JP2004250764A - Method of producing composite roll for rolling, and the roll - Google Patents

Method of producing composite roll for rolling, and the roll Download PDF

Info

Publication number
JP2004250764A
JP2004250764A JP2003044195A JP2003044195A JP2004250764A JP 2004250764 A JP2004250764 A JP 2004250764A JP 2003044195 A JP2003044195 A JP 2003044195A JP 2003044195 A JP2003044195 A JP 2003044195A JP 2004250764 A JP2004250764 A JP 2004250764A
Authority
JP
Japan
Prior art keywords
roll
core material
outer layer
rolling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003044195A
Other languages
Japanese (ja)
Other versions
JP4140027B2 (en
Inventor
Shunji Matsumoto
俊二 松本
Masatsugu Uchida
真継 内田
Nozomi Oda
望 小田
Kiyosumi Tokikawa
清澄 時川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003044195A priority Critical patent/JP4140027B2/en
Publication of JP2004250764A publication Critical patent/JP2004250764A/en
Application granted granted Critical
Publication of JP4140027B2 publication Critical patent/JP4140027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of more easily producing a composite roll in which suitable roll surface compressive residual stress is secured, and further, sufficient wear resistance can be obtained under optimum heat treatment conditions, and to provide the roll. <P>SOLUTION: In the method of producing a composite roll for rolling in which the external layer is formed by a continuous tinker-padding method, after the production of the roll, the whole of the roll is heated so that each temperature of the external layer and core material reaches an austenitizing temperature or higher, and thereafter, the surface of the roll is quenched at a cooling rate of 500 to 3,000°C/H by mist cooling. The roll has external layer surface hardness of ≥80 by Shore hardness and a surface compressive residual stress of 200 to 500 MPa, and the range within at least 100 mm to the core material side from the boundary between the external layer and core material has tensile strength of 850 to 1,050 MPa and Shore hardness of 40 to 47. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉄鋼の圧延用複合ロールの製造方法およびロールに関するものである。
【0002】
【従来の技術】
熱間圧延用ワークロールとして、従来から遠心鋳造法製の圧延用複合ロールが使用されてきた。近年、圧延効率の向上、合理化の観点から圧延用複合ロールの外層の高合金化が進んでいる。しかしながら、遠心鋳造法では偏析等の不具合により添加する合金量に限度がある。そのため、より高合金成分の添加が可能である連続鋳掛け肉盛法によりハイス系合金の外層を形成した複合ワークロールの研究開発が進んできた。
【0003】
例えば特許文献1には、複合ロールの外層部が、重量%で、C:1.5〜2.4%、V:3〜6%、Cr、MoおよびWの3元素を総和で10〜22%含有し、必要により接種材としてAl:0.05〜0.20%またはTi:0.02〜0.10%の1種または2種の元素を含有し、この外層部の組織が30〜150μmの結晶粒径を有し、かつその粒界に晶出したMC型の共晶炭化物で囲まれるとともに粒内にMC型の初晶炭化物を有する金属組織からなることを特徴とする連続鋳掛け肉盛法による熱間圧延用複合ロールおよびその製造方法が開示されている。
【0004】
特許文献2には、重量比でC:1.5〜3.5%、Si:0.3〜3.0%、Mn:0.3〜1.5%、Cr:2〜7%、Mo:9%以下、W:20%以下、V:3〜15%、さらにNi:5%以下、Co:5%以下、Nb:5%以下のいずれか1種または2種以上を含有する鉄基合金の外層が鋼製の軸に鋳造肉盛され、この外層の表面硬さがショア硬さ70以上、軸の引張強さ及び伸びがそれぞれ55kg/mm以上及び1.0%以上であり、外層と軸との接合部の接合強さが外層及び軸の弱い方の強さと同等以上であることを特徴とする耐摩耗複合ロール及びその製造方法が開示されている。
【0005】
特許文献3には、連続鋳掛け肉盛法にて外層を形成してなる熱間圧延用複合ロールの製造方法において、外層の成分は重量%で、C:1.0〜3.0%、Si:0.3〜2.0%Mn:0.3〜2.0%、Cr:3.0〜10.0%、Mo:3.0〜15%、V:1.0〜10.0%、さらにW:0.1〜10%、Ni:0.1〜5%、Co:0.1〜10%、Nb:0.5〜10%のいずれか1種または2種以上を含有し、残部がFeおよび不可避元素からなり、肉盛後、低周波誘導加熱にて漸進誘導加熱・焼入れの後、焼戻しを行い、かつ芯材の境界近傍を焼入れ時に変態膨張させることを特徴とする熱間圧延用複合ロールの製造方法が開示されている。また、この方法によって、得られたロールは外層表面硬さがショア硬さで80以上で、かつ表面圧縮残留応力が500MPa以下であることが開示されている。
【0006】
【特許文献1】
特公平7−78267号公報
【特許文献2】
特公平7−9052号公報
【特許文献3】
特開2001−49345号公報
【0007】
【発明が解決しようとする課題】
前記従来のロールは主に熱延仕上げスタンドに用いられているが、特に仕上げスタンド後段においては絞りと呼ばれる圧延板が二重に噛み込む圧延事故が頻発する。その際、ロールの外層表面の圧縮残留応力が大きいと、ロール表面に発生したクラックの伝播速度が速くなり、クラックが容易に境界近くまで進展し、外層が剥離するスポールにつながることが多い。
【0008】
このため表面圧縮残留応力を制御するために、焼戻し温度を高くする、あるいは焼戻し回数を多くする等、熱処理条件の調整が図られてきた。しかし、この方法では表面圧縮残留応力は低減されるものの、硬さも低くなるため耐摩耗性が劣化するという問題があった。
【0009】
そこで、この問題に対し特許文献3のような低周波誘導加熱による漸進加熱・焼入れ後、焼戻しすることが提案された。しかしながら、この方法は低周波誘導加熱装置を必要とし、製造コストの面で不利である。そこで、本発明者等は、特許文献3ではロール全体を加熱後、噴水冷却(ミスト冷却)あるいは衝風冷却することではなし得なかった最適な熱処理条件を見出すことを検討した。したがって、本発明は、適切なロール表面圧縮残留応力を確保するとともに、十分な耐摩耗性の得られるより簡便な複合ロールの製造方法およびロールを提供することを目的とする。
【0010】
【課題を解決するための手段】
連続鋳掛け肉盛法にて芯材の外周に外層を形成してなる圧延用複合ロールの製造方法において、外層の成分が重量比で、
C :1.0〜3.5%、 Si:0.3〜2.0%、
Mn:0.3〜2.0%、 Ni:3.0%以下、
Cr:2.0〜10.0%、 Mo:9.0%以下、
V :1.0〜10.0%、 W :10.0%以下
を含有し残部がFeおよび不可避元素からなり、ロール製造後に外層と芯材との境界近傍の芯材がそのオーステナイト化温度以上になるように、ロール全体を加熱後、ミスト冷却によりロール表面を500〜3000℃/Hの冷却速度で焼入れを行うことを特徴とする。
【0011】
また、連続鋳掛け肉盛法にて芯材の外周に外層を形成してなる圧延用複合ロールにおいて、外層の成分が重量比で、
C :1.0〜3.5%、 Si:0.3〜2.0%、
Mn:0.3〜2.0%、 Ni:3.0%以下、
Cr:2.0〜10.0%、 Mo:9.0%以下、
V :1.0〜10.0%、 W :10.0%以下
を含有し残部がFeおよび不可避元素からなり、外層の表面硬さがショア硬さで80以上、外層の表面圧縮残留応力が200〜500MPaであり、外層と芯材との境界から芯材側へ少なくとも100mm以内の範囲で、芯材の引張り強度が850〜1050MPa、芯材のショア硬さが40〜47であることを特徴とする。また、前記ロールにおいて、外層と芯材との境界から芯材側へ少なくとも100mm以内の範囲で金属組織が、ベイナイト及び/またはマルテンサイトを主体とすることを特徴とする。
【0012】
【作用】
本発明の圧延用複合ロールは、ロール製造後に外層および外層と芯材との境界近傍の芯材がそのオーステナイト化温度以上になるようにロール全体を加熱後、ミスト冷却によりロール表面を500〜3000℃/Hの冷却速度で焼入れを行うことにより、外層の表面硬さがショア硬さで80以上となり(より好ましくは88以上)、十分な耐摩耗性が得られる。また、外層の表面圧縮残留応力が200〜500MPaとなりクラックよる外層の剥離を十分に防止できる。より好ましくは、ロール表面を1000〜3000℃/Hの冷却速度で焼入れを行う。また、外層と芯材との境界から芯材側へ少なくとも100mm以内の範囲で芯材の引張り強度が850〜1050MPa、芯材のショア硬さが40〜47となり、耐事故性、耐摩耗性を格段に向上させることができる。より好ましくは、外層と芯材との境界から芯材側へ少なくとも50mm以上の範囲で前記特性を満足することが望ましい。この構成により、特に熱間圧延用ロールの仕上げ用ロールとして全てのスタンドで有効に用いることができる。
【0013】
本発明における外層の各成分元素の含有範囲(重量%)の限定理由について説明する。
【0014】
C:1.0〜3.5%
Cは、耐摩耗性向上のための炭化物の形成と、基地への固溶による焼入れ・焼戻し時の基地硬さの向上に必要である。Cは、耐摩耗性を付与すべきMC、M、MC、MC、Mなどの炭化物を生成する。Cが1.0%未満では炭化物の生成量が不足して耐摩耗性に劣る。Cが3.5%を超えると、耐摩耗性は良好であるが、耐クラック性が低下する。
【0015】
Si:0.3〜2.0%
Siの含有量は0.3〜2.0%が好ましい。Siは、脱酸剤として作用し、またMC炭化物中に固溶してW、Moなどの元素を置換して含有されるため、W、Moなどの高価な元素の節減を図るために有効である。Siが0.3%未満では脱酸効果が不足して鋳造欠陥を生じやすい。また、2.0%を超えると脆化が生じやすい。
【0016】
Mn:0.3〜2.0%
Mnの含有量は0.3〜2.0%が好ましい。Mnは、Siと同様に脱酸作用がある。また、不純物であるSをMnSとして固定する作用がある。Mnが0.3%未満では脱酸性に乏しい。また、2.0%を超えると残留オーステナイトが生じやすくなり、安定して十分な硬さを維持できない。
【0017】
Ni:3.0%以下
Niは焼入性を向上させ高硬度化させる効果を有する。しかし、3.0%を超えると残留オーステナイトが過剰となりかえって高硬度が得られなくなるためその上限を3.0%とした。より好ましいNi含有量は2%以下である。さらに0.2〜0.8%であることが好ましい。
【0018】
Cr:2.0〜10.0%
Crは、焼入れ性を向上させ、硬さを高くする。Crが2.0%未満ではその効果が小さい。また、10.0%を超えると、常温での残留オーステナイトが多くなるので、焼戻し回数が多くなり不経済となる。さらに、Crは比較的硬さの低いMやM23炭化物を形成し、多量の添加はこれらの炭化物が過剰となり耐摩耗性が劣化する。より好ましいCr含有量は、4.0〜7.0%である。
【0019】
Mo:9.0%以下
Moは、焼入れ性の向上と基地の高温硬さを得るために必要である。基地組織中に固溶して焼入れ性の向上をもたらす。また、Cと結合して硬質のMC、MC炭化物を生成する。9.0%を超えると、CとVとMoのバランスにおいてMC、MC炭化物が多く晶出しすぎ、耐クラック性が低下する。
【0020】
V:1.0〜10.0%
Vは、耐摩耗性の向上に最も寄与する硬質な炭化物であるMC、Mを形成する。Vが1.0%未満では炭化物の生成が少なく耐摩耗性が劣化する。Vが10.0%を超えると、本発明のC含有量とのバランスにより、初晶としてMC、M炭化物が晶出する。MC、Mが初晶で晶出すれば凝固中に凝集し、圧延用ロールとして使用した場合、硬質炭化物であるMC、Mの凝集偏析が被圧延材に転写されるので好ましくない。
【0021】
W:10.0%以下
Wは、Moと同様に焼入れ性の向上と基地の高温硬さを得るために必要である。基地の焼入れ性を上げ、Cと結合して硬質のMC、MC炭化物を生成する。Wの下限は0%である。また、10.0%を超えると、MC炭化物が増加して耐クラック性及び耐肌荒れ性の点で好ましくない。
【0022】
本発明の外層の鉄基合金は上記元素の他にCo、Nbを単独で又は複合して含有することができる。Coは焼戻し軟化抵抗と二次硬化の点で有用な元素であり、5.0%以下が好ましい。NbはVと同様にMC系炭化物を形成し耐摩耗性向上の作用を有するが、5.0%を超えると酸化が激しくなり大気中での溶解が困難となるので5.0%以下が好ましい。
【0023】
【発明の実施の形態】
本発明の複合ロールの芯材は鋼製であり、鋳鋼又は鍛鋼のいずれでもよい。その引張強さは外層と芯材との境界から芯材側へ少なくとも100mm以内の範囲で850MPa以上、伸びは1.0%以上である必要がある。これは圧延ロールとして用いた場合に、大きな圧下力がかかるとともに、圧延中のたわみを補正するために芯材の両端部にかける曲げ力に対して耐えられる必要があるためである。
【0024】
図1に本発明の圧延用複合ロールの製造方法を実施するのに使用し得る連続鋳掛け肉盛装置の一例を示す。本装置はテーパ部および平行部の周壁を有するロート状の耐火枠1と、その下に同軸的に設置された冷却型4とからなる組合せモールド10を有する。
【0025】
耐火枠1には、この外周を包囲するように環状の誘導加熱用コイル2が配置されており、また、その下部に同軸的に耐火枠1の下部と同径の内孔を有する環状の緩衝型3が設けられている。またその下方の冷却型4は緩衝型3とほぼ同じ内径を有し、かつ同軸的である。冷却型4の入口14から冷却水が連続的に型内に導入され、出口14´から排出される。
【0026】
以上の構成の組合せモールド10の内側にロールの芯材5をセットする。芯材5の下端又は必要に応じて下端から適宜離れた位置に注入外層の外径とほぼ同径の外径を有する閉止部材(図示せず)を固定し、さらにその下部は芯材5の昇降機構(図示せず)に取付ける。芯材5と耐火枠1との間の空間に溶湯7を注入し、溶湯表面は溶融フラックス6で空気に触れないようにシールする。そして溶湯7が凝固しないように加熱コイル2で加熱撹拌する。
【0027】
溶湯7は図中の矢印Aで示す方向に流動し撹拌運動を起こす。つぎに芯材5に固定された閉止部材を芯材とともに逐次降下させる。芯材5及び閉止部材の降下と連動して溶湯7も降下し、緩衝型3および冷却型4面で溶湯7の凝固が始まる。この凝固のとき芯材5と外層8は完全に金属的に接合される。湯だまりの溶湯7の表面も芯材5及び閉止部材の降下に併せて低下してくるが、新しい溶湯7を適宜注入して液面をある水準に保持する。そして、降下と注入を順次くり返して溶湯を下方から逐次凝固させて外層8の形成を行う。このようにしてこの後、本発明の焼入れ方法を施す。
【0028】
本発明の実施例について以下に説明する。
表1に示す成分の外層を連続鋳掛け肉盛法により、SCM440からなる芯材に肉盛りして、ロール外径がφ750mmの、本発明例及び比較例のロールを製造した。境界径、外層厚さ、肉盛り長さはそれぞれφ600mm、75mm、3000mmである。箱型の雰囲気炉あるいは大気炉を使用して、ロール全体がオーステナイト化するように、すなわち、外層と芯材との境界近傍の芯材がそのオーステナイト化温度以上になるようにロール全体を1040〜1100℃に加熱した。その後、本発明例ロールは、ミスト冷却により1500℃/Hの冷却速度で焼入れした後、450〜550℃で焼戻しを3回行った。また、冷却速度を従来通り行ったものを比較例とした。比較例ロールは、ミスト冷却によりロール表面を400℃/Hの冷却速度で焼き入れした後、同様に450〜550℃で焼戻しを3回行った。
【0029】
表1にこれらの熱処理を施したロールの外層の表面ショア硬さと、外層の表面圧縮残留応力を測定した結果を示す。また、表2に外層と芯材との境界から芯材側方向に離れた位置における芯材の引張り強度(MPa)を示す。
【0030】
【表1】

Figure 2004250764
【0031】
【表2】
Figure 2004250764
【0032】
表1より、外層成分が同一であっても、本発明例は冷却速度を500℃/H以上にすることによりショア硬さが84となり、比較例よりも耐摩耗性に優れる。また、外層の表面圧縮残留応力は325MPaとなり、比較例よりも圧縮残留応力を低く抑えることができ、耐事故性に優れることがわかった。また、表2より本発明例は、外層と芯材との境界から芯材側へ20mm離れた範囲内で、芯材の引張り強度が983MPa、境界から芯材側へ155mm離れた範囲内での引張り強度が901MPaといずれも850MPa以上を満足することができ、外層と芯材との境界から破壊するのを防止できる。
【0033】
図2にロール表面からの深さとショア硬さとの関係を示す。本発明例では、芯材の硬さは外層と芯材との境界から芯材側に100mmの位置(図2でロール表面からの深さ175mmの位置)までショア硬さ40以上を維持することができた。また、ロールを破壊調査した結果、外層と芯材との境界から芯材側へ約155mm離れた位置((図2でロール表面からの深さ230mmの位置)まではベイナイトおよびマルテンサイトの組織となっていた。また、境界から芯材側へ約155mm以上離れた位置(図2でロール表面からの深さ230mmの位置)ではパーライトの組織となっていた。
【0034】
図2に示す比較例では、芯材の硬さは外層と芯材との境界近傍からショア硬さ40を下回った。また、境界から芯材側は全てパーライトの組織となっていた。
【0035】
外層と芯材との境界から芯材側へ少なくとも100mm以内の範囲でベイナイト変態またはマルテンサイト変態を起こさせるためには、その部位をオーステナイト化温度以上に加熱する必要がある。その後、ロール表面を本発明の冷却速度で焼入れを行うことにより、その芯材の部分が変態膨張する。芯材の変態膨張により、外層の変態膨張によって境界に発生する引張応力が緩和されるため、表面側の圧縮応力から芯材側の引張り応力に変わる部分の応力の変動が緩やかになり、それによって外層の剥離を抑制することができる。
【0036】
図3にロール中心からの距離とロール半径との比に対する残留応力の関係のグラフを示す。図3において、σtはロール円周方向の残留応力(MPa)、σrはロール半径方向の残留応力(MPa)を表す。特に境界付近のσtに着目すると、本発明例では境界近傍の応力の変化は緩やかである。また、比較例では、境界近傍の応力の変化は本発明例に比べ傾斜が急である。すなわち、前述のように、本発明例では境界近傍の応力変化が緩やかであるため、境界からの剥離、スポール等の事故に対してより安全となる傾向を示している。
【0037】
また、本発明例の連続鋳掛け肉盛法製複合ロールを実際の熱間圧延の仕上げスタンドに供したところ、従来の連続鋳掛け肉盛法製複合ロールより、圧延操業に起因する絞り事故等の耐事故性に優れることがわかった。
【0038】
【発明の効果】
本発明の圧延用複合ロールは、従来に比べ外層の表面残留応力が低く、外層の剥離を抑制でき、耐事故性に優れ、特に熱間圧延用の仕上げ用ロールとして有効に用いることができる。
【図面の簡単な説明】
【図1】本発明の製造方法を実施するのに使用し得る連続鋳掛け肉盛装置の一例を示す図である。
【図2】ロール表面からの深さとショア硬さとの関係を示す図である。
【図3】ロール中心からの距離と半径との比に対する残留応力の関係を示す図である。
【符号の説明】
1 耐火枠、 2 誘導加熱用コイル、 3 緩衝型、 4 冷却型、
5 ロール芯材、 6 フラックス、 7 溶湯、 8 外層、
10 組合せモールド、 14 冷却水入口、 14´ 冷却水出口[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and a roll for producing a composite roll for rolling steel.
[0002]
[Prior art]
As a work roll for hot rolling, a composite roll for rolling made by a centrifugal casting method has been conventionally used. In recent years, the outer layer of the composite roll for rolling has been highly alloyed from the viewpoint of improving and streamlining the rolling efficiency. However, in the centrifugal casting method, the amount of alloy to be added is limited due to problems such as segregation. Therefore, research and development of a composite work roll in which the outer layer of a high-speed alloy is formed by a continuous casting overlay method, which allows the addition of a higher alloy component, has been advanced.
[0003]
For example, in Patent Literature 1, the outer layer portion of the composite roll has a C: 1.5 to 2.4%, V: 3 to 6%, and a total of 10 to 22 elements of three elements, Cr, Mo and W, by weight. %, And if necessary, as an inoculant, one or two elements of Al: 0.05 to 0.20% or Ti: 0.02 to 0.10%. A continuity characterized by having a crystal grain size of 150 μm and being surrounded by M 6 C-type eutectic carbide crystallized at the grain boundaries and having MC-type primary crystal carbide in the grains A composite roll for hot rolling by a casting overlay method and a method for producing the same are disclosed.
[0004]
Patent Document 2 discloses that, by weight ratio, C: 1.5 to 3.5%, Si: 0.3 to 3.0%, Mn: 0.3 to 1.5%, Cr: 2 to 7%, Mo : 9% or less, W: 20% or less, V: 3 to 15%, Ni: 5% or less, Co: 5% or less, Nb: 5% or less of iron base containing one or more of them The outer layer of the alloy is cast and built up on a steel shaft, the surface hardness of the outer layer is 70 or more Shore hardness, the tensile strength and elongation of the shaft are 55 kg / mm 2 or more and 1.0% or more, respectively. A wear-resistant composite roll and a method for producing the same are characterized in that the joining strength of the joint between the outer layer and the shaft is equal to or greater than the strength of the weaker one of the outer layer and the shaft.
[0005]
Patent Literature 3 discloses a method for manufacturing a composite roll for hot rolling in which an outer layer is formed by a continuous casting overlaying method. In the method, the components of the outer layer are expressed in weight%, C: 1.0 to 3.0%, Si : 0.3 to 2.0% Mn: 0.3 to 2.0%, Cr: 3.0 to 10.0%, Mo: 3.0 to 15%, V: 1.0 to 10.0% And further contains any one or more of W: 0.1 to 10%, Ni: 0.1 to 5%, Co: 0.1 to 10%, and Nb: 0.5 to 10%, The balance consists of Fe and unavoidable elements. After the cladding, after progressive induction heating and quenching by low-frequency induction heating, tempering is performed, and the vicinity of the core material boundary is transformed and expanded during quenching. A method for manufacturing a composite roll for rolling is disclosed. It is also disclosed that the roll obtained by this method has an outer layer surface hardness of 80 or more in Shore hardness and a surface compressive residual stress of 500 MPa or less.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 7-78267 [Patent Document 2]
Japanese Patent Publication No. 7-9052 [Patent Document 3]
JP 2001-49345 A
[Problems to be solved by the invention]
The above-mentioned conventional rolls are mainly used for a hot-rolling finishing stand. In particular, in the latter stage of the finishing stand, rolling accidents in which a rolled plate called a squeeze is double bitten frequently occur. At that time, if the compressive residual stress on the surface of the outer layer of the roll is large, the propagation speed of cracks generated on the surface of the roll is increased, and the crack easily spreads to the vicinity of the boundary, often leading to a spall where the outer layer peels off.
[0008]
For this reason, in order to control the surface compressive residual stress, adjustment of heat treatment conditions such as increasing the tempering temperature or increasing the number of times of tempering has been attempted. However, in this method, although the surface compressive residual stress is reduced, there is a problem that the hardness is reduced and the wear resistance is deteriorated.
[0009]
In order to solve this problem, it has been proposed to temper after progressive heating and quenching by low-frequency induction heating as disclosed in Patent Document 3. However, this method requires a low-frequency induction heating device, and is disadvantageous in terms of manufacturing cost. Therefore, the present inventors have studied to find optimal heat treatment conditions that could not be achieved by fountain cooling (mist cooling) or blast cooling after heating the entire roll in Patent Document 3. Accordingly, an object of the present invention is to provide a simpler method for manufacturing a composite roll and a roll which can ensure adequate roll surface compressive residual stress and provide sufficient wear resistance.
[0010]
[Means for Solving the Problems]
In a method of manufacturing a composite roll for rolling, in which an outer layer is formed on the outer periphery of a core material by a continuous casting overlay method, the components of the outer layer are in a weight ratio,
C: 1.0 to 3.5%, Si: 0.3 to 2.0%,
Mn: 0.3 to 2.0%, Ni: 3.0% or less,
Cr: 2.0 to 10.0%, Mo: 9.0% or less,
V: 1.0 to 10.0%, W: 10.0% or less, the balance being Fe and unavoidable elements, and the core material near the boundary between the outer layer and the core material after the roll production is at or above its austenitizing temperature. After heating the entire roll, the roll surface is quenched at a cooling rate of 500 to 3000 ° C./H by mist cooling.
[0011]
Further, in the composite roll for rolling formed by forming the outer layer on the outer periphery of the core material by continuous casting overlaying, the components of the outer layer in weight ratio,
C: 1.0 to 3.5%, Si: 0.3 to 2.0%,
Mn: 0.3 to 2.0%, Ni: 3.0% or less,
Cr: 2.0 to 10.0%, Mo: 9.0% or less,
V: 1.0 to 10.0%, W: 10.0% or less, the balance being Fe and unavoidable elements, the outer layer having a surface hardness of 80 or more in Shore hardness, and the outer layer having a surface compressive residual stress of not less than 80%. 200 to 500 MPa, a tensile strength of the core material of 850 to 1050 MPa, and a shore hardness of the core material of 40 to 47 within a range of at least 100 mm from the boundary between the outer layer and the core material toward the core material. And Further, in the roll, the metal structure is mainly composed of bainite and / or martensite within a range of at least 100 mm from the boundary between the outer layer and the core material toward the core material.
[0012]
[Action]
The composite roll for rolling of the present invention heats the entire roll so that the outer layer and the core material near the boundary between the outer layer and the core material have a temperature equal to or higher than the austenitizing temperature after roll production, and then cools the roll surface to 500 to 3000 by mist cooling. By performing quenching at a cooling rate of ° C./H, the surface hardness of the outer layer becomes 80 or more in Shore hardness (more preferably 88 or more), and sufficient wear resistance is obtained. In addition, the surface compressive residual stress of the outer layer becomes 200 to 500 MPa, and peeling of the outer layer due to cracks can be sufficiently prevented. More preferably, the roll surface is quenched at a cooling rate of 1000 to 3000 ° C / H. Further, the tensile strength of the core material is 850 to 1050 MPa and the Shore hardness of the core material is 40 to 47 within a range of at least 100 mm from the boundary between the outer layer and the core material toward the core material, and the accident resistance and the wear resistance are improved. It can be significantly improved. More preferably, it is desirable that the above characteristics be satisfied in a range of at least 50 mm or more from the boundary between the outer layer and the core material toward the core material. With this configuration, it can be effectively used in all stands, particularly as a finishing roll of a hot rolling roll.
[0013]
The reason for limiting the content range (% by weight) of each component element in the outer layer in the present invention will be described.
[0014]
C: 1.0 to 3.5%
C is necessary for the formation of carbides for improving wear resistance and for improving the hardness of the matrix during quenching and tempering by solid solution in the matrix. C forms carbides such as MC, M 4 C 3 , M 2 C, M 6 C, and M 7 C 3 to be provided with wear resistance. If C is less than 1.0%, the amount of carbide generated is insufficient, resulting in poor wear resistance. If C exceeds 3.5%, the wear resistance is good, but the crack resistance decreases.
[0015]
Si: 0.3 to 2.0%
The content of Si is preferably 0.3 to 2.0%. Si acts as a deoxidizing agent, and is dissolved in M 6 C carbide to be contained by replacing elements such as W and Mo. Therefore, in order to save expensive elements such as W and Mo, It is valid. If the content of Si is less than 0.3%, the deoxidizing effect is insufficient and casting defects are likely to occur. If it exceeds 2.0%, embrittlement is likely to occur.
[0016]
Mn: 0.3-2.0%
The content of Mn is preferably from 0.3 to 2.0%. Mn has a deoxidizing effect similarly to Si. Further, it has an effect of fixing S as an impurity as MnS. If Mn is less than 0.3%, deacidification is poor. On the other hand, when the content exceeds 2.0%, retained austenite is liable to be generated, so that sufficient hardness cannot be stably maintained.
[0017]
Ni: 3.0% or less Ni has the effect of improving hardenability and increasing hardness. However, if the content exceeds 3.0%, the retained austenite becomes excessive and high hardness cannot be obtained, so the upper limit is set to 3.0%. A more preferred Ni content is 2% or less. More preferably, it is 0.2 to 0.8%.
[0018]
Cr: 2.0 to 10.0%
Cr improves the hardenability and increases the hardness. If the Cr content is less than 2.0%, the effect is small. On the other hand, if it exceeds 10.0%, the amount of retained austenite at room temperature increases, so that the number of tempering increases, which is uneconomical. Further, Cr forms M 7 C 3 and M 23 C 6 carbides having relatively low hardness, and when added in a large amount, these carbides become excessive and wear resistance deteriorates. A more preferable Cr content is 4.0 to 7.0%.
[0019]
Mo: 9.0% or less Mo is necessary for improving the hardenability and obtaining the high-temperature hardness of the matrix. It forms a solid solution in the base structure to improve hardenability. Further, it combines with C to form hard M 2 C and M 6 C carbides. If it exceeds 9.0%, M 2 C and M 6 C carbides are excessively crystallized in the balance of C, V and Mo, and crack resistance is lowered.
[0020]
V: 1.0 to 10.0%
V forms MC and M 4 C 3 which are hard carbides most contributing to the improvement of wear resistance. If V is less than 1.0%, the generation of carbides is small, and the wear resistance deteriorates. When V exceeds 10.0%, MC and M 4 C 3 carbide crystallize as primary crystals due to the balance with the C content of the present invention. If MC and M 4 C 3 are crystallized as primary crystals, they will agglomerate during solidification, and when used as a roll for rolling, the aggregation and segregation of MC and M 4 C 3 which are hard carbides will be transferred to the material to be rolled. Not preferred.
[0021]
W: 10.0% or less W is necessary for improving the hardenability and obtaining the high-temperature hardness of the matrix similarly to Mo. Improves the hardenability of the matrix and combines with C to form hard M 2 C, M 6 C carbides. The lower limit of W is 0%. On the other hand, if it exceeds 10.0%, M 6 C carbides increase, which is not preferable in terms of crack resistance and surface roughness resistance.
[0022]
The iron-based alloy of the outer layer of the present invention may contain Co or Nb alone or in combination with the above elements. Co is a useful element in terms of temper softening resistance and secondary hardening, and is preferably 5.0% or less. Like N, Nb forms MC-based carbides and has an effect of improving abrasion resistance. However, if Nb exceeds 5.0%, oxidation becomes severe and dissolution in the atmosphere becomes difficult, so Nb is preferably 5.0% or less. .
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The core material of the composite roll of the present invention is made of steel, and may be either cast steel or forged steel. The tensile strength must be 850 MPa or more and the elongation must be 1.0% or more within a range of at least 100 mm from the boundary between the outer layer and the core toward the core. This is because when used as a rolling roll, a large rolling force is applied, and it is necessary to be able to withstand the bending force applied to both ends of the core material in order to correct deflection during rolling.
[0024]
FIG. 1 shows an example of a continuous casting overlaying apparatus that can be used to carry out the method for producing a composite roll for rolling according to the present invention. This apparatus has a combination mold 10 including a funnel-shaped refractory frame 1 having a peripheral wall of a tapered portion and a parallel portion, and a cooling mold 4 coaxially installed thereunder.
[0025]
An annular induction heating coil 2 is arranged in the refractory frame 1 so as to surround the outer periphery thereof, and an annular buffer having an inner hole coaxially with a lower portion of the refractory frame 1 at a lower portion thereof. A mold 3 is provided. The lower cooling mold 4 has substantially the same inner diameter as the buffer mold 3 and is coaxial. Cooling water is continuously introduced into the mold from the inlet 14 of the cooling mold 4 and discharged from the outlet 14 '.
[0026]
The core material 5 of the roll is set inside the combination mold 10 having the above configuration. A closing member (not shown) having an outer diameter substantially equal to the outer diameter of the injection outer layer is fixed to the lower end of the core material 5 or a position appropriately separated from the lower end as necessary. Attach to a lifting mechanism (not shown). The molten metal 7 is injected into the space between the core material 5 and the refractory frame 1, and the surface of the molten metal is sealed with a molten flux 6 so as not to come into contact with air. Then, the mixture is heated and stirred by the heating coil 2 so that the molten metal 7 does not solidify.
[0027]
The molten metal 7 flows in a direction indicated by an arrow A in the figure and causes a stirring motion. Next, the closing member fixed to the core member 5 is sequentially lowered together with the core member. The molten metal 7 also descends in conjunction with the lowering of the core member 5 and the closing member, and the solidification of the molten metal 7 starts on the buffer mold 3 and the cooling mold 4. During this solidification, the core material 5 and the outer layer 8 are completely metallically joined. The surface of the molten metal 7 in the basin also decreases as the core material 5 and the closing member descend, but a new molten metal 7 is appropriately injected to maintain the liquid level at a certain level. Then, the descending and the pouring are repeated in order to solidify the molten metal sequentially from below to form the outer layer 8. Thereafter, the quenching method of the present invention is applied.
[0028]
An embodiment of the present invention will be described below.
The outer layers of the components shown in Table 1 were built up on a core material made of SCM440 by a continuous casting build-up method to produce rolls of the present invention and comparative examples having a roll outer diameter of 750 mm. The boundary diameter, outer layer thickness, and build-up length are φ600 mm, 75 mm, and 3000 mm, respectively. Using a box-type atmosphere furnace or an atmospheric furnace, the entire roll is austenitic so that the entire roll is austenitized, that is, the core material near the boundary between the outer layer and the core material is at or above its austenitizing temperature. Heated to 1100 ° C. Thereafter, the roll of the present invention was quenched at a cooling rate of 1500 ° C / H by mist cooling, and then tempered at 450 to 550 ° C three times. In addition, a comparative example in which the cooling rate was performed as usual was used. After quenching the roll surface at a cooling rate of 400 ° C./H by mist cooling, the comparative example roll was similarly tempered at 450 to 550 ° C. three times.
[0029]
Table 1 shows the results obtained by measuring the surface shore hardness of the outer layer of the rolls subjected to these heat treatments and the surface compressive residual stress of the outer layer. Table 2 shows the tensile strength (MPa) of the core material at a position away from the boundary between the outer layer and the core material in the core material side direction.
[0030]
[Table 1]
Figure 2004250764
[0031]
[Table 2]
Figure 2004250764
[0032]
According to Table 1, even if the components of the outer layer are the same, the example of the present invention has a Shore hardness of 84 by setting the cooling rate to 500 ° C./H or more, and is superior to the comparative example in abrasion resistance. Further, the surface compressive residual stress of the outer layer was 325 MPa, and it was found that the compressive residual stress could be suppressed lower than that of the comparative example, and the accident resistance was excellent. Further, from Table 2, the present invention example shows that the tensile strength of the core material is 983 MPa within a range of 20 mm away from the boundary between the outer layer and the core material toward the core material, and within a range of 155 mm away from the boundary toward the core material. The tensile strength can be 901 MPa, which can satisfy 850 MPa or more, and can be prevented from breaking from the boundary between the outer layer and the core material.
[0033]
FIG. 2 shows the relationship between the depth from the roll surface and the Shore hardness. In the example of the present invention, the hardness of the core material is to maintain a Shore hardness of 40 or more from the boundary between the outer layer and the core material to a position 100 mm toward the core material (a position at a depth of 175 mm from the roll surface in FIG. 2). Was completed. In addition, as a result of a fracture investigation of the roll, the structure of bainite and martensite was observed at a position about 155 mm away from the boundary between the outer layer and the core material toward the core material (at a position 230 mm deep from the roll surface in FIG. 2). Further, at a position separated from the boundary by about 155 mm or more toward the core material (a position at a depth of 230 mm from the roll surface in FIG. 2), a pearlite structure was formed.
[0034]
In the comparative example shown in FIG. 2, the hardness of the core material was lower than the Shore hardness 40 from near the boundary between the outer layer and the core material. Further, the core material side from the boundary was all pearlite structure.
[0035]
In order to cause bainite transformation or martensitic transformation within a range of at least 100 mm from the boundary between the outer layer and the core material toward the core material, the site must be heated to an austenitizing temperature or higher. Thereafter, the core surface is transformed and expanded by quenching the roll surface at the cooling rate of the present invention. Due to the transformation expansion of the core material, the tensile stress generated at the boundary due to the transformation expansion of the outer layer is relieved, so that the fluctuation of the stress at the portion where the compression stress on the surface side changes to the tensile stress on the core material side is moderated, The peeling of the outer layer can be suppressed.
[0036]
FIG. 3 is a graph showing the relationship between the ratio of the distance from the roll center to the roll radius and the residual stress. In FIG. 3, σt represents residual stress (MPa) in the circumferential direction of the roll, and σr represents residual stress (MPa) in the radial direction of the roll. Paying particular attention to σt near the boundary, in the example of the present invention, the change in stress near the boundary is gradual. Further, in the comparative example, the change in the stress near the boundary is steeper than in the present invention. That is, as described above, in the example of the present invention, since the stress change near the boundary is gradual, it tends to be safer against accidents such as separation from the boundary and spall.
[0037]
Further, when the composite roll made of the continuous casting overlay method of the present invention example was provided to a finishing stand for actual hot rolling, the conventional continuous cast overlaying composite roll was more resistant to squeezing accidents such as drawing accidents caused by the rolling operation than the conventional roll. Was found to be excellent.
[0038]
【The invention's effect】
INDUSTRIAL APPLICABILITY The rolling composite roll of the present invention has a lower surface residual stress in the outer layer than in the past, can suppress peeling of the outer layer, has excellent accident resistance, and can be effectively used particularly as a finishing roll for hot rolling.
[Brief description of the drawings]
FIG. 1 is a view showing an example of a continuous casting overlaying apparatus which can be used to carry out the production method of the present invention.
FIG. 2 is a diagram showing the relationship between the depth from the roll surface and the Shore hardness.
FIG. 3 is a view showing a relationship between a ratio of a radius from a distance from a roll center to a radius and a residual stress.
[Explanation of symbols]
1 refractory frame, 2 induction heating coil, 3 buffer type, 4 cooling type,
5 roll core material, 6 flux, 7 molten metal, 8 outer layer,
10 Combination mold, 14 Cooling water inlet, 14 'Cooling water outlet

Claims (3)

連続鋳掛け肉盛法にて芯材の外周に外層を形成してなる圧延用複合ロールの製造方法において、外層の成分が重量比で、
C :1.0〜3.5%、 Si:0.3〜2.0%、
Mn:0.3〜2.0%、 Ni:3.0%以下、
Cr:2.0〜10.0%、 Mo:9.0%以下、
V :1.0〜10.0%、 W :10.0%以下
を含有し残部がFeおよび不可避元素からなり、ロール製造後に外層と芯材との境界近傍の芯材がそのオーステナイト化温度以上になるように、ロール全体を加熱後、ミスト冷却によりロール表面を500〜3000℃/Hの冷却速度で焼入れを行うことを特徴とする圧延用複合ロールの製造方法。
In a method of manufacturing a composite roll for rolling, in which an outer layer is formed on the outer periphery of a core material by a continuous casting overlay method, the components of the outer layer are in a weight ratio,
C: 1.0 to 3.5%, Si: 0.3 to 2.0%,
Mn: 0.3 to 2.0%, Ni: 3.0% or less,
Cr: 2.0 to 10.0%, Mo: 9.0% or less,
V: 1.0 to 10.0%, W: 10.0% or less, the balance being Fe and unavoidable elements, and the core material near the boundary between the outer layer and the core material after the roll production is at or above its austenitizing temperature. A method for producing a composite roll for rolling, characterized in that after heating the entire roll, the roll surface is quenched at a cooling rate of 500 to 3000 ° C / H by mist cooling.
連続鋳掛け肉盛法にて芯材の外周に外層を形成してなる圧延用複合ロールにおいて、外層の成分が重量比で、
C :1.0〜3.5%、 Si:0.3〜2.0%、
Mn:0.3〜2.0%、 Ni:3.0%以下、
Cr:2.0〜10.0%、 Mo:9.0%以下、
V :1.0〜10.0%、 W :10.0%以下
を含有し残部がFeおよび不可避元素からなり、外層の表面硬さがショア硬さで80以上、外層の表面圧縮残留応力が200〜500MPaであり、外層と芯材との境界から芯材側へ少なくとも100mm以内の範囲で、芯材の引張り強度が850〜1050MPa、芯材のショア硬さが40〜47であることを特徴とする圧延用複合ロール。
In a composite roll for rolling formed by forming an outer layer on the outer periphery of a core material by a continuous casting overlay method, the components of the outer layer are in a weight ratio,
C: 1.0 to 3.5%, Si: 0.3 to 2.0%,
Mn: 0.3 to 2.0%, Ni: 3.0% or less,
Cr: 2.0 to 10.0%, Mo: 9.0% or less,
V: 1.0 to 10.0%, W: 10.0% or less, the balance being Fe and unavoidable elements, the outer layer having a surface hardness of 80 or more in Shore hardness, and the outer layer having a surface compressive residual stress of not less than 80%. 200 to 500 MPa, a tensile strength of the core material of 850 to 1050 MPa, and a shore hardness of the core material of 40 to 47 within a range of at least 100 mm from the boundary between the outer layer and the core material toward the core material. And a composite roll for rolling.
外層と芯材との境界から芯材側へ少なくとも100mm以内の範囲で、金属組織がベイナイト及び/またはマルテンサイトを主体とすることを特徴とする請求項2に記載の圧延用複合ロール。The composite roll for rolling according to claim 2, wherein the metal structure is mainly bainite and / or martensite within a range of at least 100 mm from the boundary between the outer layer and the core material toward the core material.
JP2003044195A 2003-02-21 2003-02-21 Method for producing composite roll for rolling and roll Expired - Lifetime JP4140027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044195A JP4140027B2 (en) 2003-02-21 2003-02-21 Method for producing composite roll for rolling and roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044195A JP4140027B2 (en) 2003-02-21 2003-02-21 Method for producing composite roll for rolling and roll

Publications (2)

Publication Number Publication Date
JP2004250764A true JP2004250764A (en) 2004-09-09
JP4140027B2 JP4140027B2 (en) 2008-08-27

Family

ID=33026965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044195A Expired - Lifetime JP4140027B2 (en) 2003-02-21 2003-02-21 Method for producing composite roll for rolling and roll

Country Status (1)

Country Link
JP (1) JP4140027B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042528A1 (en) * 2011-09-21 2013-03-28 日立金属株式会社 Centrifugal casted composite roller for hot rolling and method for producing same
JP2016043388A (en) * 2014-08-25 2016-04-04 株式会社クボタ Outer layer material of composite roll for rolling and compound roll for rolling
CN107891138A (en) * 2017-11-09 2018-04-10 常州凯达重工科技有限公司 A kind of preparation technology for being used to make the super high-vanadium high-speed steel pressure roller of corrugated metal sheet
CN111172382A (en) * 2020-01-16 2020-05-19 燕山大学 Bar induction heat processing technique
CN114918372A (en) * 2022-06-14 2022-08-19 成都三强轧辊股份有限公司 Large-sized roller upper neck casting process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102119952B1 (en) * 2018-07-30 2020-06-16 주식회사 포스코 Heat pipe roll manufacturing apparatus and heat pipe roll being manufactured thereof
CN111485164B (en) * 2020-06-08 2021-05-14 马鞍山常裕机械设备有限公司 Casting method for enhancing wear resistance of low-chromium alloy casting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042528A1 (en) * 2011-09-21 2013-03-28 日立金属株式会社 Centrifugal casted composite roller for hot rolling and method for producing same
JPWO2013042528A1 (en) * 2011-09-21 2015-03-26 日立金属株式会社 Centrifugal cast composite roll for hot rolling and manufacturing method thereof
US9757779B2 (en) 2011-09-21 2017-09-12 Hitachi Metals, Ltd. Centrifugally cast composite roll for hot rolling and its production method
JP2016043388A (en) * 2014-08-25 2016-04-04 株式会社クボタ Outer layer material of composite roll for rolling and compound roll for rolling
CN107891138A (en) * 2017-11-09 2018-04-10 常州凯达重工科技有限公司 A kind of preparation technology for being used to make the super high-vanadium high-speed steel pressure roller of corrugated metal sheet
CN111172382A (en) * 2020-01-16 2020-05-19 燕山大学 Bar induction heat processing technique
CN111172382B (en) * 2020-01-16 2021-03-26 燕山大学 Bar induction heat processing technique
CN114918372A (en) * 2022-06-14 2022-08-19 成都三强轧辊股份有限公司 Large-sized roller upper neck casting process

Also Published As

Publication number Publication date
JP4140027B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP3205745B2 (en) Abrasion resistant seizure resistant hot roll
CN106756511B (en) D6A hot-rolled wide strip steel for bimetal saw blade backing material and production method thereof
JP2014520954A (en) Ultra-high strength wear-resistant steel sheet and method for producing the same
CN108929986B (en) High-strength wear-resistant hot rolled steel plate for automobile braking and production process thereof
JP3969328B2 (en) Non-tempered seamless steel pipe
JP2007070661A (en) High strength thin steel sheet having excellent elongation and hole expandability, and method for producing the same
JP2005002441A (en) High strength steel and its production method
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JP7244718B2 (en) Steel material for thick high-strength line pipe with excellent low-temperature toughness, elongation and small yield ratio, and method for producing the same
CN107130172A (en) The overall constrictive type high tenacity of 400HBW grades of Brinell hardness easily welds special thick wear-resisting steel plate and its manufacture method
JP2000160277A (en) Composite roll
JP5025315B2 (en) Composite roll for hot rolling, method for producing composite roll for hot rolling, and hot rolling method
WO1998045493A1 (en) Composite work roll for cold rolling
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP4140027B2 (en) Method for producing composite roll for rolling and roll
JPH08117965A (en) Production of composite roll made by centrifugal casting
JP4123597B2 (en) Manufacturing method of steel with excellent strength and toughness
EP2660344A1 (en) Centrifugally cast roll for last finishing stands in hot strip mills
JP2000178675A (en) Composite roll
JP3277638B2 (en) Wear-resistant composite rolls for rolling section steel
JP3772202B2 (en) Composite work roll for cold rolling and manufacturing method thereof
JP2001049344A (en) Production of combined roll for cold-rolling and roll
JPH08325673A (en) Composite roll for rolling excellent in wear resistance, surface roughening resistance and the like
JPH05179394A (en) Combination roll
CN116103579B (en) Wear-resistant ERW welded steel pipe for concrete pump truck and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080516

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

EXPY Cancellation because of completion of term