JP2004162104A - Roll external layer material for hot rolling and composite roll for hot rolling - Google Patents

Roll external layer material for hot rolling and composite roll for hot rolling Download PDF

Info

Publication number
JP2004162104A
JP2004162104A JP2002328145A JP2002328145A JP2004162104A JP 2004162104 A JP2004162104 A JP 2004162104A JP 2002328145 A JP2002328145 A JP 2002328145A JP 2002328145 A JP2002328145 A JP 2002328145A JP 2004162104 A JP2004162104 A JP 2004162104A
Authority
JP
Japan
Prior art keywords
resistance
roll
hot rolling
thermal shock
seizure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002328145A
Other languages
Japanese (ja)
Other versions
JP4123903B2 (en
Inventor
Kenji Ichino
健司 市野
Takaaki Toyooka
高明 豊岡
Hisashi Hiraoka
久 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002328145A priority Critical patent/JP4123903B2/en
Publication of JP2004162104A publication Critical patent/JP2004162104A/en
Application granted granted Critical
Publication of JP4123903B2 publication Critical patent/JP4123903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roll external layer material for hot rolling excellent in resistances to wear, surface roughening, sand burning, and thermal impact; and a composite roll for hot rolling using the same. <P>SOLUTION: The external layer material comprises, in terms of mass%, 2.6-3.5% C, 1.0-2.5% Si, 0.2-1.5% Mn, 0.8-2.7% Cr, 1.0-3.0% Mo, 2.0-7.0% Ni, 1.3-2.5% V, 0.1-0.8% Nb, 0.020-0.2% B, at least either lower than 0.05% Ti or 0.1% or lower Al, and the balance being Fe and unavoidable impurities, provided that the contents of C, Cr, Nb, and V satisfy 2.0≤C-(0.24V+0.13Nb)≤3.0, Cr/C<1.0, and 3.0≤Cr+V≤4.5 [wherein C, V, Nb, and Cr respectively satisfy their contents (mass%) described above]. The material may further contain 0.1-4.0% Co. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱間圧延用複合ロールに係り、とくに、耐摩耗性、耐焼付き性、耐肌荒れ性および、耐熱衝撃性に優れ、熱間圧延仕上ミル用や継目無鋼管造管用として好適な熱間圧延用複合ロールに関する。
【0002】
【従来の技術】
近年、鋼板や鋼管の熱間圧延技術の進歩はめざましく、それに伴い、使用される熱間圧延用ロールの特性、とくに耐摩耗性の向上が強く要求されてきた。このような耐摩耗性向上の要求に対し、外層組成を高速度工具鋼組成に類似した組成とし、硬質な炭化物を析出させて、耐摩耗性を格段に向上させた高性能ロール(以下、ハイス系ロールともいう)が開発され実用化されている。
【0003】
一方、被圧延材の絞り圧延事故や、被圧延材の焼付きが生じやすい圧延スタンドやミルでは、黒鉛を含有し耐焼付き性に優れたNiグレン鋳鉄ロールが組み込まれて熱間圧延が行われてきた。熱間圧延用ロールに黒鉛を含有させることは、黒鉛が潤滑性に富むことから焼付き防止には有効である。しかし、従来のNiグレン鋳鉄ロールは、耐摩耗性が劣り、そのためロール寿命が短いという問題があった。一方、耐摩耗性に優れたハイス系ロールは、絞り事故や焼付きの発生によって粗大な熱衝撃亀裂が生成するなど、耐事故性の観点で問題がある。例えば、絞り圧延事故の発生頻度が高い鋼板の熱間圧延仕上後段スタンドでは、ハイス系ロールを安定して使用することはできず、依然として、多量のNiグレン鋳鉄ロールが使用されている。
【0004】
このような問題に対し、例えば、特許文献1には、Niグレン鋳鉄に1.0 〜5.0 %のVを添加し、耐摩耗性を向上させるとした熱間圧延用ロールが提案されている。また、特許文献2には、Niグレン鋳鉄に2.0 〜8.0 %のVを添加し、0.5 〜5%の黒鉛に加えて0.2 〜10%のMC型炭化物を出現させて耐摩耗性を向上させるとした熱間圧延用ロールが提案されている。さらに特許文献3には、2〜10%のCrと0.1 〜10%のWと、V、Nbのうちの1種または2種を合計で、1.5 〜10%を含み、黒鉛を有するハイス系鋳鉄材が提案されている。
【0005】
また、鋼板圧延と同様に鋼管圧延においても、熱間圧延用ロールへの耐焼付き性と耐摩耗性の向上が強く要望されている。
最近では、圧延製品の品質向上と効率的生産のため、圧延速度の増加や連続圧延量の増加などが指向されており、熱間圧延用ロールの使用環境はますます過酷化している。さらに被圧延材の高合金化、圧延製品の表面品質要求の厳格化などにより、耐摩耗性、耐焼付き性に優れるとともに、耐肌荒れ性にも優れた熱間圧延作業ロールが要望されている。
【0006】
例えば、特許文献4には、Nb、Wの含有量を制御して、炭化物の重力偏析を抑制し、肌荒れの発生を抑制した熱間圧延用ロールが提案されている。また、特許文献5には、Cr、V、Nbの合計含有量を3%以下に制限し、2%以上の黒鉛を晶出させ、 肌荒れの発生を抑制した耐摩耗性熱間圧延用ロールが提案されている。
【0007】
【特許文献1】
特開平1−287248号公報
【特許文献2】
特開平6−335712号公報
【特許文献3】
特開平6−256889号公報
【特許文献4】
特開2001−20335号公報
【特許文献5】
特開2001−181780 号公報
【0008】
【発明が解決しようとする課題】
しかしながら、特許文献4、 特許文献5に記載された技術で製造された熱間圧延用ロールでは、耐熱衝撃性が低く、要求される耐摩耗性、耐焼付き性、耐肌荒れ性および耐熱衝撃性を同時に満足することは不可能であった。
本発明は、上記した従来技術の問題を有利に解決し、耐摩耗性、耐焼付き性、耐肌荒れ性、および耐熱衝撃性がともに優れた、熱間圧延用ロール外層材及び熱間圧延用複合ロールを提案することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、熱間圧延用ロールの耐摩耗性、耐焼付き性、耐肌荒れ性、耐熱衝撃性に影響する種々の要因について鋭意検討した。
V、Nb、Mo、CrおよびWの多量添加で耐摩耗性が向上し、V>Nb>Mo>Cr、Wの順で、耐摩耗性向上効果を有していることは、 従来からよく知られている。しかし、本発明者らの検討によれば、耐摩耗性を向上させる目的で、CrやWを増量すると、肌荒れが一層顕著になる。また、Cr、WをV(Nb)と同時に増量すると、耐焼付き性、耐熱衝撃性が劣化する。これは、CrやWで形成される共晶炭化物が肌荒れや焼付きを発生させたり、熱衝撃亀裂の伝播を促進させるためと考えられる。
【0010】
このように、Cr、Wは、V、Nb、Moに比べて耐摩耗性を向上させる作用が小さいうえ、肌荒れ、焼付き、熱衝撃亀裂の発生を促進する傾向を有することから、本発明者らは、熱間圧延用ロールではCrは必要最小限の含有にとどめ、Wは無添加とすることが良いという知見を得た。なお、Crを必要最小限の含有とし、Wを無添加とすることは、黒鉛化の促進に有効であり、耐肌荒れ性の向上とともに耐焼付き性の向上にも寄与する。
【0011】
また、本発明者らの検討によれば、熱間圧延用ロールとして必要最低限の耐摩耗性を確保するうえでは、Vは1.3 質量%以上の含有を必要とする。しかし、Vを1.3 質量%以上含有すると、粗大なMC炭化物が晶出する。この粗大なMC炭化物は熱間圧延においてロール表面に凸状に残存し、肌荒れを誘引する。本発明者らは、粗大なMC炭化物の晶出抑制方法について、更なる検討を行い、Vと同時にNbを添加することがよいことを見出した。Nbは、Nb炭化物を形成しそれを核としてMC炭化物が晶出する。このため、MC炭化物の粗大化が一定レベル以下に抑制される。
【0012】
また、本発明者らは、耐肌荒れ性向上のために、共晶炭化物を減少させる方法として、有効C量(=C− (0.24V+0.13Nb))を低減することを考えた。VとNbによってMC炭化物の形成に消費された残りのC量(有効C量)が、共晶炭化物や黒鉛の形成に寄与する。有効C量を低減すれば、共晶炭化物が減少し、耐肌荒れ性は向上すると考えられるが、耐焼付き性、耐熱衝撃性に効果がある黒鉛も減少する。
【0013】
そこで、本発明者らは、有効C量を2.0 %以上3.0 %以下と厳格に調整すれば、優れた耐焼付き性、耐肌荒れ性および耐熱衝撃性を兼備させることも可能であると考えた。
また、本発明者らの検討によれば、V、Nbに加え、有効C量を厳格に調整し、さらにAlまたはTiを含有することにより、Nb炭化物の生成核が形成され、そのためNb炭化物が微細に分散し、微細分散したNb炭化物を核にMC炭化物が生長し、MC炭化物の粗大化がさらに抑制されるという知見も得た。しかし、Nb、Al、Tiを含有した場合でも、肌荒れを抑制するためには、Vは2.5 質量%以下に限定する必要があることも見出した。
【0014】
また、本発明者らは、V、Nbに加え、有効C量を厳格に調整し、さらにAlまたはTiに加えてBを含有することにより、黒鉛の分岐化が促進され、この分岐化された黒鉛に沿って熱衝撃による亀裂が分岐・分散されるため、耐熱衝撃性が向上することも知見した。
また、本発明者らは、共晶炭化物量の増加や、黒鉛の減少に伴う耐熱衝撃性、耐焼付き性の劣化を防止するため、あるいは、基地や炭化物へのCr濃化に起因した焼付きの発生を防止するために、Cr/Cを1.0 未満に調整することが必要であることも知見した。また、耐摩耗性と耐肌荒れ性を両立させるためには、CrとVの合計量を3.0 〜4.5 質量%の範囲に調整する必要があることも見出した。
【0015】
まず、本発明者らが行った基礎的実験結果について、説明する。
質量%で、2.2 〜3.9 %C−1.5 〜1.9 %Si−0.5 〜0.6 %Mn−4.3 〜4.4 %Ni−1.7 〜1.8 %Cr−1.9 〜2.0 %Mo−1.9 〜3.2 %V−0.3 〜0.4 %Nb−0.03〜0.04%Ti−0.03〜0.04%B−残部Feを含有する主としてC、V含有量を変化した溶湯を溶製し、厚さ35mmのY型キールブロックを作製し、400 〜500 ℃での焼戻処理を施して、有効C量を変化した試験材とした。
【0016】
これら試験材から試験片を採取し、焼付き試験、摩耗試験、熱衝撃試験を実施した。また、質量%で、3.1 〜3.4 %C−1.6 〜1.8 %Si−0.5 〜0.6 %Mn−4.4 %Ni−1.8 %Cr−1.9 〜2.0 %Mo−1.9 〜2.0 %V−0.3 %Nbを含有し、あるいはさらにBを0.03%含有し、残部Feの溶湯(有効C量:2.8 、2.6 、2.9 )を溶製し、同様に試験材とし、試験を実施した。
【0017】
焼付き試験は、図3に示すように、高周波加熱コイルにより900 ℃に加熱され、150rpmで回転する円板状の相手材(材質:SUS410、大きさ:190mm φ)を25mm厚の板状試験片に荷重100kgfで10s 間圧接した。試験後、板状試験片の表面を観察し、表面に相手材の焼付き(へばりつき)が認められる場合を、焼付き有りとし、相手材の焼付き(へばりつき)が認められず摩耗している場合を、焼付き無しとした。
【0018】
また、摩耗試験は、相手材(材質:S45C、大きさ:190mm φ)と試験片(大きさ:60mmφ)の2円盤すべり摩耗方式で実施した。相手材を、回転数700rpmで回転させながら800 ℃に加熱し、試験片と相手材のすべり率を10%として、荷重100kg で圧接しながら合計240min間転動させた。なお、試験片を水冷しながら試験片(試験面)の表面温度が420 ℃となるように水量を調整した。
【0019】
試験後、試験片の摩耗減量(摩耗量)を測定した。さらに試験片表面の肌荒れ状況を目視で観察すると共に、肌荒れの大きな部分を試験片周辺方向に10mmの長さについて、 触針式粗さ計を用いてJIS B 0601−1994 の規定に準拠して粗さ曲線を求め、十点平均粗さRz を求めた。
また、熱衝撃試験は、高周波加熱コイルにより820 ℃に加熱され、150rpmで回転する円板状の相手材(材質:S45C、大きさ:190mm φ)を25mm厚の板状試験片に100kgfで10s 間圧接して、板状試験片を急加熱し、除荷と同時に水冷して板状試験片に熱衝撃を印加した。試験後、開口の大きな亀裂がある位置2ヶ所で切断し断面を観察して最大亀裂深さを測定した。
【0020】
得られた結果を、有効C量:{C−(0.24V+0.13Nb)}との関係で図1に示す。なお、Cr、C、V、Nbは、各元素の含有量(質量%)である。
図1(a)から、有効C量が3.0 %を超えると、粗さ(Rz :μm )が著しく増加し、著しい肌荒れが発生することがわかる。また、有効C量が2.0 %未満では焼付きが発生する。すなわち、有効C量を2.0 〜3.0 %に限定することにより、耐焼付き性、耐肌荒れ性を兼備した熱間圧延用ロールが得られる。
【0021】
なお、図1(a)から、この有効C量の範囲内でも、V量が3.1 質量%、3.2 質量%と3.0 質量%を超えて高くなる(□印)と、著しい肌荒れが発生することがわかる。また、この有効C量の範囲内でも、Al、Tiのいずれも含まない場合には、著しい肌荒れが発生する。これに加えてBをも含まない場合(△印)には、焼付きも発生する。
【0022】
また、図1(b)から、有効C量が2.0 〜3.0 %の範囲を外れると、熱亀裂深さが著しく深くなり、耐熱衝撃性が劣化することがわかる。また、有効C量が2.0 〜3.0 %の範囲内であっても、V含有量が3.0 質量%を超えるか、2.0 質量%未満となると、熱亀裂深さが顕著に増加している。また、この有効C量の範囲内でも、Al、Tiのいずれも含まない場合あるいはさらにAl、Ti、Bを含まない場合(△印)には、熱亀裂深さが顕著に増加している。
【0023】
このように、有効C量が所定の範囲内であっても、耐肌荒れ性が劣化する場合があり、本発明者らは、更なる検討を行なった。優れた耐摩耗性、優れた耐肌荒れ性、優れた耐焼付き性および優れた耐熱衝撃性を兼備した熱間圧延作業用ロールとするためには、有効C量を2.0 〜3.0 %の範囲に調整したうえで、さらにCrとVの合計含有量(Cr+V)を、3.0 〜4.5 質量%の範囲内に調整する必要があることを知見した。Crは、硬質な共晶炭化物を形成して耐摩耗性を向上するがCr量を増加すると共晶炭化物が増加し、耐肌荒れ性や耐熱衝撃性が劣化する。また、Vは、耐摩耗性向上に極めて有用であるがV量が増加するとMC炭化物が粗大化して肌荒れが発生する。このため耐肌荒れ性、耐熱衝撃性と耐摩耗性を両立するには、Cr量とV量を好適範囲にバランスさせることが有効となる。
【0024】
次に、このような知見を得る基礎的な実験結果について、説明する。
質量%で、3.1 〜3.4 %C−1.5 〜1.8 %Si−0.4 〜0.5 %Mn−4.6 〜4.8 %Ni−1.6 〜3.1 %Cr−2.0 〜2.4 %Mo−1.2 〜3.9 %V−0.3 〜0.4 %Nb−0.05〜0.09%Al−0.05〜0.06%B−残部Feを含有し、主としてCr、V含有量を変化した溶湯を溶製し、厚さ35mmのY型キールブロックを作製した。ついで、これらキールブロックに400 〜500 ℃での焼戻処理を実施して試験材とした。なお、試験材の有効C量は2.21〜2.95%であった。これら試験材から試験片を採取し、摩耗試験、熱衝撃試験を実施した。
【0025】
摩耗試験は、相手材(材質:S45C、大きさ:190mm φ)と試験片(大きさ:60mmφ)の2円盤すべり摩耗方式で実施した。相手材を、回転数700rpmで回転させながら800 ℃に加熱し、試験片と相手材のすべり率を10%として、荷重100kgfで圧接しながら合計240min間転動させた。なお、試験片を水冷しながら試験片(試験面)の表面温度が420 ℃となるように水量を調整した。
【0026】
試験後、試験片の摩耗減量(摩耗量)を測定した。さらに試験片表面の肌荒れ状況を目視で観察すると共に、肌荒れの大きな部分を試験片周辺方向に10mmの長さについて、 触針式粗さ計を用いてJIS B 0601−1994 の規定に準拠して粗さ曲線を求め、十点平均粗さRz を求めた。
また、熱衝撃試験は、高周波加熱コイルにより820 ℃に加熱され、150rpmで回転する円板状の相手材(材質:S45C、大きさ:190mm φ)を25mm厚の板状試験片に荷重100kgfで10s 間圧接し、板状試験片を急加熱し、除荷と同時に水冷して板状試験片に熱衝撃を印加した。試験後、開口の大きな亀裂が存在する位置2ヶ所で切断し断面を観察して最大亀裂深さを測定した。
【0027】
得られた結果を、(Cr+V)との関係で図2に示す。なお、Cr,Vは、各元素の含有量(質量%)である。
図2(a)から、(Cr+V)が3.0 未満では摩耗量が増大し、 耐摩耗性が低下することがわかる。また、(Cr+V)が4.5 を超えて増大すると、表面粗さ(Rz )が増大し耐肌荒れ性が劣化することがわかる。また、図2(b)から、(Cr+V)が4.5 を超えて増大すると、熱衝撃による亀裂深さが増大し、耐熱衝撃性が劣化することがわかる。このようなことから、本発明者らは、耐摩耗性、耐肌荒れ性および耐熱衝撃性をともに向上させるために、Cr含有量とV含有量との合計(Cr+V)を3.0 〜4.5 の範囲に限定する必要があることを知見した。なお、Al、Tiのいずれも含有しない場合では、肌荒れが発生し、かつ熱亀裂深さも深く耐肌荒れ性、耐熱衝撃性がともに劣化することを示している。
【0028】
本発明は、上記した知見に基づいて、さらに検討を加えて完成されたものである。
すなわち、本発明は、熱間圧延用複合ロールの外層に用いられるロール外層材であって、質量%で、C:2.6 〜3.5 %、Si:1.0 〜2.5 %、Mn:0.2 〜1.5 %、Cr:0.8 〜2.7 %、Mo:1.0 〜3.0 %、Ni:2.0 〜7.0 %、V:1.3 〜2.5 %、Nb:0.1 〜0.8 %、B:0.020 〜0.2 %を含み、かつC、Cr、Nb、V含有量が次(1)〜(3)式
2.0 ≦ C−(0.24 ×V+0.13×Nb) ≦ 3.0 ・・・(1)
Cr/C <1.0 ・・・(2)
3.0 ≦ Cr+V ≦4.5 ・・・(3)
(ここで、C、V、Nb、Cr:各元素の含有量(質量%))
を満足し、さらに、Ti:0.05%未満、Al:0.1 %以下のうちから選ばれた1種または2種を含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とする熱間圧延用ロール外層材である。また、本発明では、前記組成に加えてさらに、質量%で、Co:0.1 〜4.0 %を含むことが好ましい。
【0029】
また、本発明は、外層と内層が溶着一体化してなる熱間圧延用複合ロールであって、前記外層が、質量%で、C:2.6 〜3.5 %、Si:1.0 〜2.5 %、Mn:0.2 〜1.5 %、Cr:0.8 〜2.7 %、Mo:1.0 〜3.0 %、Ni:2.0 〜7.0 %、V:1.3 〜2.5 %、Nb:0.1 〜0.8 %、B:0.020 〜0.2 %を含み、かつC、Cr、Nb、V含有量が前記(1)〜(3)式を満足し、さらに、Ti:0.05%未満、Al:0.1 %以下のうちから選ばれた1種または2種を含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とする熱間圧延用複合ロールであり、また、本発明では、前記外層が、前記組成に加えて、さらに質量%で、Co:0.1 〜4.0 %を含むことが好ましい。
【0030】
【発明の実施の形態】
まず、本発明の熱間圧延用複合ロールの外層(外層材)の組成限定理由について説明する。なお、組成における質量%は単に%と記す。
C:2.6 〜3.5 %
Cは、V、Nb、Cr、Moと結合して、ロールの耐摩耗性を向上するための硬質炭化物形成に必須な元素であるとともに、黒鉛の晶出ならびに耐焼付き性、耐熱衝撃性を確保するために必要な元素であり、本発明では2.6 %以上の含有を必要とする。一方、3.5 %を超えて含有すると共晶炭化物が多量に出現し、またMC型炭化物が粗大化して、耐肌荒れ性が低下する。このため、Cは2.6 〜3.5 %の範囲に限定した。なお、好ましくは、2.8 〜3.3 %である。
【0031】
Si:1.0 〜2.5 %
Siは、脱酸剤として作用するとともに、Cの活量を増加し黒鉛を晶出させやすくする元素であり、本発明では1.0 %以上の含有を必要とする。一方、2.5 %を超えて含有すると、黒鉛の粗大化及び組織の粗大化を生じ、ロールの耐肌荒れ性や耐摩耗性が著しく低下する。このようなことから、Siは1.0 〜2.5 %の範囲に限定した。
【0032】
Mn:0.2 〜1.5 %
Mnは、溶鋼中のSをMnS として固定し、耐摩耗性を阻害するSを無害、安定化するために有効である。また、焼入れ性を向上させ硬さを増加させるという効果もある。このような効果を得るためには、0.2 %以上の含有が必要である。しかし、1.5 %を超えて含有すると凝固界面に偏析し材料を脆化させる。このため、Mnは0.2 〜1.5 %の範囲に含有した。なお、好ましくは0.3 〜1.0 %である。
【0033】
Cr:0.8 〜2.7 %
Crは、共晶炭化物を増量させ、硬質化させる元素であり、Moとともに含有させることにより、ロール圧延時の炭化物破壊を抑制し耐摩耗性を向上させる効果を有する。このような効果を得るためには、0.8 %以上の含有を必要とする。一方、2.7 %を超えて含有すると、共晶炭化物が増加し耐肌荒れ性が低下するとともに、黒鉛量が減少して耐焼付き性、耐熱衝撃性も低下する。このため、Crは0.8 〜2.7 %に限定した。
【0034】
Mo:1.0 〜3.0 %
Moは、共晶炭化物を過度に増量させることなく、炭化物や基地を強化する作用を有し、優れた耐肌荒れ性を維持しつつ耐摩耗性を向上させる効果を有する。特に、Nbと複合して含有することにより、硬質なMC型炭化物を強化し、耐摩耗性を顕著に向上させる重要な効果を発揮するが、このような効果を得るためには、1.0 %以上の含有を必要とする。一方、3.0 %を超えて含有すると、Mo主体の硬く脆弱な炭化物が多量に形成され、耐肌荒れ性、耐熱衝撃性が劣化する。このため、Moは1.0 〜3.0 %に限定した。なお、好ましくは1.2 〜2.7 %である。
【0035】
Ni:2.0 〜7.0 %
Niは、焼入れ性を向上し、材料の硬さを増加させて耐摩耗性を向上させる効果を有する。また、Niは黒鉛の晶出を促進させる効果も有する。このような効果は2.0 %以上の含有で認められるが、7.0 %を超えて含有すると、オーステナイトが著しく安定化し、残留オーステナイト量が増加し耐焼付き性を低下させる。このため、Niは2.0 〜7.0 %の範囲に限定した。なお、好ましくは3.0 〜6.0 %である。
【0036】
V:1.3 〜2.5 %
Vは、硬質なMC型炭化物を形成し、耐摩耗性を向上させる効果を有する元素である。本発明では、一定レベル以上の耐摩耗性を得るために、1.3 %以上の含有を必要とする。一方、2.5 %を超えると、MC型炭化物が粗大化して肌荒れが発生する。さらに、焼付きが発生しやすくなったり、耐熱衝撃性が劣化する等の弊害もある。このため、Vは1.3 〜2.5 %の範囲に限定した。
【0037】
Nb:0.1 〜0.8 %
Nbは、MC型炭化物に固溶して炭化物を強化する作用を有する元素であり、とくに、所定範囲のCr、Mo、Vと複合して含有することにより、炭化物を著しく強化して耐摩耗性を顕著に向上させる重要な効果を有している。また、Vのみの含有ではMC型炭化物が羽毛状に成長して組織が粗大化し、ロールの肌荒れを誘引するが、NbとVを複合して含有することにより、MC型炭化物の羽毛状化を抑制することができ、さらにTiおよび/またはAlと複合添加することにより、Tiおよび/またはAlの酸化物、窒化物、炭化物等がNbC の晶出核となって、NbC を微細分散させるとともに、次にNbC を核としてMC型炭化物が微細分散して、肌荒れが抑制されるという効果もある。このような効果を得るためには、0.1 %以上の含有を必要とする。なお、Nbが0.1 %未満では、MC型炭化物の偏析や粗大化が発生する。一方、0.8 %を超えて含有すると、MC型炭化物がデンドライト状に粗大化するため、却って肌荒れが発生するようになる。また、遠心鋳造法で製造すると、MC型炭化物の偏析が生じる。このようなことから、Nbは0.1 〜0.8 %の範囲に限定した。なお、MC型炭化物粗大化の観点から、Nbは0.1 〜0.5 %とすることが好ましい。
【0038】
B:0.020 〜0.2 %
Bは、黒鉛を微細分散する作用を有し、さらに耐焼付き性、耐熱衝撃性を向上させる効果を有する。このような効果はAlおよび/またはTiの共存下で0.020 %以上の含有で認められるが、0.2 %を超えて含有すると、炭化物が脆弱化し、耐摩耗性が低下するとともに、黒鉛量も減少する。このため、Bは0.020 〜0.2 %の範囲に限定した。なお、好ましくは0.02〜0.10%である。
【0039】
Ti:0.05%未満、Al:0.1 %以下のうちから選ばれた1種または2種
Ti、Alは、いずれも、黒鉛化を促進するとともに、黒鉛形状を分岐形状とすることを助長し、耐焼付き性、耐熱衝撃性を向上させる重要な効果を有する。また、Nb炭化物の核となることによりMC炭化物を微細分散させる効果も有する。このような効果は、Tiが0.005 %以上、Alが0.003 %以上の含有で顕著に認められる。 一方、Tiを0.05%以上含有すると、微細MC型炭化物が密集し、その部分で大きな肌荒れを発生させる。また、Alを0.1 %を超えて含有すると、溶湯の流動性が低下して鋳造欠陥が発生しやすくなる。このため、Tiは0.05%未満、Alは0.1 %以下に限定した。なお、Al、Tiのいずれも含有しない場合には、耐焼付き性、耐熱衝撃性が著しく劣化すると共に、MC型炭化物を粗大化し、顕著な肌荒れ性が発生する。なお、Tiは0.01〜0.04%とすることが好ましい。また、Alが0.01〜0.07%とすることが好ましい。
【0040】
また、本発明では、上記した成分範囲内としたうえで、さらに次(1)〜(3)式
2.0 ≦ C−(0.24 ×V+0.13×Nb) ≦ 3.0 ・・・(1)
Cr/C <1.0 ・・・(2)
3.0 ≦ Cr+V ≦4.5 ・・・(3)
(ここで、C、V、Nb、Cr:各元素の含有量(質量%))
を満足するように各成分の含有量を調整することが重要である。これにより、優れた耐摩耗性、耐肌荒れ性、耐焼付き性および耐熱衝撃性を兼備した熱間圧延作業用ロール外層 (外層材)となる。
【0041】
2.0 ≦C−(0.24V+0.13 Nb )≦3.0 % ……(1)
有効C量が2.0 未満では、黒鉛量が著しく減少し、耐焼付き性、耐熱衝撃性が劣化する。一方、有効C量が3.0 %を超えると共晶炭化物が過度に増加し、顕著な肌荒れが発生し耐肌荒れ性が劣化するとともに、耐熱衝撃性が劣化する。このため、有効C量を2.0 以上3.0 以下に限定した。なお、V含有量が2.1 %を超える場合には、有効C量は2.2 〜2.9 とすることが好ましい。
【0042】
なお、(0.24V+0.13 Nb )は、VとNbによってMC型炭化物の形成に消費されるC量を意味し、{C−(0.24V+0.13Nb)}は、耐焼付き性向上、耐熱衝撃性向上に有利な黒鉛や耐摩耗性や耐肌荒れ性に影響する共晶炭化物の生成に寄与する残されたC量を示す値である。
Cr/C<1.0 ……(2)
Cr/Cが1.0 以上、すなわちCr含有量がC含有量以上となる場合には、共晶炭化物が過度に生成し、また黒鉛量が著しく減少し、焼付きが発生しやすくなるとともに、耐熱衝撃性も著しく劣化する。このため、本発明では、Cr/Cを1.0 未満に限定した。
【0043】
3.0 ≦Cr+V≦4.5 ……(3)
Cr、Vは、耐肌荒れ性、耐熱衝撃性、耐摩耗性に大きな影響を与える元素であり、本発明では(Cr+V)が(3)式を満足するように調整する。(Cr+V)が3.0 未満では、摩耗量が著しく増大し、耐摩耗性が低下する。一方、4.5 を超えると肌荒れが著しく大きくなり、また耐熱衝撃性が劣化する。このため、本発明では、(Cr+V)を3.0 〜4.5 の範囲に限定した。なお、耐肌荒れ性、耐熱衝撃性を重視する場合には、Cr+Vを3.0 近い組成とし、耐摩耗性を重視する場合は、Cr+Vを4.5 に近い組成とすることが好ましい。
【0044】
上記した成分範囲と、上記した(1)、(2)、(3)式をすべて満足するように組成を調整することにより、耐摩耗性、 耐焼付き性、耐肌荒れ性および耐熱衝撃性を同時に向上させることができる。
また、本発明のロール外層材 (外層)は、上記した組成に加えてさらに、Co:0.1 〜4.0 %を含有してもよい。
【0045】
Co:0.1 〜4.0 %
Coは、基地に分配され、基地の合金元素固溶量を増加すると共に、基地を強化し、粗大な絞りクラックの生成を抑える効果があり、必要に応じ含有することができる。このような効果を得るためには、0.1 %以上含有することが好ましい。一方、4.0 %を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できず、高価な元素であるため経済的に不利となる。このため、Coは0.1 〜4.0 %の範囲に限定することが好ましい。
【0046】
上記した組成範囲に調整することにより、耐摩耗性、 耐肌荒れ性、 耐焼付き性および耐熱衝撃性に優れたロール外層材(外層)とすることができる。上記した組成範囲内で、より耐焼付き性、 耐熱衝撃性を向上させるには、より多くの黒鉛を生成させることが好ましい。Fe−Si、Ca−Si等のSi接種剤でSiを接種することが好ましい。接種により添加されるSi量は0.5 〜1.0 質量%とすることが好ましい。なお、Si接種剤にREM 、Mg等の黒鉛球状化元素を含有する場合には、黒鉛の分岐化が阻害されるとともに黒鉛量も減少して、かえって耐焼付き性、耐熱衝撃性が劣化する。
【0047】
本発明では、ロール外層材の製造方法は特に限定されないが、上記した組成の溶湯を、遠心鋳造法で所定の寸法形状のロール外層材とすることが製造コストの観点から好ましい。この場合、ロール外層材の凝固途中あるいは完全凝固後に、鋳型の回転を停止し内層材を静置鋳造して、複合ロールとすることが好ましい。これによりロール外層材の内面側が再溶解され外層と内層が溶着一体化した、複合ロールとなる。
【0048】
静置鋳造される内層は、鋳造性と機械的性質に優れた球状黒鉛鋳鉄やいも虫状黒鉛鋳鉄あるいは黒鉛鋼などを用いるのが好ましい。また、外層と内層の間に、黒鉛鋼や高炭素鋼からなる中間層を設けてもよい。遠心鋳造法でロールを製造する場合、中間層は、外層の遠心鋳造に引きつづいて、遠心鋳造すれば良い。
なお、以上の説明は、主として、鋼板の熱間圧延用ロールを対象に説明してきたが、本発明は、鋼板の熱間圧延用複合ロールに限定されることはなく、カリバー付き鋼管圧延用複合ロールに適用しても何ら問題ないことはいうまでもない。なお、鋼管圧延用のスリープ式ロールを製造する場合は、外層を遠心鋳造後、球状黒鉛鋳鉄や、高炭素鋼を内層材として、遠心鋳造すれば良い。
【0049】
【実施例】
(実施例1)
表1に示す組成を有する溶湯を溶解し、Ca−Siで接種した後、遠心鋳造法によりリング状試験材( 外径:250 mmφ、肉厚:80mm) を鋳造した。なお、鋳込み温度は1450℃、遠心力は、重力倍数で160 Gとした。鋳造後、試験材に400 〜500 ℃で焼戻し処理を施した。焼戻し後の硬さは、Hs77〜86であった。なお、Niグレン鋳鉄を従来例とした。
【0050】
これらリング状試験材から試験片を採取し、摩耗試験、焼付き試験、熱衝撃試験を行った。
(1)摩耗試験
リング状試験材から試験片(大きさ:60mmφ)を採取し、相手材(材質:S45C、大きさ:190 mmφ) と試験片の2円盤すべり摩耗方式で摩耗試験を実施した。試験片を回転数700rpmで回転させながら、相手材を800 ℃に加熱し、試験片を水冷し、試験片と相手材のすべり率を10%として、荷重100 kgf ( 980N) で圧接しながら150min間転動させた。試験後、試験片の摩耗減量(摩耗量)を測定した。さらに試験片表面の肌荒れ状況を目視で観察し、一部の肌荒れの大きな部分について試験片周辺方向に10mmの長さにわたり、 触針式粗さ計を用いてJIS B 0601−1994 の規定に準拠して粗さ曲線を求め、十点平均粗さRz を求めた。
(2) 焼付き試験
リング状試験材から試験片(25mm厚の板状) を採取し、図3に示す方式の試験機で焼付き試験を実施した。試験片(25mm厚板状) に、高周波加熱コイルにより、900 ℃に加熱されて150rpmで回転する円板状の相手材(材料:SUS410、大きさ:190 mmφ) を荷重100kgf( 980N )で10s間圧接した。試験後の試験片表面に相手材(金属)のへばり付きがある場合を「焼付き有り」(×)、へばり付きがなく表面が摩耗している場合を「焼付きなし」(○)として、耐焼付き性を評価した。
(3)熱衝撃試験
リング状試験材から25mm厚の板状試験片を採取し、円板状の相手材(材質:S45C、大きさ:190mm φ)を用いて、図3に示す構成の試験機で実施した。
【0051】
高周波加熱コイルにより820 ℃に加熱され、150rpmで回転する円板状の相手材(材質:S45C、大きさ:190mm φ)を25mm厚の板状試験片に荷重100kgfで10s 間圧接して、板状試験片を急加熱し、除荷と同時に水冷して板状試験片に熱衝撃を印加した。試験後、浸透探傷試験を実施し、現像液の滲みが多い2ヶ所で切断し断面を観察して亀裂の最大深さを測定し亀裂深さとして、耐熱衝撃性を評価した。
【0052】
得られた結果を表2に示す。
【0053】
【表1】

Figure 2004162104
【0054】
【表2】
Figure 2004162104
【0055】
本発明例は、いずれも耐摩耗性に優れ、かつ焼付きや肌荒れの発生がなく、また、亀裂深さも浅く、極めて優れた耐摩耗性、耐焼付き性、耐肌荒れ性および耐熱衝撃性を兼備したロール外層材となっている。
一方、本発明の範囲から外れる比較例は、耐摩耗性、耐肌荒れ性、耐焼付き性、および耐熱衝撃性の少なくとも1つ以上が著しく低下している。
【0056】
Nb含有量が本発明範囲を高く外れる比較例(リング材No. I)では、肌荒れが著しくなり、また亀裂深さが深く、耐肌荒れ性、 耐熱衝撃性が劣化している。また、Nb無添加、Al、Tiのいずれも含有しない比較例(リング材No. J)では、肌荒れが発生し、亀裂深さも深く、耐肌荒れ性、耐熱衝撃性が低下している。また、Mo、V含有量、(Cr+V)量が本発明範囲を高く外れ、Nb、Bを含有しない比較例(リング材No. K)では、著しい肌荒れ、焼付きが発生し、亀裂深さも深く、耐肌荒れ性、耐焼付き性、および耐熱衝撃性が低下している。V含有量が少なく、Wを含有する比較例(リング材No. L)では、摩耗量が増加し耐摩耗性が低下するとともに、肌荒れが発生し耐肌荒れ性が低下している。Wを含有し、Cr、Cr/C、(Cr+V)量が本発明範囲を高く外れる比較例(リング材No. M)では、著しい肌荒れ、焼付きが発生し、亀裂深さも深く、耐肌荒れ性、耐焼付き性、および耐熱衝撃性が低下している。Wを含有し、V含有量、(Cr+V)量が本発明範囲を低く外れ、B、Al、Tiのいずれも含有しない比較例(リング材No. N)では、摩耗量が増加し耐摩耗性が低下し、肌荒れが発生し、亀裂深さが深く、耐肌荒れ性、耐熱衝撃性が低下している。Mo含有量が本発明範囲より低く外れ、有効C量が本発明範囲から高く外れ、Al、Tiのいずれも含有しない比較例(リング材No. O)では、摩耗量が増加し耐摩耗性が低下し、肌荒れが発生し、亀裂深さが深く、耐肌荒れ性、耐熱衝撃性が低下している。なお、従来例(リング材No.NiG)は耐焼付き性、耐熱衝撃性に優れるが耐摩耗性が著しく劣っている。
(実施例2)
製品胴径685 mm、胴長2380mmの複合ロールを以下の手順で製造した。
【0057】
遠心力140 Gで回転する鋳型内に、外層として肉厚120mm になるように、外層材溶湯を鋳込んだ。外層が凝固した後に鋳型の回転を停止し、鋳型を立てて内層材( 球状黒鉛鋳鉄)を鋳造することで、外層−内層を一体化させ、外層の表面温度が80℃以下になるまで冷却した後、鋳型を解体し、外層−内層からなる複合ロールとした。
【0058】
得られた複合ロールは、400 〜500 ℃に30時間加熱したのち徐冷する熱処理(焼戻し処理)を実施し、外層の硬さを80〜83Hsとした。
熱処理後、ロール胴端部から外層の化学組成分析用試験材、組織観察用試験片を採取した。なお、内層についてはロール軸端の中心部から化学組成分析用試料を採取した。各複合ロールの外層、内層の化学組成を表3に示す。
【0059】
得られた複合ロールを、熱間仕上圧延ミルのF7スタンドの作業ロールとして投入し、炭素鋼100 本の試験圧延を実施した。なお、その中の1本で絞り圧延を再現し、焼付き状況を比較した。
【0060】
【表3】
Figure 2004162104
【0061】
本発明例(複合ロールNo.1)は、従来ロールであるNiG 鋳鉄ロールの約1.6 倍の極めて良好な耐摩耗性と耐肌荒れ性を有することが確認された。また、絞り圧延において焼付きは発生しなかった。
【0062】
【発明の効果】
本発明によれば、鋼板の熱間圧延の後段圧延スタンド用ロールとして、優れた耐摩耗性、耐焼付き性、耐肌荒れ性および耐熱衝撃性を兼備した複合ロールが安価に製造でき、産業上格段の効果を奏する。また、本発明の複合ロールは、鋼板の熱間圧延において絞り事故の多発する、後段圧延スタンド用ロールとして安定して使用できる。また、本発明の複合ロールは、優れた耐焼付き性、耐肌荒れ性および耐摩耗性が要求される鋼管圧延用ロールとしても適用できる。
【図面の簡単な説明】
【図1】(a)十点平均粗さ(Rz )と有効C量との関係、(b)亀裂深さと有効C量との関係を示すグラフである。
【図2】(a)摩耗量、十点平均粗さ(Rz )と(Cr+V)量の関係、(b)亀裂深さと(Cr+V)量の関係を示すグラフである。
【図3】焼付き試験の概要を示す概略説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite roll for hot rolling, and in particular, is excellent in abrasion resistance, seizure resistance, surface roughening resistance, and thermal shock resistance, and is suitable for a hot rolling finish mill or a seamless steel pipe forming. The present invention relates to a composite roll for cold rolling.
[0002]
[Prior art]
In recent years, the hot rolling technology of steel sheets and steel pipes has been remarkably advanced, and accordingly, there has been a strong demand for improving the properties of the hot rolling rolls used, particularly the wear resistance. In response to such demands for improved wear resistance, a high-performance roll (hereinafter referred to as HSS) having an outer layer composition similar to that of a high-speed tool steel and precipitating hard carbide to significantly improve wear resistance. System roll) has been developed and put into practical use.
[0003]
On the other hand, in rolling stands and mills in which the material to be rolled is subjected to drawing rolling accidents and seizure of the material to be rolled, hot rolling is performed by incorporating a Ni-grain cast iron roll containing graphite and having excellent seizure resistance. Have been. The inclusion of graphite in the hot-rolling roll is effective in preventing seizure because graphite is rich in lubricity. However, the conventional Ni-grain cast iron roll has a problem in that the wear resistance is inferior and the roll life is short. On the other hand, a high-speed steel roll excellent in wear resistance has a problem in terms of accident resistance, such as a coarse thermal shock crack being generated due to a drawing accident or seizure. For example, a high-speed steel roll cannot be used stably in a hot-rolling finishing post stand of a steel sheet having a high frequency of squeeze rolling accidents, and a large amount of Ni-glen cast iron rolls are still used.
[0004]
To solve such a problem, for example, Patent Document 1 proposes a roll for hot rolling in which 1.0 to 5.0% of V is added to Ni grain cast iron to improve wear resistance. I have. In addition, Patent Document 2 discloses that 2.0 to 8.0% of V is added to Ni grain cast iron, and 0.2 to 10% of MC type carbide appears in addition to 0.5 to 5% of graphite. Rolls for hot rolling have been proposed which improve wear resistance. Further, Patent Literature 3 includes 1.5 to 10% in total of 2 to 10% of Cr, 0.1 to 10% of W, and one or two of V and Nb, and contains graphite. A high-speed cast iron material having the same has been proposed.
[0005]
In addition, in the case of steel pipe rolling as well as in the case of steel plate rolling, there is a strong demand for improvements in seizure resistance and wear resistance to hot rolling rolls.
In recent years, in order to improve the quality and efficient production of rolled products, an increase in a rolling speed and an increase in a continuous rolling amount have been aimed at, and the use environment of hot rolling rolls has become increasingly severe. In addition, due to the high alloying of the material to be rolled and the strict requirements for the surface quality of the rolled product, there is a demand for a hot rolling work roll which is excellent in abrasion resistance and seizure resistance and also excellent in surface roughening resistance.
[0006]
For example, Patent Document 4 proposes a hot-rolling roll in which the contents of Nb and W are controlled to suppress gravitational segregation of carbides and to suppress occurrence of surface roughness. Patent Document 5 discloses a wear-resistant hot-rolling roll in which the total content of Cr, V, and Nb is limited to 3% or less, and 2% or more of graphite is crystallized to suppress the occurrence of surface roughness. Proposed.
[0007]
[Patent Document 1]
JP-A-1-287248
[Patent Document 2]
JP-A-6-335712
[Patent Document 3]
JP-A-6-256889
[Patent Document 4]
JP 2001-20335 A
[Patent Document 5]
JP 2001-181780 A
[0008]
[Problems to be solved by the invention]
However, the rolls for hot rolling manufactured by the techniques described in Patent Literatures 4 and 5 have low thermal shock resistance and exhibit the required abrasion resistance, seizure resistance, rough surface resistance and thermal shock resistance. It was impossible to be satisfied at the same time.
The present invention advantageously solves the above-mentioned problems of the prior art, and is excellent in both abrasion resistance, seizure resistance, surface roughening resistance, and thermal shock resistance, and is an outer layer material for hot rolling and a composite for hot rolling. The purpose is to propose a role.
[0009]
[Means for Solving the Problems]
The present inventors have intensively studied various factors affecting the abrasion resistance, seizure resistance, surface roughness resistance, and thermal shock resistance of a hot rolling roll in order to achieve the above object.
It has been well known that wear resistance is improved by adding a large amount of V, Nb, Mo, Cr and W, and that the wear resistance is improved in the order of V>Nb>Mo> Cr, W. Have been. However, according to the study of the present inventors, when Cr or W is increased for the purpose of improving the wear resistance, the surface roughness becomes more remarkable. If Cr and W are increased simultaneously with V (Nb), seizure resistance and thermal shock resistance deteriorate. This is probably because the eutectic carbide formed of Cr or W causes roughening or seizure or promotes the propagation of thermal shock cracks.
[0010]
As described above, Cr and W have a small effect of improving abrasion resistance as compared with V, Nb and Mo, and have a tendency to promote roughening, seizure and thermal shock cracking. Have found that it is preferable that the content of Cr should be minimized in a hot-rolling roll and that W should not be added. It is to be noted that the use of Cr in the minimum necessary content and no addition of W is effective for promoting graphitization, and contributes to the improvement of the surface roughness resistance and the seizure resistance.
[0011]
According to the study of the present inventors, V must be contained in an amount of 1.3% by mass or more in order to secure the minimum required wear resistance as a hot rolling roll. However, when V is contained in an amount of 1.3% by mass or more, coarse MC carbides are crystallized. The coarse MC carbide remains on the roll surface in a convex shape in hot rolling, and induces roughening of the surface. The present inventors have further studied a method for suppressing crystallization of coarse MC carbides and have found that it is preferable to add Nb simultaneously with V. Nb forms Nb carbides, and MC carbides are crystallized from the nuclei. Therefore, the coarsening of the MC carbide is suppressed to a certain level or less.
[0012]
In addition, the present inventors have conceived to reduce the effective C amount (= C- (0.24V + 0.13Nb)) as a method for reducing eutectic carbides in order to improve the surface roughness resistance. The remaining C amount (effective C amount) consumed for the formation of MC carbides by V and Nb contributes to the formation of eutectic carbides and graphite. If the effective C content is reduced, the amount of eutectic carbides is reduced, and it is considered that the rough surface resistance is improved. However, the graphite which is effective in seizure resistance and thermal shock resistance is also reduced.
[0013]
Therefore, the present inventors can satisfactorily adjust the effective C content to 2.0% or more and 3.0% or less to achieve excellent seizure resistance, rough surface resistance and thermal shock resistance. I thought.
According to the study of the present inventors, in addition to V and Nb, by strictly controlling the effective C amount and further containing Al or Ti, a generation nucleus of Nb carbide is formed. It has also been found that MC carbide grows with finely dispersed Nb carbide as a nucleus and that coarsening of MC carbide is further suppressed. However, it has also been found that, even when Nb, Al, and Ti are contained, V must be limited to 2.5% by mass or less in order to suppress skin roughness.
[0014]
In addition, the present inventors strictly adjusted the effective C amount in addition to V and Nb, and further contained B in addition to Al or Ti, thereby promoting the branching of graphite. It has also been found that thermal shock resistance is improved because cracks due to thermal shock are branched and dispersed along graphite.
Further, the present inventors have proposed to prevent an increase in the amount of eutectic carbide and a decrease in thermal shock resistance and seizure resistance due to a decrease in graphite, or to prevent seizure caused by concentration of Cr in a matrix or carbide. It was also found that it was necessary to adjust Cr / C to less than 1.0 in order to prevent the occurrence of cracks. It has also been found that in order to achieve both abrasion resistance and skin roughness resistance, it is necessary to adjust the total amount of Cr and V to a range of 3.0 to 4.5% by mass.
[0015]
First, the results of basic experiments performed by the present inventors will be described.
In mass%, 2.2 to 3.9% C-1.5 to 1.9% Si-0.5 to 0.6% Mn-4.3 to 4.4% Ni-1.7 to 1. 8% Cr-1.9 to 2.0% Mo-1.9 to 3.2% V-0.3 to 0.4% Nb-0.03 to 0.04% Ti-0.03 to 0. Effectively, a Y-type keel block having a thickness of 35 mm is prepared by melting a molten metal mainly containing C and V containing 04% B and the balance of Fe, and tempering at 400 to 500 ° C. The test material was changed in the amount of C.
[0016]
Test specimens were collected from these test materials and subjected to seizure tests, wear tests, and thermal shock tests. Further, in mass%, 3.1 to 3.4% C-1.6 to 1.8% Si-0.5 to 0.6% Mn-4.4% Ni-1.8% Cr-1. 9 to 2.0% Mo-1.9 to 2.0% V-0.3% Nb, or 0.03% of B, and the remaining Fe melt (effective C content: 2.8) , 2.6, 2.9) were melted and similarly used as test materials, and a test was performed.
[0017]
As shown in Fig. 3, the seizure test was performed by heating a high frequency heating coil to 900 ° C and rotating at 150 rpm to a disk-shaped counterpart material (material: SUS410, size: 190mmφ) with a 25mm thickness plate test. The piece was pressed for 10 s under a load of 100 kgf. After the test, the surface of the plate-shaped test piece was observed, and the case where seizure (sticking) of the mating material was observed on the surface was regarded as seizure, and the mating material was worn without seizing (sticking). In the case, there was no seizure.
[0018]
The abrasion test was performed by a two-disc sliding wear method of a mating material (material: S45C, size: 190 mmφ) and a test piece (size: 60 mmφ). The mating member was heated to 800 ° C. while rotating at a rotation speed of 700 rpm, and rolled for a total of 240 minutes while being pressed against a test piece and a mating member at a slip rate of 10% under a load of 100 kg. The amount of water was adjusted such that the surface temperature of the test piece (test surface) was 420 ° C. while cooling the test piece with water.
[0019]
After the test, the abrasion loss (abrasion amount) of the test piece was measured. Further, the surface roughness of the test piece surface is visually observed, and a large portion of the rough surface is measured for a length of 10 mm in the peripheral direction of the test piece using a stylus type roughness meter in accordance with JIS B 0601-1994. A roughness curve was determined, and a ten-point average roughness Rz was determined.
In the thermal shock test, a disk-shaped counterpart material (material: S45C, size: 190 mmφ) heated to 820 ° C. by a high-frequency heating coil and rotated at 150 rpm was applied to a 25 mm-thick plate-shaped test piece at 100 kgf for 10 s. The plate-shaped test piece was rapidly heated by being press-contacted, and was cooled with water simultaneously with unloading, and a thermal shock was applied to the plate-shaped test piece. After the test, it was cut at two locations where a large crack in the opening was present, and the cross section was observed to measure the maximum crack depth.
[0020]
FIG. 1 shows the obtained results in relation to the effective C amount: {C− (0.24 V + 0.13 Nb)}. In addition, Cr, C, V, and Nb are contents (mass%) of each element.
From FIG. 1A, it can be seen that when the effective C amount exceeds 3.0%, the roughness (Rz: μm) significantly increases, and significant skin roughness occurs. If the effective C amount is less than 2.0%, seizure occurs. That is, by limiting the effective C amount to 2.0 to 3.0%, a roll for hot rolling having both seizure resistance and surface roughness resistance can be obtained.
[0021]
In addition, from FIG. 1 (a), even within the range of the effective C amount, when the V amount becomes higher than 3.1 mass%, 3.2 mass%, and 3.0 mass% (marked with □), it becomes remarkable. It can be seen that rough skin occurs. Also, even within the range of the effective C amount, when neither Al nor Ti is contained, remarkable skin roughness occurs. In addition, when B is not included (marked with “△”), image sticking also occurs.
[0022]
FIG. 1B shows that when the effective C amount is out of the range of 2.0 to 3.0%, the thermal crack depth becomes extremely deep, and the thermal shock resistance deteriorates. Further, even when the effective C content is in the range of 2.0 to 3.0%, when the V content exceeds 3.0% by mass or less than 2.0% by mass, the thermal crack depth is remarkable. Has increased. Further, even within the range of the effective C amount, when neither Al nor Ti is contained, or further when Al, Ti and B are not contained (marked by Δ), the thermal crack depth is remarkably increased.
[0023]
As described above, even when the effective C amount is within the predetermined range, the rough skin resistance may deteriorate, and the present inventors have further studied. In order to obtain a hot-rolling work roll having excellent wear resistance, excellent surface roughness resistance, excellent seizure resistance and excellent thermal shock resistance, the effective carbon content is 2.0 to 3.0%. It has been found that after adjusting to the range, the total content of Cr and V (Cr + V) must be further adjusted within the range of 3.0 to 4.5% by mass. Cr forms a hard eutectic carbide to improve wear resistance, but as the Cr content increases, the eutectic carbide increases, and the surface roughness resistance and thermal shock resistance deteriorate. Further, V is extremely useful for improving the wear resistance, but when the amount of V is increased, the MC carbides become coarse and the skin becomes rough. Therefore, it is effective to balance the amount of Cr and the amount of V within a suitable range in order to achieve both surface roughness resistance, thermal shock resistance, and wear resistance.
[0024]
Next, basic experimental results for obtaining such knowledge will be described.
In mass%, 3.1 to 3.4% C-1.5 to 1.8% Si-0.4 to 0.5% Mn-4.6 to 4.8% Ni-1.6 to 3. 1% Cr-2.0 to 2.4% Mo-1.2 to 3.9% V-0.3 to 0.4% Nb-0.05 to 0.09% Al-0.05 to 0. A molten metal containing 06% B-remaining Fe and having mainly changed Cr and V contents was melted to produce a Y-type keel block having a thickness of 35 mm. Then, these keel blocks were tempered at 400 to 500 ° C. to obtain test materials. In addition, the effective C amount of the test material was 2.21 to 2.95%. Specimens were collected from these test materials and subjected to a wear test and a thermal shock test.
[0025]
The wear test was carried out by a two-disc sliding wear method of a mating material (material: S45C, size: 190 mmφ) and a test piece (size: 60 mmφ). The mating member was heated to 800 ° C. while rotating at a rotation speed of 700 rpm, and rolled for a total of 240 minutes while being pressed against a test piece and a mating member with a load of 100 kgf with a slip ratio of 10%. The amount of water was adjusted such that the surface temperature of the test piece (test surface) was 420 ° C. while cooling the test piece with water.
[0026]
After the test, the abrasion loss (abrasion amount) of the test piece was measured. Further, the surface roughness of the test piece surface is visually observed, and a large portion of the rough surface is measured for a length of 10 mm in the peripheral direction of the test piece using a stylus type roughness meter in accordance with JIS B 0601-1994. A roughness curve was determined, and a ten-point average roughness Rz was determined.
In the thermal shock test, a disk-shaped counterpart material (material: S45C, size: 190 mmφ) heated to 820 ° C. by a high-frequency heating coil and rotated at 150 rpm was applied to a 25 mm-thick plate-shaped test piece under a load of 100 kgf. The plate-shaped test piece was rapidly heated for 10 s, rapidly heated, cooled with water simultaneously with unloading, and a thermal shock was applied to the plate-shaped test piece. After the test, it was cut at two positions where a large crack having an opening was present, and the cross section was observed to measure the maximum crack depth.
[0027]
FIG. 2 shows the obtained results in relation to (Cr + V). Note that Cr and V are the contents (% by mass) of the respective elements.
From FIG. 2A, it can be seen that when (Cr + V) is less than 3.0, the amount of wear increases and the wear resistance decreases. When (Cr + V) exceeds 4.5, the surface roughness (Rz) increases, and the surface roughness resistance deteriorates. FIG. 2B shows that when (Cr + V) exceeds 4.5, the crack depth due to thermal shock increases, and the thermal shock resistance deteriorates. From the above, the present inventors set the total of the Cr content and the V content (Cr + V) to 3.0 to 4.0 in order to improve both the wear resistance, the rough surface resistance, and the thermal shock resistance. 5 was found to be necessary. It should be noted that when neither Al nor Ti is contained, rough surface occurs, the thermal crack depth is large, and both the rough surface resistance and the thermal shock resistance are deteriorated.
[0028]
The present invention has been completed based on the above findings, with further investigations.
That is, the present invention relates to a roll outer layer material used for an outer layer of a composite roll for hot rolling, in which, by mass%, C: 2.6 to 3.5%, Si: 1.0 to 2.5%, Mn: 0.2-1.5%, Cr: 0.8-2.7%, Mo: 1.0-3.0%, Ni: 2.0-7.0%, V: 1.3- 2.5%, Nb: 0.1 to 0.8%, B: 0.020 to 0.2%, and the contents of C, Cr, Nb and V are expressed by the following formulas (1) to (3).
2.0 ≦ C− (0.24 × V + 0.13 × Nb) ≦ 3.0 (1)
Cr / C <1.0 (2)
3.0 ≦ Cr + V ≦ 4.5 (3)
(Here, C, V, Nb, Cr: Content of each element (% by mass))
And a composition comprising one or two selected from Ti: less than 0.05% and Al: 0.1% or less, with the balance being Fe and unavoidable impurities. It is a roll outer layer material for hot rolling. In the present invention, in addition to the above composition, it is preferable to further contain Co: 0.1 to 4.0% by mass%.
[0029]
Further, the present invention is a composite roll for hot rolling, in which an outer layer and an inner layer are welded and integrated, wherein the outer layer is, by mass%, C: 2.6 to 3.5%, and Si: 1.0 to 1.0%. 2.5%, Mn: 0.2 to 1.5%, Cr: 0.8 to 2.7%, Mo: 1.0 to 3.0%, Ni: 2.0 to 7.0%, V 1.3 to 2.5%, Nb: 0.1 to 0.8%, B: 0.020 to 0.2%, and the contents of C, Cr, Nb, and V are the above (1) to It satisfies the formula (3), and further contains one or two selected from Ti: less than 0.05% and Al: 0.1% or less, and has a composition consisting of the balance of Fe and unavoidable impurities. In the present invention, the outer layer further contains Co: 0.1 to 4.0% by mass in addition to the composition. It is preferred.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reasons for limiting the composition of the outer layer (outer layer material) of the composite roll for hot rolling of the present invention will be described. In addition, the mass% in the composition is simply described as%.
C: 2.6 to 3.5%
C combines with V, Nb, Cr, and Mo and is an element essential for forming a hard carbide for improving the abrasion resistance of the roll, and secures crystallization of graphite, seizure resistance, and thermal shock resistance. In the present invention, the content is required to be 2.6% or more. On the other hand, when the content exceeds 3.5%, a large amount of eutectic carbides appears, and the MC type carbides become coarse and the surface roughening resistance decreases. For this reason, C was limited to the range of 2.6 to 3.5%. In addition, preferably, it is 2.8 to 3.3%.
[0031]
Si: 1.0 to 2.5%
Si is an element that acts as a deoxidizing agent, increases the activity of C, and facilitates crystallization of graphite. In the present invention, Si needs to be contained in an amount of 1.0% or more. On the other hand, if the content exceeds 2.5%, coarsening of graphite and coarsening of the structure occurs, and the surface roughening resistance and abrasion resistance of the roll are significantly reduced. For these reasons, Si is limited to the range of 1.0 to 2.5%.
[0032]
Mn: 0.2-1.5%
Mn is effective for fixing S in molten steel as MnS 2 and harmless and stabilizing S, which inhibits wear resistance. In addition, there is also an effect of improving hardenability and increasing hardness. In order to obtain such an effect, the content of 0.2% or more is required. However, if the content exceeds 1.5%, segregation occurs at the solidification interface and the material becomes brittle. For this reason, Mn was contained in the range of 0.2 to 1.5%. Incidentally, the content is preferably 0.3 to 1.0%.
[0033]
Cr: 0.8 to 2.7%
Cr is an element that increases the amount of eutectic carbide and hardens it, and has the effect of suppressing carbide breakage during roll rolling and improving wear resistance when contained together with Mo. In order to obtain such an effect, a content of 0.8% or more is required. On the other hand, when the content exceeds 2.7%, eutectic carbides increase and the surface roughening resistance decreases, and the amount of graphite decreases, and seizure resistance and thermal shock resistance also decrease. For this reason, Cr was limited to 0.8 to 2.7%.
[0034]
Mo: 1.0 to 3.0%
Mo has the effect of strengthening carbides and matrix without excessively increasing the amount of eutectic carbides, and has the effect of improving wear resistance while maintaining excellent surface roughness resistance. In particular, by containing Nb in combination, the hard MC type carbide is strengthened and has an important effect of remarkably improving the abrasion resistance. % Or more is required. On the other hand, when the content exceeds 3.0%, a large amount of hard and brittle carbide mainly composed of Mo is formed, and the surface roughness resistance and the thermal shock resistance are deteriorated. For this reason, Mo was limited to 1.0 to 3.0%. In addition, preferably, it is 1.2 to 2.7%.
[0035]
Ni: 2.0 to 7.0%
Ni has the effect of improving the hardenability, increasing the hardness of the material, and improving the wear resistance. Ni also has the effect of promoting crystallization of graphite. Such an effect is observed at a content of 2.0% or more. However, when the content exceeds 7.0%, austenite is remarkably stabilized, the amount of retained austenite increases, and the seizure resistance decreases. For this reason, Ni is limited to the range of 2.0 to 7.0%. In addition, it is preferably 3.0 to 6.0%.
[0036]
V: 1.3 to 2.5%
V is an element that forms a hard MC-type carbide and has an effect of improving wear resistance. In the present invention, in order to obtain a certain level or more of abrasion resistance, the content of 1.3% or more is required. On the other hand, if it exceeds 2.5%, MC type carbides become coarse and rough skin occurs. Further, there are also adverse effects such as the occurrence of seizure and deterioration of thermal shock resistance. For this reason, V was limited to the range of 1.3 to 2.5%.
[0037]
Nb: 0.1 to 0.8%
Nb is an element having a function of strengthening the carbide by forming a solid solution in the MC-type carbide. In particular, when Nb is contained in combination with a predetermined range of Cr, Mo, and V, the carbide is significantly strengthened and the wear resistance is improved. Has an important effect of improving significantly. In addition, when only V is contained, the MC type carbide grows in a feather shape, the structure becomes coarse, and the rough surface of the roll is induced. However, by containing Nb and V in combination, the MC type carbide becomes feathered. By adding Ti and / or Al in combination, oxides, nitrides, carbides, etc. of Ti and / or Al become crystallization nuclei of NbC 2 and finely disperse NbC 2. Next, there is also an effect that MC-type carbides are finely dispersed with NbC 2 as a nucleus, thereby suppressing roughening of the skin. In order to obtain such an effect, the content needs to be 0.1% or more. If Nb is less than 0.1%, segregation and coarsening of MC type carbide occur. On the other hand, when the content exceeds 0.8%, the MC-type carbide coarsens into a dendrite shape, so that the skin becomes rougher. Further, when manufactured by a centrifugal casting method, segregation of MC type carbide occurs. For these reasons, Nb is limited to the range of 0.1 to 0.8%. In addition, from the viewpoint of MC type carbide coarsening, Nb is preferably set to 0.1 to 0.5%.
[0038]
B: 0.020 to 0.2%
B has the effect of finely dispersing graphite and has the effect of improving seizure resistance and thermal shock resistance. Such an effect is recognized at a content of 0.020% or more in the coexistence of Al and / or Ti. However, when the content exceeds 0.2%, carbides become brittle, wear resistance is reduced, and graphite is reduced. The amount also decreases. For this reason, B was limited to the range of 0.020 to 0.2%. In addition, it is preferably 0.02 to 0.10%.
[0039]
One or two selected from Ti: less than 0.05% and Al: 0.1% or less
Both Ti and Al have the important effects of promoting graphitization, promoting the formation of the graphite into a branched shape, and improving seizure resistance and thermal shock resistance. In addition, it has an effect of finely dispersing MC carbides by being a core of Nb carbides. Such an effect is remarkably recognized when the content of Ti is 0.005% or more and the content of Al is 0.003% or more. On the other hand, when Ti is contained in an amount of 0.05% or more, fine MC-type carbides are densely formed, and a large rough surface is generated at the portion. Further, when Al is contained in excess of 0.1%, the fluidity of the molten metal is reduced and casting defects are liable to occur. For this reason, Ti was limited to less than 0.05% and Al was limited to 0.1% or less. When neither Al nor Ti is contained, seizure resistance and thermal shock resistance are remarkably deteriorated, and at the same time, MC type carbides are coarsened and remarkable surface roughness occurs. In addition, it is preferable to set Ti to 0.01 to 0.04%. Moreover, it is preferable that Al is 0.01 to 0.07%.
[0040]
Further, in the present invention, after being within the above component range, the following formulas (1) to (3) are further obtained.
2.0 ≦ C− (0.24 × V + 0.13 × Nb) ≦ 3.0 (1)
Cr / C <1.0 (2)
3.0 ≦ Cr + V ≦ 4.5 (3)
(Here, C, V, Nb, Cr: Content of each element (% by mass))
It is important to adjust the content of each component so as to satisfy the following. As a result, a roll outer layer (outer layer material) for hot rolling work having excellent wear resistance, surface roughness resistance, seizure resistance and thermal shock resistance is obtained.
[0041]
2.0 ≦ C− (0.24V + 0.13Nb) ≦ 3.0% (1)
When the effective C amount is less than 2.0, the amount of graphite is remarkably reduced, and the seizure resistance and the thermal shock resistance are deteriorated. On the other hand, if the effective C content exceeds 3.0%, the eutectic carbides excessively increase, causing significant surface roughness, deteriorating the surface roughness resistance, and deteriorating the thermal shock resistance. For this reason, the effective C amount was limited to 2.0 or more and 3.0 or less. When the V content exceeds 2.1%, the effective C content is preferably set to 2.2 to 2.9.
[0042]
Note that (0.24V + 0.13Nb) means the amount of C consumed by the V and Nb to form the MC type carbide, and {C- (0.24V + 0.13Nb)} means improvement in seizure resistance and heat resistance. This is a value indicating the amount of C remaining which contributes to the production of graphite which is advantageous for improving impact resistance and eutectic carbide which affects abrasion resistance and surface roughness resistance.
Cr / C <1.0 (2)
When Cr / C is 1.0 or more, that is, when the Cr content is not less than the C content, eutectic carbides are excessively generated, the amount of graphite is significantly reduced, and seizure is likely to occur. The thermal shock resistance also deteriorates significantly. Therefore, in the present invention, Cr / C is limited to less than 1.0.
[0043]
3.0 ≦ Cr + V ≦ 4.5 (3)
Cr and V are elements that greatly affect the rough surface resistance, the thermal shock resistance, and the wear resistance. In the present invention, (Cr + V) is adjusted so as to satisfy the expression (3). If (Cr + V) is less than 3.0, the amount of wear increases significantly and the wear resistance decreases. On the other hand, when it exceeds 4.5, the surface roughness becomes remarkably large and the thermal shock resistance is deteriorated. For this reason, in the present invention, (Cr + V) is limited to the range of 3.0 to 4.5. In addition, when importance is attached to the rough surface resistance and thermal shock resistance, it is preferable that Cr + V has a composition close to 3.0, and when importance is attached to the wear resistance, it is preferable that Cr + V has a composition close to 4.5.
[0044]
By adjusting the composition so as to satisfy the above-mentioned component ranges and all of the above formulas (1), (2) and (3), the wear resistance, the seizure resistance, the rough surface resistance and the thermal shock resistance can be simultaneously achieved. Can be improved.
The roll outer layer material (outer layer) of the present invention may further contain Co: 0.1 to 4.0% in addition to the above composition.
[0045]
Co: 0.1 to 4.0%
Co is distributed to the matrix, has an effect of increasing the solid solution amount of the alloy element in the matrix, strengthening the matrix, and suppressing the generation of coarse drawing cracks, and can be contained as necessary. In order to obtain such an effect, the content is preferably 0.1% or more. On the other hand, if the content exceeds 4.0%, the effect is saturated, an effect corresponding to the content cannot be expected, and it is economically disadvantageous because it is an expensive element. Therefore, it is preferable that Co is limited to the range of 0.1 to 4.0%.
[0046]
By adjusting the composition in the above-described range, a roll outer layer material (outer layer) having excellent wear resistance, surface roughness resistance, seizure resistance and thermal shock resistance can be obtained. In order to further improve seizure resistance and thermal shock resistance within the above composition range, it is preferable to generate more graphite. It is preferable to inoculate Si with a Si inoculant such as Fe-Si or Ca-Si. The amount of Si added by inoculation is preferably 0.5 to 1.0% by mass. When the Si inoculant contains a graphite spheroidizing element such as REM or Mg, the branching of graphite is inhibited and the amount of graphite is reduced, resulting in deterioration of seizure resistance and thermal shock resistance.
[0047]
In the present invention, the method for producing the roll outer layer material is not particularly limited, but it is preferable from the viewpoint of the production cost that the molten metal having the above-described composition be formed into a roll outer layer material having a predetermined shape by centrifugal casting. In this case, it is preferable that the rotation of the mold is stopped and the inner layer material is statically cast during or after solidification of the outer layer material of the roll to form a composite roll. As a result, the inner surface side of the roll outer layer material is redissolved and the outer layer and the inner layer are welded and integrated to form a composite roll.
[0048]
The inner layer to be subjected to stationary casting is preferably made of spheroidal graphite cast iron, worm-like graphite cast iron or graphite steel having excellent castability and mechanical properties. Further, an intermediate layer made of graphite steel or high carbon steel may be provided between the outer layer and the inner layer. When the roll is manufactured by the centrifugal casting method, the intermediate layer may be subjected to the centrifugal casting following the centrifugal casting of the outer layer.
Although the above description has been mainly directed to hot rolls for steel sheets, the present invention is not limited to composite rolls for hot rolling steel sheets, It goes without saying that there is no problem if applied to a role. In the case of manufacturing a sleep type roll for rolling a steel pipe, the outer layer may be subjected to centrifugal casting, followed by centrifugal casting using spheroidal graphite cast iron or high carbon steel as an inner layer material.
[0049]
【Example】
(Example 1)
After melting the molten metal having the composition shown in Table 1 and inoculating it with Ca-Si, a ring-shaped test material (outer diameter: 250 mmφ, wall thickness: 80 mm) was cast by a centrifugal casting method. The casting temperature was 1450 ° C., and the centrifugal force was 160 G as a multiple of gravity. After casting, the test material was tempered at 400 to 500 ° C. The hardness after tempering was Hs 77 to 86. In addition, Ni grain cast iron was used as a conventional example.
[0050]
Test specimens were collected from these ring-shaped test materials, and were subjected to a wear test, a seizure test, and a thermal shock test.
(1) Wear test
A test piece (size: 60 mmφ) was sampled from the ring-shaped test material, and an abrasion test was performed on the mating material (material: S45C, size: 190 mmφ) using a two-disk sliding wear method. While rotating the test piece at 700 rpm, the counterpart material is heated to 800 ° C., the test piece is water-cooled, the slip ratio of the test piece and the counterpart material is set to 10%, and the test piece is pressed for 150 min under a load of 100 kgf (980 N). Rolled for a while. After the test, the abrasion loss (abrasion amount) of the test piece was measured. Further, the surface roughness of the test piece surface is visually observed, and a part of the large surface roughness over a length of 10 mm in the peripheral direction of the test piece is used in accordance with JIS B 0601-1994 using a stylus type roughness meter. Then, a roughness curve was determined, and a ten-point average roughness Rz was determined.
(2) Seizure test
A test piece (plate having a thickness of 25 mm) was sampled from the ring-shaped test material, and a seizure test was performed using a tester having a method shown in FIG. A test piece (25 mm thick plate) was heated to 900 ° C. by a high-frequency heating coil and rotated at 150 rpm for 10 seconds with a disk-shaped mating member (material: SUS410, size: 190 mmφ) under a load of 100 kgf (980 N). We pressed for a while. If the mating material (metal) has burrs on the surface of the test piece after the test, "seizure"(x); if there is no burrs and the surface is worn, "no seizure" (o) The seizure resistance was evaluated.
(3) Thermal shock test
A 25 mm-thick plate-shaped test piece was sampled from the ring-shaped test material, and a disk-shaped counterpart material (material: S45C, size: 190 mmφ) was used in a tester having the configuration shown in FIG.
[0051]
A disk-shaped mating member (material: S45C, size: 190 mmφ) heated to 820 ° C. by a high-frequency heating coil and rotated at 150 rpm is pressed against a 25-mm-thick plate-shaped test specimen under a load of 100 kgf for 10 s. The plate-shaped test piece was rapidly heated, cooled with water simultaneously with unloading, and a thermal shock was applied to the plate-shaped test piece. After the test, a penetrant test was carried out. The test piece was cut at two places where the developer had a large amount of bleeding, the cross section was observed, the maximum depth of the crack was measured, and the thermal shock resistance was evaluated as the crack depth.
[0052]
Table 2 shows the obtained results.
[0053]
[Table 1]
Figure 2004162104
[0054]
[Table 2]
Figure 2004162104
[0055]
All of the examples of the present invention are excellent in abrasion resistance, have no occurrence of seizure and rough surface, and have a shallow crack depth, and have extremely excellent abrasion resistance, seizure resistance, rough surface resistance and thermal shock resistance. Roll outer layer material.
On the other hand, in Comparative Examples outside the scope of the present invention, at least one or more of abrasion resistance, surface roughness resistance, seizure resistance, and thermal shock resistance are significantly reduced.
[0056]
In the comparative example (ring material No. I) in which the Nb content is outside the range of the present invention, the surface roughness is remarkable, the crack depth is deep, the surface roughness resistance and the thermal shock resistance are deteriorated. Moreover, in the comparative example (ring material No. J) which does not contain Nb and does not contain any of Al and Ti, surface roughening occurs, the crack depth is deep, and the surface roughening resistance and the thermal shock resistance are reduced. In addition, the Mo, V content and (Cr + V) content deviated from the range of the present invention to a high degree, and in the comparative example (ring material No. K) containing no Nb and B, remarkable roughening and seizure occurred, and the crack depth was deep. , Rough surface resistance, seizure resistance, and thermal shock resistance are reduced. In the comparative example (ring material No. L) having a low V content and containing W, the wear amount is increased and the wear resistance is reduced, and the surface roughness is generated and the skin roughness resistance is reduced. In a comparative example (ring material No. M) containing W and having a Cr, Cr / C, and (Cr + V) amount outside the range of the present invention, remarkable surface roughness and seizure occur, crack depth is large, and surface roughness resistance is high. , Seizure resistance and thermal shock resistance are reduced. In the comparative example (ring material No. N) containing W, the V content and the (Cr + V) content deviating from the range of the present invention, and containing neither B, Al nor Ti, the wear amount increases and the wear resistance is increased. And the surface roughness is reduced, the crack depth is deep, and the surface roughness resistance and thermal shock resistance are reduced. In the comparative example (ring material No. O) in which the Mo content is lower than the range of the present invention, the effective C content is higher than the range of the present invention, and neither Al nor Ti is contained, the wear amount is increased and the wear resistance is increased. The surface roughness is reduced, the surface is roughened, the crack depth is deep, and the surface roughness resistance and thermal shock resistance are reduced. The conventional example (ring material No. NiG) is excellent in seizure resistance and thermal shock resistance, but is extremely inferior in wear resistance.
(Example 2)
A composite roll having a product body diameter of 685 mm and a body length of 2380 mm was manufactured by the following procedure.
[0057]
An outer layer material melt was cast into a mold rotating at a centrifugal force of 140 G so that the outer layer had a thickness of 120 mm. After the outer layer was solidified, the rotation of the mold was stopped, the mold was erected and the inner layer material (spheroidal graphite cast iron) was cast, thereby integrating the outer layer and the inner layer, and cooling until the surface temperature of the outer layer became 80 ° C. or less. Thereafter, the mold was disassembled to obtain a composite roll composed of an outer layer and an inner layer.
[0058]
The obtained composite roll was subjected to a heat treatment (tempering treatment) in which the composite roll was heated to 400 to 500 ° C. for 30 hours and then gradually cooled, and the hardness of the outer layer was set to 80 to 83 Hs.
After the heat treatment, a test material for chemical composition analysis of the outer layer and a test piece for structure observation were collected from the end of the roll body. For the inner layer, a sample for chemical composition analysis was collected from the center of the roll shaft end. Table 3 shows the chemical composition of the outer layer and inner layer of each composite roll.
[0059]
The obtained composite roll was thrown in as a work roll of an F7 stand of a hot finish rolling mill, and 100 carbon steels were subjected to test rolling. In addition, reduction rolling was reproduced by one of them, and the state of seizure was compared.
[0060]
[Table 3]
Figure 2004162104
[0061]
It was confirmed that the present invention example (composite roll No. 1) had extremely good abrasion resistance and rough surface resistance about 1.6 times that of the conventional NiG cast iron roll. Further, no seizure occurred in the reduction rolling.
[0062]
【The invention's effect】
According to the present invention, a composite roll having both excellent wear resistance, seizure resistance, surface roughness resistance and thermal shock resistance can be manufactured at low cost as a roll for a subsequent rolling stand for hot rolling of a steel sheet. Has the effect of Further, the composite roll of the present invention can be used stably as a roll for a post-rolling stand, in which frequent drawing accidents occur during hot rolling of a steel sheet. Further, the composite roll of the present invention can also be applied as a roll for rolling a steel pipe, which is required to have excellent seizure resistance, surface roughening resistance and wear resistance.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between (a) a ten-point average roughness (Rz) and an effective C amount, and (b) a relationship between a crack depth and an effective C amount.
FIG. 2 is a graph showing (a) the relationship between the amount of wear, ten-point average roughness (Rz) and the amount of (Cr + V), and (b) the relationship between the crack depth and the amount of (Cr + V).
FIG. 3 is a schematic explanatory view showing an outline of a seizure test.

Claims (4)

熱間圧延用複合ロールの外層に用いられるロール外層材であって、質量%で、
C:2.6 〜3.5 %、 Si:1.0 〜2.5 %、
Mn:0.2 〜1.5 %、 Cr:0.8 〜2.7 %、
Mo:1.0 〜3.0 %、 Ni:2.0 〜7.0 %、
V:1.3 〜2.5 %、 Nb:0.1 〜0.8 %、
B:0.020 〜0.2 %
を含み、かつC、Cr、Nb、V含有量が下記(1)〜(3)式を満足し、さらに、Ti:0.05%未満、Al:0.1 %以下のうちから選ばれた1種または2種を含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とする熱間圧延用ロール外層材。

2.0 ≦ C−(0.24 ×V+0.13×Nb) ≦ 3.0 ・・・(1)
Cr/C <1.0 ・・・(2)
3.0 ≦ Cr+V ≦4.5 ・・・(3)
ここで、C、V、Nb、Cr:各元素の含有量(質量%)
It is a roll outer layer material used for the outer layer of the composite roll for hot rolling.
C: 2.6 to 3.5%, Si: 1.0 to 2.5%,
Mn: 0.2 to 1.5%, Cr: 0.8 to 2.7%,
Mo: 1.0 to 3.0%, Ni: 2.0 to 7.0%,
V: 1.3 to 2.5%, Nb: 0.1 to 0.8%,
B: 0.020 to 0.2%
And the contents of C, Cr, Nb and V satisfy the following formulas (1) to (3), and are selected from Ti: less than 0.05% and Al: 0.1% or less. An outer layer material for a roll for hot rolling, characterized in that it contains one or two kinds and has a composition consisting of a balance of Fe and unavoidable impurities.
2.0 ≦ C− (0.24 × V + 0.13 × Nb) ≦ 3.0 (1)
Cr / C <1.0 (2)
3.0 ≦ Cr + V ≦ 4.5 (3)
Here, C, V, Nb, Cr: content of each element (% by mass)
前記組成に加えてさらに、質量%で、Co:0.1 〜4.0 %を含むことを特徴とする請求項1に記載の熱間圧延用ロール外層材。The roll outer layer material for hot rolling according to claim 1, further comprising Co: 0.1 to 4.0% by mass in addition to the composition. 外層と内層が溶着一体化してなる熱間圧延用複合ロールであって、前記外層が、質量%で、
C:2.6 〜3.5 %、 Si:1.0 〜2.5 %、
Mn:0.2 〜1.5 %、 Cr:0.8 〜2.7 %、
Mo:1.0 〜3.0 %、 Ni:2.0 〜7.0 %、
V:1.3 〜2.5 %、 Nb:0.1 〜0.8 %、
B:0.020 〜0.2 %
を含み、かつC、Cr、Nb、V含有量が下記(1)〜(3)式を満足し、さらに、Ti:0.05%未満、Al:0.1 %以下のうちから選ばれた1種または2種を含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とする熱間圧延用複合ロール。

2.0 ≦ C−(0.24 ×V+0.13×Nb) ≦ 3.0 ・・・(1)
Cr/C <1.0 ・・・(2)
3.0 ≦ Cr+V ≦4.5 ・・・(3)
ここで、C、V、Nb、Cr:各元素の含有量(質量%)
A composite roll for hot rolling in which an outer layer and an inner layer are welded and integrated, wherein the outer layer is, by mass%,
C: 2.6 to 3.5%, Si: 1.0 to 2.5%,
Mn: 0.2 to 1.5%, Cr: 0.8 to 2.7%,
Mo: 1.0 to 3.0%, Ni: 2.0 to 7.0%,
V: 1.3 to 2.5%, Nb: 0.1 to 0.8%,
B: 0.020 to 0.2%
And the contents of C, Cr, Nb and V satisfy the following formulas (1) to (3), and are selected from Ti: less than 0.05% and Al: 0.1% or less. A composite roll for hot rolling, characterized in that it contains one or two kinds and has a composition consisting of a balance of Fe and unavoidable impurities.
2.0 ≦ C− (0.24 × V + 0.13 × Nb) ≦ 3.0 (1)
Cr / C <1.0 (2)
3.0 ≦ Cr + V ≦ 4.5 (3)
Here, C, V, Nb, Cr: content of each element (% by mass)
前記外層が、前記組成に加えて、さらに質量%で、Co:0.1 〜4.0 %を含むことを特徴とする請求項3に記載の熱間圧延用複合ロール。The composite roll for hot rolling according to claim 3, wherein the outer layer further contains Co: 0.1 to 4.0% by mass in addition to the composition.
JP2002328145A 2002-11-12 2002-11-12 Hot roll outer layer material and hot roll composite roll Expired - Lifetime JP4123903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328145A JP4123903B2 (en) 2002-11-12 2002-11-12 Hot roll outer layer material and hot roll composite roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328145A JP4123903B2 (en) 2002-11-12 2002-11-12 Hot roll outer layer material and hot roll composite roll

Publications (2)

Publication Number Publication Date
JP2004162104A true JP2004162104A (en) 2004-06-10
JP4123903B2 JP4123903B2 (en) 2008-07-23

Family

ID=32806524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328145A Expired - Lifetime JP4123903B2 (en) 2002-11-12 2002-11-12 Hot roll outer layer material and hot roll composite roll

Country Status (1)

Country Link
JP (1) JP4123903B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077377A1 (en) 2011-11-21 2013-05-30 日立金属株式会社 Centrifugally cast composite rolling mill roll and manufacturing method therefor
WO2014041778A1 (en) 2012-09-13 2014-03-20 Jfeスチール株式会社 Outer-layer material for hot-rolling roll, and hot-rolling composite roll
EP2740552A1 (en) * 2012-04-02 2014-06-11 Hitachi Metals, Ltd. Centrifugally cast composite roller and method for manufacturing same
EP2902124A4 (en) * 2013-05-02 2015-12-23 Hitachi Metals Ltd Hot-rolling composite roll produced by cetrifugal casting
KR20200113407A (en) * 2019-03-25 2020-10-07 현대제철 주식회사 Method of evaluating performance of work roll
CN114226473A (en) * 2021-11-30 2022-03-25 马鞍山市恒泰重工机械有限公司 Novel wear-resistant superhard metallurgy frequency conversion roller structure and manufacturing process of frequency conversion roller

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077377A1 (en) 2011-11-21 2013-05-30 日立金属株式会社 Centrifugally cast composite rolling mill roll and manufacturing method therefor
EP2706128A1 (en) 2011-11-21 2014-03-12 Hitachi Metals, Ltd. Centrifugally cast composite rolling mill roll and manufacturing method therefor
US9221232B2 (en) 2011-11-21 2015-12-29 Hitachi Metals, Ltd. Centrifugally cast composite roll and its production method
EP2706128A4 (en) * 2011-11-21 2014-07-02 Hitachi Metals Ltd Centrifugally cast composite rolling mill roll and manufacturing method therefor
EP2740552A1 (en) * 2012-04-02 2014-06-11 Hitachi Metals, Ltd. Centrifugally cast composite roller and method for manufacturing same
EP2740552A4 (en) * 2012-04-02 2014-11-05 Hitachi Metals Ltd Centrifugally cast composite roller and method for manufacturing same
KR20150043446A (en) 2012-09-13 2015-04-22 제이에프이 스틸 가부시키가이샤 Outer-layer material for hot-rolling roll, and hot-rolling composite roll
WO2014041778A1 (en) 2012-09-13 2014-03-20 Jfeスチール株式会社 Outer-layer material for hot-rolling roll, and hot-rolling composite roll
US9573176B2 (en) 2012-09-13 2017-02-21 Jfe Steel Corporation Outer-layer material for hot-rolling roll, and hot-rolling composite roll
EP2902124A4 (en) * 2013-05-02 2015-12-23 Hitachi Metals Ltd Hot-rolling composite roll produced by cetrifugal casting
US9358758B2 (en) 2013-05-02 2016-06-07 Hitachi Metals, Ltd. Centrifugally cast hot-rolling composite roll
KR20200113407A (en) * 2019-03-25 2020-10-07 현대제철 주식회사 Method of evaluating performance of work roll
KR102190503B1 (en) * 2019-03-25 2020-12-11 현대제철 주식회사 Method of evaluating performance of work roll
CN114226473A (en) * 2021-11-30 2022-03-25 马鞍山市恒泰重工机械有限公司 Novel wear-resistant superhard metallurgy frequency conversion roller structure and manufacturing process of frequency conversion roller
CN114226473B (en) * 2021-11-30 2023-11-21 马鞍山市恒泰重工机械有限公司 Novel wear-resistant superhard metallurgical variable frequency roller structure and manufacturing process of variable frequency roller

Also Published As

Publication number Publication date
JP4123903B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
EP3050636B1 (en) Centrifugally cast, hot-rolling composite roll
EP3050637B1 (en) Centrifugally cast, hot-rolling composite roll
EP2706128B1 (en) Centrifugally cast composite rolling mill roll and manufacturing method therefor
US9757779B2 (en) Centrifugally cast composite roll for hot rolling and its production method
EP3437747B1 (en) Composite roll for rolling
JP5862526B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP3124557B2 (en) Roll for hot rolling with excellent wear resistance and low segregation of carbide
WO2020032144A1 (en) Centrifugal cast composite roll for rolling and manufacturing method therefor
JP4483585B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JPH0873977A (en) Production of outer layer material for roll for hot rolling and roll for hot rolling
JP4123912B2 (en) Hot roll outer layer material and hot roll composite roll
JP2003073767A (en) Outer layer material of roll for hot rolling and composite roll for hot rolling
JP3925308B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP4123903B2 (en) Hot roll outer layer material and hot roll composite roll
JP4341357B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP3028514B2 (en) Composite roll for rolling with excellent wear resistance and rough surface resistance
JP4311073B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP2000239779A (en) External layer material for rolling roll made by centrifugal casting, rolling roll and production thereof
JP4381210B2 (en) High wear-resistant roll material and high wear-resistant composite roll
JP4569122B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JPH108212A (en) Roll for hot rolling
JP2004009063A (en) Complex roll for hot-rolling
JPH09170041A (en) Roll made by centrifugal casting and its production
JP2021023940A (en) Hot-rolling roll outer layer material and hot-rolling compound roll
JPH0949051A (en) Roll for hot rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4123903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term