んだ。なお、溶湯表面は溶融フ
ラックスにより溶湯の酸化を防止した。これらのロール
を施盤加工後、胴表面に耐酸化防止剤を塗り、1000
〜1150℃からの焼入れおよび500〜600℃での
焼戻し熱処理を施した。このようにして胴径400mm
×胴長1000mmの複合ロールを得た。これらのロー
ルから施盤加工によりサンプルを切り出すと同時に組織
観察および硬度測定を行った。これらのサンプルを以下
に述べるような試験要領により絞りクラック発生時のク
ラック深さをシミュレートした。
Next, examples and comparative examples of the present invention will be described in detail. Using Examples 1 to 5 of the present invention and Comparative Examples 1 to 8 of the present invention shown in Table 1, the molten metal 12 forming the outer layer 3 of the composition and the shaft material 2 of the SCM material having a diameter of 300 mm were combined using the apparatus shown in FIG. A roll was manufactured. The shaft material is preheated to 800 ° C in order to improve welding with the molten metal, and the molten metal is 155
It was cast into the mold 10 at 0 ° C. The surface of the molten metal was prevented from being oxidized by the molten flux. After lathing these rolls, apply anti-oxidant to the surface of the body and
Quenching from ~ 1150 ° C and tempering heat treatment at 500-600 ° C were performed. In this way the body diameter is 400 mm
A composite roll having a body length of 1000 mm was obtained. Samples were cut from these rolls by lathe processing, and at the same time, the structure was observed and hardness was measured. The crack depth at the time of drawing crack occurrence was simulated for these samples by the test procedure as described below.

【0022】[0022]

【表1】 [Table 1]

【0023】まず、試験方法に関しては、絞りクラック
の発生原因の多くが、既述したようにロール表面が瞬間
的に高温から冷却されることによる組織変態によるもの
であると考えて、サンプルを瞬間的な高温、具体的には
900℃まで加熱し、その加熱温度で3秒間保持させた
後、20℃の水浴中へ落下させて一気に冷却すること
で、クラックを発生させて、その深さを測定し耐クラッ
ク性の指標を得た。その結果は、表2に示す通りであっ
た。
First, regarding the test method, it is considered that most of the causes of the squeezing cracks are due to the structural transformation caused by the instantaneous cooling of the roll surface from the high temperature as described above, and the sample is instantly changed. At a specific high temperature, specifically 900 ° C., hold it at that heating temperature for 3 seconds, then drop it in a water bath at 20 ° C. and cool it all at once, thereby generating cracks and increasing the depth. The index of crack resistance was measured. The results are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】上記の試験結果から、比較例のサンプルN
o.1および2に関しては、TiおよびNiの総添加量
が不足しているために炭化物の球状化が余り進まず、ま
たクラック深さが1.5、1.6mmと深くなってしま
い、この種の複合ロールの材質として適さないことが判
った。また、比較例のサンプルNo.3〜5のように、
Ni量が1.0%を越えるものでは、残留オーステナイ
ト量が多くなり、Ti量に拘らず硬度(HsD)が72
〜76程度と適正な硬度を得ることができないことが判
った。さらに、比較例のサンプルNo.6のように、T
iおよびNiの添加量が多くなると、炭化物の球状化率
が低下しクラック深さが深くなると同時に、溶湯の酸化
が激しくなって、溶解が困難になることが判った。
From the above test results, sample N of the comparative example
o. Regarding Nos. 1 and 2, the spheroidization of carbide did not proceed so much because the total addition amount of Ti and Ni was insufficient, and the crack depth became deep at 1.5 and 1.6 mm. It was found that it was not suitable as the material for the composite roll. In addition, the sample No. of the comparative example. Like 3-5,
When the amount of Ni exceeds 1.0%, the amount of retained austenite increases, and the hardness (HsD) is 72 regardless of the amount of Ti.
It was found that an appropriate hardness of about ~ 76 cannot be obtained. Furthermore, the sample No. of the comparative example. Like 6
It was found that when the amounts of i and Ni added were large, the spheroidization rate of the carbides was low and the crack depth was deep, and at the same time, the oxidation of the molten metal was severe and the dissolution became difficult.

【0026】さらにまた、Ti及びNiを添加していな
い比較例のサンプルNo.7及びNo.8では、硬度は
十分得られたが、Cr,Mo,V,Wといった元素の組
織にかかわらず、球状化率、クラック深さともTi,N
iを添加したサンプルに比べて悪いことが判った。これ
ら比較例に対して、本発明の実施例1〜5は、炭化物の
球状化率が高く、クラック深さも浅く、硬度も高い。
Furthermore, the sample No. of the comparative example in which Ti and Ni were not added was used. 7 and No. In No. 8, although sufficient hardness was obtained, the spheroidization rate and crack depth were both Ti and N, regardless of the microstructure of elements such as Cr, Mo, V, and W.
It was found to be worse than the sample to which i was added. In comparison with these comparative examples, Examples 1 to 5 of the present invention have a high spheroidization rate of carbide, a shallow crack depth, and a high hardness.

【0027】上記のような試験結果に基づいて、Tiお
よびNi量についての相関関係を調べるために、図3に
示すようなグラフを作成してみた。このグラフは、その
左縦軸にクラック深さ(mm)、右縦軸に球状化率
(%)をとり、下横軸を(Ti+Ni)量(%)とした
ものである。この図3のグラフにおいて、黒く塗り潰し
た丸印がクラック深さ、黒く塗り潰した四角印が球状化
率であって、同グラフから明らかなように、TiとNi
の総添加量が、0.5%を越えて2.0%迄の範囲のも
のが、炭化物の球状化率が高く、クラック深さが浅い関
係にあることが一目瞭然である。なお、図3のグラフで
示すサンプルのTi,Ni以外の組成は、C:1.8〜
2.2%,Si:0.3〜0.5%,Mn:0.3〜
0.5%,Cr:5.5〜6.5%,Mo:5.5〜
6.5%,V:5.6〜6.5%,W:4.0〜5.0
%,Co:1.5〜2.5%、その他がFeである。
Based on the above test results, a graph as shown in FIG. 3 was prepared in order to examine the correlation between the amounts of Ti and Ni. In this graph, the crack depth (mm) is plotted on the left vertical axis, the spheroidization rate (%) is plotted on the right vertical axis, and the (Ti + Ni) amount (%) is plotted on the lower horizontal axis. In the graph of FIG. 3, the black filled circles indicate the crack depth, and the black filled squares indicate the spheroidization rate.
It is obvious that when the total addition amount of Al is in the range of more than 0.5% to 2.0%, the spheroidization rate of the carbide is high and the crack depth is shallow. The composition other than Ti and Ni of the sample shown in the graph of FIG.
2.2%, Si: 0.3 to 0.5%, Mn: 0.3 to
0.5%, Cr: 5.5 to 6.5%, Mo: 5.5
6.5%, V: 5.6 to 6.5%, W: 4.0 to 5.0
%, Co: 1.5 to 2.5%, and others are Fe.

【0028】これらの試験および調査の結果から炭化物
の球状化および組織の微細化について着目し、Tiおよ
びNiの最適な量を求めたところ、つぎのような結論に
達した。すなわち、0.5<Ti+Ni≦2.0(但
し、Ni<1.0)。なお、上記の球状化率は、対象と
する範囲に存在する個々の炭化物の面積(S1)および
球状化炭化物の最大長を直径とする円の面積(S0)を
それぞれ測定し、その面積比の平均値を求める。この方
法による球状化率をS(%)とすると、
From the results of these tests and investigations, attention was paid to the spheroidization of carbides and the refinement of the structure, and the optimum amounts of Ti and Ni were determined. The following conclusions were reached. That is, 0.5 <Ti + Ni ≦ 2.0 (however, Ni <1.0). The above-mentioned spheroidization rate is obtained by measuring the area (S1) of each carbide existing in the target range and the area (S0) of a circle having the maximum length of the spheroidized carbide as a diameter, and measuring the area ratio. Calculate the average value. If the spheroidization rate by this method is S (%),

【0029】[0029]

【数1】 [Equation 1]

【0030】で表される。また、上記各面積(S1,S
0)の測定は、顕微鏡を介して画像解析装置(コンピュ
ータ)を用いて行なった。
It is represented by In addition, each area (S1, S
The measurement of 0) was performed using an image analyzer (computer) through a microscope.

【0031】[0031]

【発明の効果】以上のように本発明によれば、この種の
複合ロールは耐摩耗性を向上させるために多くの炭化物
を晶・析出させており、このため靭性が低下して使用時
において、絞りクラックが入った場合のクラック深さが
大きくなるという問題が生じている。このため、Tiお
よびNiの添加量を適切に設定することにより、高硬度
のMC型炭化物であるTiCを生成・分布させて炭化物
の微細化および球状化を図るとともに、組織の微細化も
図って、耐摩耗性はもちろん、高温使用下での耐熱クラ
ック性を十分に向上させることができる。したがって、
圧延におけるロールの使用寿命を著しく延ばすことがで
き、また圧延材の品質向上を達成することができるとい
う効果を奏する。
As described above, according to the present invention, a large amount of carbide is crystallized / precipitated in this type of composite roll in order to improve the wear resistance, so that the toughness is lowered and the toughness is reduced during use. However, there is a problem that the crack depth becomes large when a drawing crack occurs. Therefore, by appropriately setting the amounts of addition of Ti and Ni, it is possible to generate and distribute TiC, which is a high-hardness MC type carbide, to make the carbide fine and spheroidized, and also to make the structure fine. Not only abrasion resistance but also heat crack resistance under high temperature use can be sufficiently improved. Therefore,
It is possible to significantly extend the service life of the roll in rolling and to improve the quality of the rolled material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の耐摩耗性複合ロールの縦断面図であ
る。
FIG. 1 is a longitudinal sectional view of an abrasion resistant composite roll of the present invention.

【図2】耐摩耗性複合ロールの製造方法に使用する連続
鋳かけ肉盛り溶接用製造装置の一例を示す縦断面図であ
る。
FIG. 2 is a vertical cross-sectional view showing an example of a continuous casting surfacing welding manufacturing apparatus used in a method for manufacturing a wear-resistant composite roll.

【図3】TiおよびNi量についての相関関係をグラフ
化した図である。
FIG. 3 is a graph showing the correlation between the amounts of Ti and Ni.

【符号の説明】[Explanation of symbols]

1 耐摩耗性複合ロール 2 軸部材 3 外層 1 Wear-resistant composite roll 2 Shaft member 3 Outer layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼材より構成された軸部材の外周に、重
量%において、C:1.5〜2.5%,Si:0.3〜
2.0%,Mn:0.3〜2.0%,Cr:4.0〜
7.0%,Mo:4.0〜8.0%,W:3.0〜6.
0%,V:3.0〜8.0%,Co:1.0〜3.0
%,0.5<Ni+Ti≦2.0%であって、Ni<
1.0%(0%は除く)で、残部がFeおよび不純物か
らなる組成の溶湯を溶着させて外層を形成したことを特
徴とする耐摩耗性複合ロール。
1. A shaft member made of steel, on the outer periphery thereof, in weight%, C: 1.5-2.5%, Si: 0.3-
2.0%, Mn: 0.3 to 2.0%, Cr: 4.0 to
7.0%, Mo: 4.0-8.0%, W: 3.0-6.
0%, V: 3.0 to 8.0%, Co: 1.0 to 3.0
%, 0.5 <Ni + Ti ≦ 2.0%, and Ni <
A wear-resistant composite roll characterized in that an outer layer is formed by welding a melt having a composition of 1.0% (excluding 0%) and the balance being Fe and impurities.
JP4164751A 1992-06-23 1992-06-23 Abrasion resistant composite roll Expired - Lifetime JPH0737656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4164751A JPH0737656B2 (en) 1992-06-23 1992-06-23 Abrasion resistant composite roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4164751A JPH0737656B2 (en) 1992-06-23 1992-06-23 Abrasion resistant composite roll

Publications (2)

Publication Number Publication Date
JPH0641676A true JPH0641676A (en) 1994-02-15
JPH0737656B2 JPH0737656B2 (en) 1995-04-26

Family

ID=15799230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4164751A Expired - Lifetime JPH0737656B2 (en) 1992-06-23 1992-06-23 Abrasion resistant composite roll

Country Status (1)

Country Link
JP (1) JPH0737656B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075892A (en) * 2004-09-13 2006-03-23 Hitachi Metals Ltd Rolling roll made by centrifugal casting
EP2745944A1 (en) * 2011-09-21 2014-06-25 Hitachi Metals, Ltd. Centrifugal casted composite roller for hot rolling and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258949A (en) * 1988-12-02 1990-10-19 Hitachi Metals Ltd Wear-resistant composite roll

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258949A (en) * 1988-12-02 1990-10-19 Hitachi Metals Ltd Wear-resistant composite roll

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075892A (en) * 2004-09-13 2006-03-23 Hitachi Metals Ltd Rolling roll made by centrifugal casting
EP2745944A1 (en) * 2011-09-21 2014-06-25 Hitachi Metals, Ltd. Centrifugal casted composite roller for hot rolling and method for producing same
EP2745944A4 (en) * 2011-09-21 2015-04-22 Hitachi Metals Ltd Centrifugal casted composite roller for hot rolling and method for producing same
US9757779B2 (en) 2011-09-21 2017-09-12 Hitachi Metals, Ltd. Centrifugally cast composite roll for hot rolling and its production method

Also Published As

Publication number Publication date
JPH0737656B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
JP3205745B2 (en) Abrasion resistant seizure resistant hot roll
KR930009983B1 (en) Wear-resistant compound roll
EP0560210B1 (en) Compound roll and method of producing same
US5419973A (en) Composite roll for rolling and process for producing the same
JP6516093B2 (en) Composite roll for continuous cast overlay casting rolling
JPH08117965A (en) Production of composite roll made by centrifugal casting
JP3028514B2 (en) Composite roll for rolling with excellent wear resistance and rough surface resistance
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
EP2660344A1 (en) Centrifugally cast roll for last finishing stands in hot strip mills
JPH0641676A (en) Wear resistant composite roll
JPH0259202B2 (en)
JPH0860289A (en) Centrifugally cast composite roll
JP3277638B2 (en) Wear-resistant composite rolls for rolling section steel
JP2004162104A (en) Roll external layer material for hot rolling and composite roll for hot rolling
JP3030078B2 (en) Abrasion-resistant composite roll excellent in skin roughness resistance and method for producing the same
JP2004250764A (en) Method of producing composite roll for rolling, and the roll
JP3030077B2 (en) Abrasion-resistant composite roll excellent in crack resistance and method for producing the same
JPH03126838A (en) Composite roll
JP2004009063A (en) Complex roll for hot-rolling
JP3679221B2 (en) Composite roll for iron making rolling mill with excellent wear resistance and method for producing the same
JPS6157083B2 (en)
JPH0679311A (en) Wear-resistant composite roll and manufacture thereof
JPH07166291A (en) Production of graphite-containing high speed steel type composite rotary member
JPH07178535A (en) Production of composite high speed steel-based rotating member containing graphite
JPH0673488A (en) Wear resistant composite roll for hot rolling and its production