JPH0639772B2 - Ground compaction method and compaction device - Google Patents
Ground compaction method and compaction deviceInfo
- Publication number
- JPH0639772B2 JPH0639772B2 JP60276397A JP27639785A JPH0639772B2 JP H0639772 B2 JPH0639772 B2 JP H0639772B2 JP 60276397 A JP60276397 A JP 60276397A JP 27639785 A JP27639785 A JP 27639785A JP H0639772 B2 JPH0639772 B2 JP H0639772B2
- Authority
- JP
- Japan
- Prior art keywords
- ground
- pipe
- compaction
- soil
- penetration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は、軟弱地盤を改良する地盤の締固め工法、およ
び締固め装置に関するものである。TECHNICAL FIELD The present invention relates to a method for compacting ground for improving soft ground, and a compacting device.
「従来の技術」 従来、砂質地盤や粘性土地盤のような、いわゆる軟弱地
盤を改良する工法として、例えばバイブロ・フローテー
ション工法やサンド・コンパクション・パイル工法等が
知られている。“Conventional Technology” Conventionally, for example, a vibro flotation method or a sand compaction pile method is known as a method for improving so-called soft ground such as sandy ground and cohesive ground.
バイブロ・フローテーション工法は、地盤中に棒状の振
動機を貫入し、振動機部分に水を噴出しながら地盤を水
平方向に振動させて締固め、かつ、振動機付近に生じる
空隙に砂や砕石等を投入して振動効果や圧入効果の増大
を図る工法である。The vibro flotation method is to penetrate a bar-shaped vibrator into the ground, vibrate the ground in a horizontal direction while ejecting water to the vibrator to compact it, and sand and crush stones in the voids near the vibrator. It is a construction method that aims to increase the vibration effect and press-fitting effect by adding the like.
また、サンド・コンパクション・パイル工法は、地盤中
に振動あるいは衝撃荷重を用いて砂を圧入し、地盤中に
圧縮された砂柱を造成して地盤の相対密度の増加を図る
工法である。Further, the sand compaction pile method is a method for increasing the relative density of the ground by injecting sand into the ground by using vibration or impact load and creating a compressed sand column.
「発明が解決しようとする問題点」 ところで、バイブロ・フローテーション工法では、地盤
を振動させつつ、砂等の投入と振動機のわずかな引き抜
きとを交互に繰り返し、また、サンド・コンパクション
・パイル工法では砂の投入と圧縮とを交互に繰り返す。
従って、これらの工法は、工期が長引く欠点を有すると
ともに、砂柱造成用の、あるいは投入材としての砂等を
必要とすることも相まって工費がかさむという欠点を持
っている。また、バイブロ・フローテーション工法の場
合、砂質地盤への適用を目的としており、シルト分以下
の土粒子の含有率が40%以上の地盤には効果がなく、
さらに、水平振動を要するため市販の加振機を使用でき
ない等の不具合がある。"Problems to be solved by the invention" By the way, in the vibro flotation method, the sand is compacted and the sand is slightly pulled out alternately while vibrating the ground, and the sand compaction pile method is also used. Then, sand input and compression are alternately repeated.
Therefore, these construction methods have the drawback of prolonging the construction period, and also have the drawback that the construction cost is increased due to the need for sand or the like for sand column formation or as an input material. In addition, in the case of the vibro flotation method, it is intended to be applied to sandy ground, and there is no effect on the ground where the content ratio of soil particles below silt is 40% or more.
Further, there is a problem that a commercially available vibration exciter cannot be used because horizontal vibration is required.
本発明の上記の事情に鑑みてなされたもので、その目的
とするところは、地盤を確実に締固めて特に地震時にお
ける地盤の液状化を防止し、しかも、工期および工費の
著しい削減を実現する全く新しい地盤の締固め工法およ
び締固め装置を提供することにある。The present invention has been made in view of the above circumstances, and an object thereof is to reliably compact the ground and prevent liquefaction of the ground particularly during an earthquake, and realize a significant reduction in construction period and construction cost. It is to provide a completely new ground compaction method and compaction device.
「問題点を解決するための手段」 本発明の工法は、地盤中に管体を振動させつつ貫入する
ことにより、この管体の内部に管軸方向に圧縮された高
密度の土柱を造成するとともに、この土柱の圧縮反力で
土柱下方の地盤を圧縮するようにした方法である。"Means for Solving Problems" The construction method of the present invention creates a high-density soil column compressed in the pipe axis direction inside the pipe by vibrating the pipe while penetrating the ground. At the same time, the ground reaction force under the soil pillar is compressed by the compression reaction force of the soil pillar.
また、本発明の装置は、地盤に打ち込まれる先端が開口
する管体と、この管体に管軸方向の振動を与える加振機
とを備え、前記管体の内面および外面のうち少なくとも
一方の面に、該管体と略同一長さの鋼棒を設けたもので
ある。Further, the device of the present invention comprises a tube body having an open tip driven into the ground, and a vibration exciter for imparting vibration to the tube body in the tube axis direction, and at least one of an inner surface and an outer surface of the tube body. A steel rod having substantially the same length as the tubular body is provided on the surface.
「作用」 本発明の工法によれば、地盤への貫入時に管体がその内
部に進入してくる土壌を鉛直方向(管軸方向)に圧縮
し、この土壌がその圧縮時の反力によりその下方の地盤
を鉛直方向に圧縮する。従って、一度の貫入と一度の引
き抜きにより一回の締固め作業が完了し、しかも、鉛直
方向に圧縮するのみであるから地盤中に空隙は生じず、
砂や砕石等の投入が不要である。[Operation] According to the method of the present invention, the soil that the pipe body enters into the ground when it penetrates into the ground is compressed in the vertical direction (pipe axis direction), and this soil is compressed by the reaction force at the time of compression. The lower ground is compressed vertically. Therefore, one compaction work is completed by one penetration and one extraction, and since it only compresses in the vertical direction, there is no void in the ground,
No need to add sand or crushed stone.
また、本発明の装置によれば、加振機が管体を振動させ
てこれを地盤中に貫入し、鋼棒が管体内の土柱の圧縮率
を高める。しかも鋼棒が管体と略同一長さとなっている
ため、鋼棒により土柱が連続的に圧縮されることにな
り、土柱の圧縮率がさらに高まる。Further, according to the device of the present invention, the vibration exciter vibrates the tubular body and penetrates it into the ground, and the steel rod increases the compressibility of the soil pillar in the tubular body. Moreover, since the steel rod has substantially the same length as the tubular body, the soil rod is continuously compressed by the steel rod, further increasing the compression ratio of the soil column.
「実施例」 以下、本発明の一実施例を図面に基づいて説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.
第1図は、本発明に係わる地盤の締固め装置の概略を示
し、図中符号1はクローラクレーンである。クローラク
レーン1はガイドマスト2を支持しており、ガイドマス
ト2の上端には吊り治具3を介して管体(本実施例では
大口径の鋼管)4が縦に吊り下げられている。この管体
4は第2図、第3図の如くその上端に管体4内を径方向
に横断するバイブロチャック用板5を備え、このバイブ
ロチャック用板5には加振機(いわゆるバイブロハン
マ)6が取り付けられている。加振機6は管体4にその
軸方向(管軸方向)に沿う振動を与えるものである。ま
た、管体4の内面および外面には、管軸方向に沿って延
在する突出部(例えば鋼棒)7が管体4の周方向に間隔
をおいて複数本設けられている(第3図参照)。FIG. 1 shows an outline of a ground compaction device according to the present invention, in which reference numeral 1 is a crawler crane. The crawler crane 1 supports a guide mast 2, and a pipe body (a steel pipe having a large diameter in this embodiment) 4 is vertically hung on an upper end of the guide mast 2 via a suspension jig 3. As shown in FIGS. 2 and 3, the tube body 4 is provided with a vibro chuck plate 5 that traverses the inside of the tube body 4 in the radial direction at its upper end, and the vibro chuck plate 5 has a vibrating machine (so-called vibro hammer). 6 is attached. The vibration exciter 6 gives vibration to the tube body 4 along its axial direction (pipe axis direction). Further, on the inner surface and the outer surface of the tube body 4, a plurality of protruding portions (for example, steel rods) 7 extending along the tube axis direction are provided at intervals in the circumferential direction of the tube body 4 (third part). See figure).
次いで、上記のような構成の装置を使用して軟弱地盤を
締固める工法について説明する。Next, a method of compacting the soft ground by using the device having the above-mentioned configuration will be described.
まず、クローラクレーン1を操作して管体4を地盤G上
の所定位置に吊り降ろし、管体4の下端を第4図の如く
地盤Gに当接させる。そして、加振機6を作動させて管
体4に振動を与え、これにより管体4を第5図の如く地
盤G中の所定深度まで貫入する。このとき、管体4内に
進入してくる土壌は、管体4およびその内側の突出部7
の押圧力により、さらには、管体4および内側の突出部
7との間に生じる摩擦力により鉛直方向に圧縮され、管
体4内を閉塞して高密度の土柱Pを形成する。そしてさ
らに、この高密度の土柱Pがその圧縮反力により土柱P
の下方の地盤Gを矢印の如く鉛直方向に圧縮する。一
方、管体4の外側の突出部7は、貫入時の押圧力および
摩擦力により管体4の周辺の地盤Gを鉛直方向および水
平方向に圧縮する。続いて、管体4を継続的に振動させ
ながらクローラクレーン1により管体4を地盤Gから引
き抜き、管体4を地盤G上の他の位置に移動して上記と
同様の作業を繰り返す。つまり、このような作業を地盤
G上の多数個所に対し、例えば碁盤の目を描くように施
すことにより地盤Gを締固める。First, the crawler crane 1 is operated to hang the pipe 4 at a predetermined position on the ground G, and the lower end of the pipe 4 is brought into contact with the ground G as shown in FIG. Then, the vibration exciter 6 is actuated to give vibration to the pipe body 4, whereby the pipe body 4 penetrates to a predetermined depth in the ground G as shown in FIG. At this time, the soil coming into the pipe body 4 is the pipe body 4 and the protruding portion 7 inside thereof.
Further, the pressing force of (3) further compresses in the vertical direction due to the frictional force generated between the tube body 4 and the inner protruding portion 7, and closes the inside of the tube body 4 to form the high density soil column P. Further, the high density soil pillar P is compressed by the compression reaction force.
The ground G below the ground is compressed vertically as indicated by the arrow. On the other hand, the protrusion 7 on the outer side of the pipe body 4 compresses the ground G around the pipe body 4 in the vertical direction and the horizontal direction by the pressing force and the frictional force at the time of penetration. Subsequently, the tube body 4 is pulled out from the ground G by the crawler crane 1 while continuously vibrating the tube body 4, the tube body 4 is moved to another position on the ground G, and the same work as above is repeated. That is, the ground G is compacted by performing such an operation on a large number of places on the ground G so as to draw a grid pattern, for example.
次に、幾つかの実験結果を示して本発明の作用効果をよ
り明確にする。ただし、実験に使用した加振機はバイブ
ロハンマVM2-25000A、管体は直径1200mm、長さ12
000mmの鋼管、突出部は直径50mm、長さ11000
mmの鋼棒である。また、鋼棒は鋼管の内面にのみ全部で
16本溶接した。Next, some experimental results will be shown to clarify the effect of the present invention. However, the vibrating machine used in the experiment was a vibro hammer VM2-25000A, and the tube was 1200 mm in diameter and 12 in length.
000mm steel pipe, projection 50mm diameter, length 11000
mm steel rod. A total of 16 steel rods were welded only to the inner surface of the steel pipe.
第6図は、鋼管貫入前の地盤(点線)および貫入後の地
盤(実線)に対して各々標準貫入試験を行い、各々の試
験結果をすなわちN値と、地盤の深度との関係を貫入前
地盤の地層状態とともに示したものである。貫入後のN
値は、引き抜き後における鋼管中心部のものである。貫
入前のN値は平均で4.55、貫入後のN値で平均で15.89
であった。この図から明らかなように貫入後の地盤が貫
入前の地盤に対して著しく締固まっていることがわか
る。Fig. 6 shows a standard penetration test for the ground before the steel pipe intrusion (dotted line) and the ground after the intrusion (solid line), and shows the test results, that is, the relationship between the N value and the depth of the ground. It is shown with the stratum condition of the ground. N after penetration
The values are those at the center of the steel pipe after drawing. The N value before penetration is 4.55 on average, and the N value after penetration is 15.89 on average.
Met. As is clear from this figure, the ground after intrusion is significantly compacted with respect to the ground before intrusion.
第7図は、道路橋示方書に基づく液状化抵抗強度Rを貫
入前のN値および貫入後のN値に用いて算出したもので
ある。貫入後のR(平均0.281)は貫入前のR(平均0.1
6)より顕著に増加することがわかる。ただし、グラフ
の上限および下限は±σ(:Rの平均値、σ:標準
偏差)の値である。また、貫入後のRの変動係数σ/
(0.499)は貫入前のRの変動係数σ/(0.403)より
幾分増加している。FIG. 7 is calculated using the liquefaction resistance strength R based on the road bridge specification for the N value before penetration and the N value after penetration. R after penetration (average 0.281) is R before penetration (average 0.1
6) It can be seen that it increases more significantly. However, the upper and lower limits of the graph are values of ± σ (: average value of R, σ: standard deviation). In addition, the coefficient of variation of R after penetration σ /
(0.499) is slightly higher than the coefficient of variation of R before penetration, σ / (0.403).
第8図は、細粒分(粒径74μ以下)含有率と貫入後の
Rとの関係を示したものである。この図から細粒分含有
率が50%以下においてRが大きな値を示すことがわか
る。すなわち、細粒分含有率が50%以下の砂質土であ
れば当工法によりR(またはN値)の増加を期待するこ
とができる。FIG. 8 shows the relationship between the content of fine particles (particle size 74 μ or less) and R after penetration. From this figure, it can be seen that R has a large value when the content of fine particles is 50% or less. That is, if the sandy soil has a fine particle content of 50% or less, an increase in R (or N value) can be expected by this method.
第9図は、地盤の三箇所に対し第11図の如く正三角形を
描くように本発明に係わる工法を適用し、各箇所のN値
と深度との関係を示したものである。ただし、●印は符
号アの箇所、×印は符号イの箇所、△印は符号ウの箇所
を示している。この図から明らかなように、鋼管外にお
いても鋼管内のN値とほぼ同程度のN値が得られ、締固
め効果が管外にも及ぶことがわかる。ただし、深度7〜
10mにおけるN値の比較的小さい範囲は、シルト分が
多い地層であるので、Rは小さくないからN値を高めな
くとも支障はない。FIG. 9 shows the relationship between the N value and the depth at each location by applying the construction method according to the present invention so as to draw an equilateral triangle as shown in FIG. 11 at three locations on the ground. However, the ● mark shows the part of the code a, the x mark shows the part of the code a, and the Δ mark shows the part of the code c. As is clear from this figure, an N value that is approximately the same as the N value inside the steel pipe is obtained outside the steel pipe, and the compaction effect extends outside the pipe. However, depth 7-
The range where the N value is relatively small at 10 m is a stratum with a large amount of silt, so R is not small, so there is no problem if the N value is not increased.
第10図は、鋼管貫入時間と貫入深度との関係を示したも
のである。この図から11m貫入するのに3分〜15分
要することがわかるが、従来の工法のサイクルタイムは
20分程度であるから、かなり施工速度が速まることが
わかる。ただし、図中×印は偏心モーメント(加振機の
パワーの大きさ)を15000kg・cmとして実験して得
た結果であり、○印は同じく25000kg・cmとして実
験して得た結果である。Fig. 10 shows the relationship between the penetration time of steel pipe and the penetration depth. It can be seen from this figure that it takes 3 to 15 minutes to penetrate 11 m, but it can be seen that the construction speed is considerably increased because the cycle time of the conventional construction method is about 20 minutes. However, in the figure, the X mark is the result obtained by experimenting with an eccentric moment (magnitude of power of the vibration exciter) of 15000 kg · cm, and the ○ mark is the result obtained by experimenting with 25000 kg · cm.
ちなみに、鋼管貫入および引き抜きによる管内土の沈下
量Sと貫入長Lの比(S/L)は、20%〜50%であ
り、第5図の如く特に鋼管内に沈下が生じる。この部分
の埋め戻しはブル転圧またはこの部分だけに重錘を落下
させる動圧密を行えばよい。By the way, the ratio (S / L) of the subsidence amount S of the soil in the pipe due to the penetration and withdrawal of the steel pipe (S / L) is 20% to 50%, and the subsidence occurs particularly in the steel pipe as shown in FIG. The backfilling of this portion may be carried out by bull compaction or dynamic compaction in which the weight is dropped only in this portion.
なお、上記実施例では管体として横断面円形のものを用
いたがこれに限るものではなく、例えば横断面角形のも
のを用いてもよい。また、突出部7は、管体4の内外面
のどちらか一方の設けるだけでもよく、さらに、突出部
7としては、例えば単なる突起やあるいは管体4の周方
向に沿うリング状のものを用いてもよい。In the above embodiment, the tubular body has a circular cross section, but the tubular body is not limited to this and may have a rectangular cross section, for example. Further, the protruding portion 7 may be provided only on one of the inner and outer surfaces of the tubular body 4, and as the protruding portion 7, for example, a simple protrusion or a ring-shaped one along the circumferential direction of the tubular body 4 is used. May be.
「発明の効果」 以上説明したように本発明の工法によれば、地盤中に管
体を貫入することにより、管体の内部に管軸方向に圧縮
された高密度の土柱を造成するとともに、この土柱の圧
縮反力で土柱下方の地盤を圧縮するようにしたので、次
のような優れた効果を得ることができる。"Effect of the invention" As described above, according to the construction method of the present invention, by penetrating the pipe body into the ground, a high-density soil column compressed in the pipe axis direction is formed inside the pipe body. Since the ground below the soil pillar is compressed by the compression reaction force of the soil pillar, the following excellent effects can be obtained.
一度の貫入と一度の引き抜きにより一回の締固め作業
が完了し、例えばバイブロ・フローテーション工法のよ
うに砂等の投入と振動機の引き抜きとを繰り返す必要が
ないから、工期を著しく削減することができる。One compaction work is completed by one penetration and one extraction, and it is not necessary to repeat the steps of inserting sand etc. and extracting the vibrator as in the vibro flotation method, thus significantly reducing the construction period. You can
地盤を鉛直方向に圧縮するのみであるから地盤中に空
隙は生じず、砂や砕石等の投入が不要である。従って、
工期の削減効果も相まって工費を大幅に削減することが
できる。Since the ground is only compressed in the vertical direction, there are no voids in the ground and it is not necessary to add sand or crushed stone. Therefore,
Combined with the effect of reducing the construction period, the construction cost can be significantly reduced.
地盤を確実に締固めて地震時における地盤の液状化を
防止することができる。The ground can be reliably compacted to prevent liquefaction of the ground during an earthquake.
一方、本発明の装置は、地盤に打ち込まれる先端が開口
すると管体と、この管体に管軸方向の振動を与える加振
機とを備え、前記管体の内外面のうち少なくとも一方の
面に、該管体と略同一長さの鋼棒を設けたので次のよう
な優れた効果を得ることができる。On the other hand, the device of the present invention includes a tube body when the tip driven into the ground is opened, and a vibrating machine that applies vibration to the tube body in the tube axis direction, and at least one of the inner and outer surfaces of the tube body. Further, since the steel rod having substantially the same length as the tubular body is provided, the following excellent effects can be obtained.
加振機が管体を鉛直方向に振動させてこれを地盤中へ
貫入し、鋼棒が管体内にまたは外の土の圧縮率を高める
から、地盤を確実に締固めて地震時における地盤の液状
化を防止することができる。しかも鋼棒が管体と略同一
長さとなっているため、鋼棒により土柱が連続的に圧縮
されることになり、土柱の圧縮率をさらに高めることが
でき、地盤の液状化の防止効果をさらに高めることがで
きる。An exciter vibrates the pipe vertically and penetrates it into the ground, and the steel rod increases the compressibility of the soil inside or outside the pipe, so the ground is reliably compacted and the ground Liquefaction can be prevented. Moreover, since the steel rod is approximately the same length as the tubular body, the soil rod is continuously compressed by the steel rod, and the compressibility of the soil column can be further increased, preventing liquefaction of the ground. The effect can be further enhanced.
構造が単純であり、しかも、鉛直振動を利用するから
市販の加振機を用いることができる。従って、設備費を
大幅に削減することができる。Since the structure is simple and the vertical vibration is used, a commercially available vibration exciter can be used. Therefore, the equipment cost can be significantly reduced.
第1図〜第11図は本発明の一実施例を説明するもので、
第1図は締固め装置の全体構成を示す概略図、第2図は
要部の縦断面図、第3図は第2図のIII−III線矢視図、
第4図および第5図は締固め工法を工程順にしめす垂直
断面図、第6図〜第10図は本発明の作用効果を明確にす
るための実験結果を示すグラフ、第11図は第9図の結果
をだした実験の説明図である。 1……クローラクレーン、4……管体、6……加振機、
7……突出部、G……地盤、P……土柱。1 to 11 illustrate one embodiment of the present invention.
FIG. 1 is a schematic view showing the overall structure of the compaction device, FIG. 2 is a longitudinal sectional view of a main part, FIG. 3 is a view taken along the line III-III in FIG.
FIGS. 4 and 5 are vertical sectional views showing the compaction method in the order of steps, FIGS. 6 to 10 are graphs showing experimental results for clarifying the action and effect of the present invention, and FIG. It is explanatory drawing of the experiment which produced the result of the figure. 1 ... Crawler crane, 4 ... Tube, 6 ... Exciter,
7 ... Projection, G ... Ground, P ... Clay pillar.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 信夫 東京都中央区京橋2丁目16番1号 清水建 設株式会社内 (72)発明者 小田原 卓郎 東京都中央区京橋2丁目16番1号 清水建 設株式会社内 (72)発明者 横山 勝彦 東京都中央区京橋2丁目16番1号 清水建 設株式会社内 (56)参考文献 実開 昭52−7904(JP,U) 実開 昭52−151606(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Nobuo Mori No. 16-1 Kyobashi, Chuo-ku, Tokyo Shimizu Construction Co., Ltd. (72) Takuro Odawara No. 16-1 Kyobashi, Chuo-ku, Tokyo Shimizu Construction Co., Ltd. (72) Inventor Katsuhiko Yokoyama 2-16-1, Kyobashi, Chuo-ku, Tokyo Shimizu Construction Co., Ltd. (56) References: Development 52-7904 (JP, U) Development 52- 151606 (JP, U)
Claims (3)
により、この管体の内部に管軸方向に圧縮された高密度
の土柱を造成するとともに、この土柱の圧縮反力で土柱
下方の地盤を圧縮することを特徴とする地盤の締固め工
法。1. A high-density soil column compressed in the axial direction of the pipe is created by oscillating the pipe into the ground while vibrating the pipe, and the compression reaction force of the soil column is used. A method of compacting the ground characterized by compressing the ground below the soil pillar.
面には、該管体と略同一長さの鋼棒が設けられているこ
とを特徴とする特許請求の範囲第1項に記載の地盤の締
固め工法。2. A steel rod having substantially the same length as that of the tubular body is provided on at least one of the inner and outer surfaces of the tubular body. The method of compacting the ground.
と、この管体に管軸方向の振動を与える加振機とを備
え、前記管体の内外面のうち少なくとも一方の面には、
該管体と略同一長さの鋼棒が設けられていることを特徴
とする地盤の締固め装置。3. A pipe body having a tip end that is driven into the ground and having an opening, and a vibration exciter that applies vibration to the pipe body in the pipe axis direction. At least one of the inner and outer surfaces of the pipe body is provided with:
A ground compaction device, characterized in that a steel rod having substantially the same length as the tubular body is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60276397A JPH0639772B2 (en) | 1985-12-09 | 1985-12-09 | Ground compaction method and compaction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60276397A JPH0639772B2 (en) | 1985-12-09 | 1985-12-09 | Ground compaction method and compaction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62137316A JPS62137316A (en) | 1987-06-20 |
JPH0639772B2 true JPH0639772B2 (en) | 1994-05-25 |
Family
ID=17568836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60276397A Expired - Lifetime JPH0639772B2 (en) | 1985-12-09 | 1985-12-09 | Ground compaction method and compaction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0639772B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS527904U (en) * | 1975-07-04 | 1977-01-20 |
-
1985
- 1985-12-09 JP JP60276397A patent/JPH0639772B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62137316A (en) | 1987-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0533890B1 (en) | Short aggregate piers and method and apparatus for producing same | |
US4230425A (en) | Method and installation for producing cast-in-situ piles | |
GB2286613A (en) | Ground improvement | |
JP4540022B2 (en) | Ground improvement method combined with blasting method | |
JPH0639772B2 (en) | Ground compaction method and compaction device | |
JPS62242011A (en) | Method and apparatus for constructing shallow ground-improving pile | |
JP3144767B2 (en) | Underground pile forming method and apparatus | |
JP6876526B2 (en) | Specification setting method for sandy ground compaction method | |
JP3450725B2 (en) | Ground improvement method | |
JPH0645927B2 (en) | Ground compaction method | |
CN1076064C (en) | Method for handling foundation | |
JP2886374B2 (en) | Vibration compaction method | |
JP2597833B2 (en) | Complex improvement method for soft ground | |
JP2747664B2 (en) | Ground compaction device using granular pile columns | |
JPS63315721A (en) | Foundation pile driving method as well as ground compaction | |
JP2729237B2 (en) | Ground compaction method | |
JP2886355B2 (en) | Vibration compaction method | |
JP2601702B2 (en) | Soft ground improvement method | |
JPH0660495B2 (en) | Foundation pile construction equipment | |
JPH086307B2 (en) | Liquefaction prevention method for sand ground and excavation compaction device used therefor | |
JPH0637061Y2 (en) | Crushed rock, vibration type ground improvement device | |
Gouw et al. | Vibrocompaction proposed design guideline for practicing engineers | |
JP2575032B2 (en) | Sandy ground vibration consolidation method | |
JP2610518B2 (en) | Method of forming crushed stone column by falling weight | |
KR960003748B1 (en) | Working method of concrete pile or sand pile for a soft-soil foundation |