JPS63315721A - Foundation pile driving method as well as ground compaction - Google Patents

Foundation pile driving method as well as ground compaction

Info

Publication number
JPS63315721A
JPS63315721A JP15280487A JP15280487A JPS63315721A JP S63315721 A JPS63315721 A JP S63315721A JP 15280487 A JP15280487 A JP 15280487A JP 15280487 A JP15280487 A JP 15280487A JP S63315721 A JPS63315721 A JP S63315721A
Authority
JP
Japan
Prior art keywords
ground
foundation pile
foundation
compaction
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15280487A
Other languages
Japanese (ja)
Inventor
Nobuo Mori
信夫 森
Atsuo Onoe
尾上 篤生
Shigenori Yoshihara
吉原 重紀
Katsuhiko Yokoyama
勝彦 横山
Takuro Odawara
小田原 卓郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP15280487A priority Critical patent/JPS63315721A/en
Publication of JPS63315721A publication Critical patent/JPS63315721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

PURPOSE:To make it possible to execute the ground compaction as well as to drive the foundation pile by placing the foundation pile in the vicinity of the formation of a drain column. CONSTITUTION:After forming a plural number of drain column 1 consisting of gravels and others into the ground G, a foundation pile 2 is driven in the vicinity of them. According to the constitution, the ground compaction can be executed as well as driving of a foundation pile 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、構造物の荷重を地盤に支持させるための基礎
杭を地盤中に貫入する際の基礎杭打設工法に係わり、特
に、地盤の締固めを必要とされる地盤における基礎杭打
設工法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a foundation pile driving method for penetrating foundation piles into the ground to support the load of a structure, and in particular, to This relates to foundation pile driving methods in ground that requires compaction.

〔従来の技術〕[Conventional technology]

基礎杭は、周知のとおり、構造物を構築する際に、その
構造物を構築する地盤が軟弱であった場合等に、構造物
を支持するための基礎杭を前記構造物が構築される地盤
中に貫入するものである。
As is well known, when building a structure, when the ground on which the structure is built is soft, foundation piles are used to support the structure. It penetrates inside.

既成の基礎杭としては、杭を、軟質層の下部にある硬質
層まで届くように極めて長寸のものに形成し、その杭を
介して構造物を硬質層に支持させるようにしたもの(支
持杭)、あるいは、硬質層までは届かないが、軟質層を
構成する地盤と杭との摩擦により前記構造物を支持し得
るようにしたもの(摩擦杭)などがある。
An existing foundation pile is one that is extremely long so that it can reach the hard layer below the soft layer, and the structure is supported by the hard layer through the pile (supporting There are also piles that do not reach the hard layer, but can support the structure by friction between the pile and the ground that makes up the soft layer (friction pile).

ところで、基礎杭打設工法、特に上記摩擦杭による基礎
杭打設工法を施工するにあたって、その地盤が砂質地盤
や粘性上地盤のように軟弱であり杭の水平抵抗力が見込
めない場合には、基礎杭打設以前に、地盤の締固め等、
軟弱地盤の改良を施している。
By the way, when implementing the foundation pile driving method, especially the above-mentioned foundation pile driving method using friction piles, if the ground is soft such as sandy ground or viscous ground and the horizontal resistance of the pile cannot be expected. , compaction of the ground, etc. before foundation pile driving, etc.
Improvements are being made to the soft ground.

この、軟弱地盤を改良する工法としては従来、例えばバ
イブロ・フローテーション工法やサンド・コンパクショ
ン・パイル工法といったものが知られている。バイブロ
・フローテーション工法は、地盤中に棒状の振動器を貫
入し、振動器部分に水を噴出しながら地盤を振動させて
締固め、さらに、振動器付近に生じる空隙に礫(レキ)
、すなわち小石や砕石等を投入して振動効果および圧入
効果の増大を図る工法である。また、サンド・コンパク
ション・パイル工法は、地盤中に、振動あるいは衝撃荷
重を利用して砂を圧入し、地盤中に圧縮された砂柱を造
成して地盤の相対密度の増加を図る工法である。
Conventionally known construction methods for improving soft ground include, for example, the vibroflotation method and the sand compaction pile method. The vibro-flotation method involves penetrating a rod-shaped vibrator into the ground, squirting water into the vibrator area and vibrating the ground to compact it, and then filling the voids near the vibrator with gravel.
In other words, this is a construction method in which pebbles, crushed stones, etc. are added to increase the vibration effect and press-fit effect. In addition, the sand compaction pile method is a construction method that uses vibration or shock loads to force sand into the ground, creating compressed sand columns in the ground to increase the relative density of the ground. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記の基礎杭打設工法、特にそれに伴う地盤
の改良工法においては以下のような不都合が生じている
。すなわち、 ■ バイブロ・フローテーション工法は、地盤を振動さ
せつつ礫の投入と振動機のわずかな引き抜きとを交互に
繰り返し、また、サンド・コンパクション・パイル工法
では、砂の投入と圧縮とを交互に繰り返すものであるか
らこれらの作業に手間が掛かり工期を要する。
By the way, the following disadvantages occur in the above-mentioned foundation pile driving method, especially in the ground improvement method accompanying it. In other words, ■ The vibroflotation method alternately repeats the introduction of gravel and slight withdrawal of the vibrator while vibrating the ground, and the sand compaction pile method alternates between the introduction of sand and compaction. Since these operations are repeated, they are labor-intensive and require a long construction period.

■ 地盤の締固め具合の判断が難しく、密度の増加が過
剰となった場合には、基礎杭打設が困難となり基礎杭打
設作業か非常に不効率的となるばかりでなく、最悪の場
合には基礎杭の貫入が不可能となる。
■ If it is difficult to judge the degree of compaction of the ground and the density increases excessively, it will become difficult to drive foundation piles, making the work extremely inefficient, and in the worst case scenario. Penetration of foundation piles becomes impossible.

■ 地盤の締固め時、およびその後の基礎杭打設時と、
振動機を2度にわたって使用する必要があり工程が非能
率的なものとなることに加えて、機械損料を余分に必要
とし不経済となる。
■ During soil compaction and subsequent foundation pile driving,
In addition to the necessity of using the vibrator twice, which makes the process inefficient, additional machine costs are required, which is uneconomical.

といった問題である。This is a problem.

本発明は上記の事情に鑑みてなされたもので、杭打ちと
地盤の締固めとを同時に実施することにより効率的な基
礎杭打設が実現でき、しかし、地盤の締固めも確実に行
うことのできる、地盤締固め併用基礎杭打設工法を提供
することを目的とするものである。
The present invention was made in view of the above circumstances, and it is possible to realize efficient foundation pile driving by simultaneously performing pile driving and ground compaction, but it is also important to ensure that the ground is compacted. The purpose of this invention is to provide a foundation pile driving method that combines soil compaction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る地盤締固め併用基礎杭打設工法は、地盤中
に、礫等よりなるドレーン柱を複数本形成した後、それ
らドレーン柱周辺の地盤中に基礎杭を打設することを特
徴とするもので、さらに、前記基礎杭を地盤中に打設す
る際において前記基礎杭を振動させながら行うものを含
むものである。
The foundation pile driving method combined with ground compaction according to the present invention is characterized by forming a plurality of drain columns made of gravel or the like in the ground, and then driving foundation piles into the ground around the drain columns. The method further includes driving the foundation pile into the ground while vibrating the foundation pile.

〔作用 〕[Effect]

本発明によれば、基礎杭を地盤中に打設した時に、この
杭の打設時の振動により地盤中に過剰水圧か生じ、この
過剰水圧で地盤中の水がドレーン柱内に水平排水されて
地盤が沈下し鉛直方向に圧縮または圧密され、地盤の締
固めがなされる。
According to the present invention, when a foundation pile is driven into the ground, excessive water pressure is generated in the ground due to vibration during driving of the foundation pile, and water in the ground is horizontally drained into the drain column due to this excess water pressure. The ground sinks and is compressed or consolidated in the vertical direction, compacting the ground.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照しながら説明する
An embodiment of the present invention will be described below with reference to the drawings.

まず、第1図の如く地盤G中に、所要の深度に達するド
レーン柱lを多数造成する。各ドレーン柱lは、地盤G
に竪穴を掘削した後、そこに礫や鉱さい、あるいはシン
ダーアッシュ、ボトムアッシュ(フライアッシュの大塊
)等を投入して造られる。これらドレーン柱lの配置は
、例えば第2図の如く地盤G上に基盤の目を描くような
配置とする。
First, as shown in FIG. 1, a large number of drain columns L reaching a required depth are constructed in the ground G. Each drain column l is connected to the ground G
After excavating a pit, gravel, slag, cinder ash, bottom ash (large chunks of fly ash), etc. are poured into it. These drain pillars l are arranged so as to draw the eyes of the foundation on the ground G, for example, as shown in FIG.

しかる後に、抗打ち機を操作して、基礎杭2をドレーン
柱l相互間の地盤G上、すなわち第2図における鎖線で
示すような位置に吊り下ろし、基礎杭2の下端を第3図
の如く地盤Gに当接させる。
After that, operate the piling machine to lower the foundation pile 2 onto the ground G between the drain columns L, that is, at the position shown by the chain line in FIG. Bring it into contact with the ground G.

ここで使用される杭打ち機を簡単に説明すれば、第5図
に示すものがその杭打ち機3で、図における符号4はク
ローラクレーン、符号5はクローラクレーン4に支持さ
れるガイドマスト、符号6はガイドマスト5の上端より
懸吊される吊り治具で、この吊り治具6に加振機7を介
して前記基礎杭2が吊り下げされる。加振機7はいわゆ
るバイブロハンマまたはパイルドライバで、基礎杭2に
鉛直方向の振動を与えながら基礎杭2を地盤内に貫入さ
せるものである。
To briefly explain the pile driving machine used here, the one shown in FIG. Reference numeral 6 denotes a hanging jig suspended from the upper end of the guide mast 5, and the foundation pile 2 is suspended from this hanging jig 6 via a vibrator 7. The vibration exciter 7 is a so-called vibrohammer or a pile driver, and is used to penetrate the foundation pile 2 into the ground while applying vertical vibration to the foundation pile 2.

第3図の状態となったならば、前記加振機7を作動させ
て基礎杭2に振動を与え、これにより第4図の如く基礎
杭2を地盤G中の所定深度まで貫入する。このとき、基
礎杭2の振動が、基礎杭2自体の表面積の広さにより地
盤G内へ伝達し、この振動により地盤G中に過剰水圧が
生じる。そして、この過剰水圧により地盤G中の水が貫
入箇所周辺のドレーン柱1内へ水平排水される。したが
って、排水された地盤Gは沈下し、鉛直方向に圧縮され
て締固められるのである。以降は同様に、前記杭打ち機
3により地盤G上のドレーン柱l相互間の他の位置に、
次々に基礎杭2を打ち込んでゆく。
When the state shown in FIG. 3 is reached, the vibrator 7 is operated to apply vibration to the foundation pile 2, thereby penetrating the foundation pile 2 into the ground G to a predetermined depth as shown in FIG. At this time, the vibration of the foundation pile 2 is transmitted into the ground G due to the large surface area of the foundation pile 2 itself, and excessive water pressure is generated in the ground G due to this vibration. Then, due to this excess water pressure, water in the ground G is horizontally drained into the drain column 1 around the penetration point. Therefore, the drained ground G sinks and is compressed and compacted in the vertical direction. Thereafter, in the same manner, the pile driver 3 is used to place the drain pillars l on the ground G at other positions between them.
Drive foundation piles 2 one after another.

このような作業により、多数のドレーン柱lを配置した
付近−帯の地盤Gが締め固められる。ちなみに、上記工
法により沈下した地表面(局所的に発生する穴等)を元
の標高まで回復させる必要かある場合には、機械的な転
圧、締固め、または動圧密工法等により他の場所から運
んだ土砂を締固めればよい。
Through such work, the ground G in the area around and around where a large number of drain columns 1 are arranged is compacted. By the way, if it is necessary to restore the ground surface (locally generated holes, etc.) that has subsided due to the above construction method to its original elevation, it may be necessary to restore it to the original elevation by mechanical compaction, compaction, or dynamic consolidation method. All you have to do is compact the earth and sand transported from the ground.

次に、本工法に係わるいくつかの実験結果を示して本発
明の作用効果をより明確にする。ただし実験は、ドレー
ン柱lを直径0.5m1深さl1mのらのとし、杭とし
ては直径1.2m、長さ121!1の鋼管とし、第6図
の如くこの鋼管8をドレーン柱1に外嵌するような工法
により行ったものである。加振機7としてはバイブロハ
ンマVM2−25000Aを用いた。ちなみに、この工
法は、本出願人が先に発明、出願した「地盤の締固め工
法および締固め装置」(特願昭60−276398号明
細書)に準するものである。
Next, some experimental results related to this method will be shown to clarify the effects of the present invention. However, in the experiment, the drain pillar 1 was made into a square with a diameter of 0.5 m and a depth of 1 m, and the pile was a steel pipe with a diameter of 1.2 m and a length of 121!1, and this steel pipe 8 was attached to the drain pillar 1 as shown in Figure 6. This was done using a construction method that involved external fitting. As the vibrator 7, a vibrohammer VM2-25000A was used. Incidentally, this construction method is based on the "Ground Compaction Method and Compaction Apparatus" (Japanese Patent Application No. 60-276398), which was previously invented and filed by the present applicant.

第7図は、鋼管8貫入前の地盤および貫入後の地盤に対
して各々標準貫入試験を行ったときの、地盤の深度とN
値(標準貫入試験で試錘をある地層に30cm貫入させ
るに要する打撃回数)との関係を、貫入前地盤の地層状
態と共に示したグラフである。この図から明らかなよう
に貫入前のN値(線図A)は平均約4.6、貫入後のN
値(線図B)は平均約23.6 と原地盤の4倍以上で
、貫入後の地盤が貫入前の地盤に対し著しく締め固めら
れることが判る。
Figure 7 shows the depth and N of the ground when standard penetration tests were conducted on the ground before and after the steel pipe 8 penetrated.
It is a graph showing the relationship between the value (the number of blows required to penetrate 30 cm of a test weight into a certain stratum in a standard penetration test) together with the stratum condition of the ground before penetration. As is clear from this figure, the average N value before penetration (diagram A) is approximately 4.6, and the N value after penetration
The average value (diagram B) is approximately 23.6, which is more than four times that of the original ground, indicating that the ground after penetration is significantly compacted compared to the ground before penetration.

第8図は、ドレーン柱lを形成せず原地盤に単に鋼管8
を打設した場合(線図C)と、上記の如く、ドレーン柱
lを形成した後、それを内包する形態に鋼管8を打設し
た場合(線図D)の地盤Gの沈下量を示したグラフであ
る。加振後の沈下量を比較してみると、ドレーン柱lを
形成した場合には265〜405cmと、鋼管のみを打
設した場合の65cm〜75cI11に比較して極めて
沈下量が大きく、水平方向の排水による締固め効果があ
ることが明確に判る。また、ドレーン柱1を形成した場
合(線図D)、全沈下量の63%〜75%が打設時に生
じており、加振を行わず打設のみでも十分な締固め作用
があると判断できる。このことは、杭打ち機3として本
実施例では加振機7が装備されたものを使用しているが
、加振作用を持たないパイルハンマ等による施工も可能
であることを意味するものである。
Figure 8 shows a steel pipe 8 simply placed on the ground without forming a drain column l.
The amount of subsidence of the ground G is shown in the case where the drain column 1 is cast (diagram C) and when the steel pipe 8 is cast in a form that encloses the drain column 1 as described above (diagram D). This is a graph. Comparing the amount of settlement after vibration, the amount of settlement in the case of forming the drain column 1 is 265 to 405 cm, which is extremely large compared to 65 to 75 cm in the case of installing only the steel pipe, and the amount of settlement in the horizontal direction It is clearly seen that there is a compaction effect due to drainage. In addition, when drain pillar 1 was formed (diagram D), 63% to 75% of the total settlement occurred during pouring, and it was determined that pouring alone without vibration had sufficient compaction effect. can. This means that although a pile driver 3 equipped with a vibrator 7 is used in this embodiment, it is also possible to perform construction using a pile hammer or the like that does not have a vibrating effect. .

また、第9図は本実験法による締固めの効果を示すため
に、道路橋示方言・同解説(日本道路協会、昭和55年
5月、p16〜20)に基づき、N値より相対密度Dr
を求めたものである。実験前と実験後のDrを、粒度分
析結果によるFc(74μ以下の細粒分の含有率)に対
して示している。この図より、実験前の相対密度Drの
平均値(線図E)は38.3%であるが、実験後のDr
平均値(線図F)では73.8% と実験前の2倍近く
となっている。しかも、実験後のDrの最小値は約40
%で、実験前のDrの上限近くにあり、本方法による締
固め効果が著しいことが判る。
In addition, in order to show the compaction effect of this experimental method, Figure 9 shows the relative density Dr
This is what we sought. The Dr before and after the experiment is shown with respect to Fc (content rate of fine particles of 74μ or less) according to the particle size analysis results. From this figure, the average value of relative density Dr before the experiment (diagram E) is 38.3%, but after the experiment Dr
The average value (diagram F) is 73.8%, nearly double the value before the experiment. Furthermore, the minimum value of Dr after the experiment was approximately 40.
%, which is close to the upper limit of Dr before the experiment, indicating that the compaction effect of this method is remarkable.

さらに第10図は、道路橋示方言・同解説に基づきN値
と平均粒径I)soを用いて動的せん断強度比Rを求め
、実験前と実験後のRをFcに対して示したものである
。この動的せん断強度比Rからは液状化抵抗強度を判断
することができる。ちなみに液状化とは、飽和した砂等
が、振動・衝撃などにより間隙水圧が急激に増大するた
め、せん断抵抗がなくなる現象を言う。この図において
、実験前のRの平均値(線図H)は0.182  であ
るが、実験後のR平均値(線図■)は0.310と約1
.7倍となっている。また、実験前のRの最小値は0.
025  程度であるが、実験後では約O1であり、R
の下限値は約4倍増と大きく向上したことが判る。
Furthermore, Figure 10 shows the dynamic shear strength ratio R calculated using the N value and the average particle size I)so based on the explanation of the road bridge specification dialect, and shows R before and after the experiment versus Fc. It is something. The liquefaction resistance strength can be determined from this dynamic shear strength ratio R. Incidentally, liquefaction is a phenomenon in which saturated sand loses its shear resistance due to a sudden increase in pore water pressure due to vibrations, shocks, etc. In this figure, the average R value before the experiment (diagram H) is 0.182, but the average R value after the experiment (diagram ■) is 0.310, about 1
.. It is 7 times more. Also, the minimum value of R before the experiment was 0.
025, but after the experiment it was about O1, and R
It can be seen that the lower limit of is greatly improved by about 4 times.

ところで、本発明に係る基礎杭打設工法は、多数形成さ
れたドレーン柱Iの間に基礎杭2を打ち込むものであり
、ドレーン柱1を内包する形態に鋼管8を打設する上記
実験例とは全くの同一ではない。従って、数値的なもの
が上記実験例と全て一致するものとはならないが、地盤
G内に埋設されるものとしての杭が、鋼管よりも体積を
有することを考慮すれば、むしろ上記実験例よりら良好
な締固め効果が発揮されると判断できる。
By the way, the foundation pile driving method according to the present invention is to drive the foundation piles 2 between the drain columns I formed in large numbers, and is different from the above experimental example in which the steel pipe 8 is driven in a form that includes the drain columns 1. are not exactly the same. Therefore, although the numerical values do not all match the above experimental example, if we consider that the pile buried in the ground G has a larger volume than the steel pipe, it is actually better than the above experimental example. It can be judged that a good compaction effect is achieved.

このように本工法は、基礎杭2の打込みと、地盤Gの締
固めすなわち地盤改良とを同時に行うものである。しか
も、その際の地盤の締固めは、例えばバイブロ・フロー
テーション工法のように砂等の投入と振動器の引き抜き
を繰り返すものではなく、単に基礎杭2を地盤中に一度
だけ打ち込めばよいものであるから、杭打ち作業との同
時施工と相まって極めて効率的なものとなる。また、基
礎杭2は、既に締固めを施された地盤に打設されるもの
ではなく、軟質な地盤に打ち込まれるものであるから打
ち込みが容易で、これによる基礎杭打設工程のさらなる
効率化、すなわち工期短縮およびコストダウンが実現さ
れる。
In this manner, this construction method simultaneously performs driving of the foundation piles 2 and compaction of the ground G, that is, ground improvement. Moreover, the compaction of the ground at that time does not involve repeating the injection of sand and the removal of vibrators as in the case of the vibro-flotation method, for example, but it is simply a matter of driving the foundation piles 2 into the ground once. This makes it extremely efficient when combined with pile driving work. In addition, the foundation pile 2 is not driven into the already compacted ground, but into soft ground, so it is easy to drive, which further improves the efficiency of the foundation pile driving process. In other words, shortening of construction period and cost reduction are realized.

なお、本実施例では、上記基礎杭2を一般的な既成杭と
しているが、この基礎杭2を、その外表面に径方向に突
出する突出部が多数形成されたものなどとしてもよく、
このようにした場合には、杭の打ち込みによる地盤Gへ
の振動伝達がより向上し、この結果、地盤内の水の水平
排水がより確実になされ、締固め作用が増大する。
In this embodiment, the foundation pile 2 is a general prefabricated pile, but the foundation pile 2 may be formed with a large number of protrusions projecting in the radial direction on its outer surface.
In this case, vibration transmission to the ground G due to pile driving is further improved, and as a result, horizontal drainage of water in the ground is more reliably achieved, and the compaction effect is increased.

〔0発明の効果 〕 以上説明したとおり、本発明に係る地盤締固め併用基礎
杭打設工法は、地盤中に、礫等よりなるドレーン柱を複
数本形成した後、それらドレーン柱周辺の地盤中に基礎
杭を打設するものとしたから、基礎杭の打込みと同時に
地盤の締固めを行うことができる。しかし、その際の地
盤の締固めは、例えばバイブロ・フローテーション工法
のように砂等の投入と振動器の引き抜きとを繰り返すも
のではなく、単に基礎杭を地盤中に打ち込むことにより
なされるものであるから、打ち作業との同時施工と相ま
って、地盤の締固めを要する基礎地盤における基礎杭打
設作業を極めて効率的なものとする。また、基礎杭が、
既に締固めを施された地盤に打設されるものではなく、
軟質な地盤に打ち込まれるものであるから打ち込みが容
易で、これによるさらなる工期短縮およびコストダウン
を実現する、等の優れた効果を奏するものである。
[0 Effects of the Invention] As explained above, the foundation pile driving method combined with ground compaction according to the present invention, after forming a plurality of drain columns made of gravel etc. in the ground, Since the foundation piles are to be driven at the site, the ground can be compacted at the same time as the foundation piles are driven. However, the compaction of the ground in this case is not done by repeatedly putting in sand and pulling out a vibrator, as is the case with the vibro-flotation method, for example, but by simply driving foundation piles into the ground. This makes the foundation pile driving work in the foundation ground, which requires soil compaction, extremely efficient when combined with the simultaneous construction with the driving work. In addition, the foundation pile
It is not installed in the ground that has already been compacted,
Since it is driven into soft ground, it is easy to drive, and this has excellent effects such as further shortening the construction period and reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例による基礎打設
工法をその工程に従って示したもので、第1図は地盤中
に造成されたドレーン柱を示す断面図、第2図はドレー
ン柱の配置例を示したドレーン柱の平面図、第3図は基
礎杭の打設開始状部をドレーン柱と共に示した断面図、
第4図は基礎杭の打設状態をドレーン柱と共に示した断
面図。 第5図は杭打ち機の一例を示した側面図。第6図は1本
発明に係わる実験例を示したもので、鋼管の打設状態を
ドレーン柱と共に示す断面図。第7図ないし第10図は
第6図に示した実施例により得られたデータの一部を示
すもので、第7図はN値を鋼管貫入前と鋼管貫入後にお
いて比較したグラフ、第8図は地盤の沈下量を鋼管のみ
打設した場合とドレーン柱を形成した場合とにおいて比
較したグラフ、第9図は相対密度Drを実験前と実験後
とにおいて比較したグラフ、第1O図は動的せん断強度
比Rを実験前と実験後とにおいて比較したグラフである
。 G・・・・・・地盤、  l・・・・・・ドレーン柱、
 2・・・・・・基礎杭、7・・・・・・加振機。
Figures 1 to 4 show the foundation pouring method according to the steps according to an embodiment of the present invention. A plan view of a drain column showing an example of the arrangement of the columns, FIG. 3 is a sectional view showing the starting point of foundation pile driving together with the drain column,
Figure 4 is a sectional view showing the driving state of foundation piles together with drain columns. FIG. 5 is a side view showing an example of a pile driver. FIG. 6 shows an experimental example according to the present invention, and is a sectional view showing the installation state of a steel pipe together with a drain column. Figures 7 to 10 show some of the data obtained by the example shown in Figure 6, where Figure 7 is a graph comparing the N value before and after penetration of the steel pipe, and Figure 8 is a graph comparing the N value before and after penetration of the steel pipe. Figure 9 is a graph comparing the amount of ground subsidence when only steel pipes are placed and when drain columns are formed. Figure 9 is a graph comparing the relative density Dr before and after the experiment. 3 is a graph comparing the target shear strength ratio R before and after the experiment. G...Ground, l...Drain pillar,
2... Foundation pile, 7... Vibrator.

Claims (2)

【特許請求の範囲】[Claims] (1)構造物の荷重を地盤に支持させるための基礎杭を
地盤中に貫入する際の基礎杭打設工法であって、地盤中
に、礫等よりなるドレーン柱を複数本形成した後、それ
らドレーン柱周辺の地盤中に基礎杭を打設することを特
徴とする地盤締固め併用基礎杭打設工法。
(1) A foundation pile driving method for penetrating foundation piles into the ground to support the load of a structure in the ground, after forming a plurality of drain columns made of gravel etc. in the ground, A method for driving foundation piles combined with ground compaction, which is characterized by driving foundation piles into the ground around these drain columns.
(2)前記基礎杭を振動させながら地盤中に打設するこ
とを特徴とする特許請求の範囲第1項記載の地盤締固め
併用基礎杭打設工法。
(2) The foundation pile driving method combined with ground compaction according to claim 1, characterized in that the foundation pile is driven into the ground while being vibrated.
JP15280487A 1987-06-19 1987-06-19 Foundation pile driving method as well as ground compaction Pending JPS63315721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15280487A JPS63315721A (en) 1987-06-19 1987-06-19 Foundation pile driving method as well as ground compaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15280487A JPS63315721A (en) 1987-06-19 1987-06-19 Foundation pile driving method as well as ground compaction

Publications (1)

Publication Number Publication Date
JPS63315721A true JPS63315721A (en) 1988-12-23

Family

ID=15548518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15280487A Pending JPS63315721A (en) 1987-06-19 1987-06-19 Foundation pile driving method as well as ground compaction

Country Status (1)

Country Link
JP (1) JPS63315721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665914A (en) * 1992-08-18 1994-03-08 Penta Ocean Constr Co Ltd Ground compaction method
JP2020180458A (en) * 2019-04-24 2020-11-05 株式会社竹中工務店 Ground liquefaction suppression structure
WO2020240779A1 (en) * 2019-05-30 2020-12-03 株式会社アサヒテクノ Ground improvement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123511A (en) * 1977-04-04 1978-10-28 Chiyoda Chem Eng Construct Co Method and device for stabilizing sandy ground
JPS60250122A (en) * 1984-05-25 1985-12-10 Takechi Koumushiyo:Kk Foundation pile structure for preventing liquefaction of ground

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123511A (en) * 1977-04-04 1978-10-28 Chiyoda Chem Eng Construct Co Method and device for stabilizing sandy ground
JPS60250122A (en) * 1984-05-25 1985-12-10 Takechi Koumushiyo:Kk Foundation pile structure for preventing liquefaction of ground

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665914A (en) * 1992-08-18 1994-03-08 Penta Ocean Constr Co Ltd Ground compaction method
JP2020180458A (en) * 2019-04-24 2020-11-05 株式会社竹中工務店 Ground liquefaction suppression structure
WO2020240779A1 (en) * 2019-05-30 2020-12-03 株式会社アサヒテクノ Ground improvement method

Similar Documents

Publication Publication Date Title
EP1157169B1 (en) Short aggregate pier techniques
US5249892A (en) Short aggregate piers and method and apparatus for producing same
US8221034B2 (en) Methods of providing a support column
US20060088388A1 (en) Method and apparatus for providing a rammed aggregate pier
CN105113478A (en) Dynamic compaction treatment method of deep foundation displacement
US11124937B1 (en) Rapid consolidation and compaction method for soil improvement of various layers of soils and intermediate geomaterials in a soil deposit
JP7554501B2 (en) Rapid consolidation and compaction methods for remediation of various layers of soil and intermediate geological materials in soil piles.
JP3486572B2 (en) Ground reinforcement composite method
JP2000170149A (en) Forming method for underground pile and equipment therefor
US11486110B2 (en) Porous displacement piles meeting filter design criteria for rapid consolidation and densification of subsurface soils and intermediate geomaterials
JPS63315721A (en) Foundation pile driving method as well as ground compaction
JP3144767B2 (en) Underground pile forming method and apparatus
CN102619218B (en) Rear slotting reinforcing cage CFG and piling method thereof
JP4189078B2 (en) Construction method of underground structure in liquefied ground
JP2601702B2 (en) Soft ground improvement method
US11261576B1 (en) Rapid consolidation and compaction method for soil improvement of various layers of soils and intermediate geomaterials in a soil deposit
US20220235531A1 (en) Rapid consolidation and compaction method for soil improvement of various layers of soils and intermediate geomaterials in a soil deposit
CN1621623A (en) Construction method of composite ground foundation
Hamidi et al. Advances in dynamic compaction
JPH086307B2 (en) Liquefaction prevention method for sand ground and excavation compaction device used therefor
KR960003748B1 (en) Working method of concrete pile or sand pile for a soft-soil foundation
JP3185154B2 (en) Ground improvement method
RU2139975C1 (en) Method for building cast-in-place piles and fortifying their bases
JP2024123504A (en) Ground improvement methods
JPS62137317A (en) Method and apparatus for compaction of ground