JPH0639379A - Method and apparatus for removing ozone in water - Google Patents

Method and apparatus for removing ozone in water

Info

Publication number
JPH0639379A
JPH0639379A JP19555392A JP19555392A JPH0639379A JP H0639379 A JPH0639379 A JP H0639379A JP 19555392 A JP19555392 A JP 19555392A JP 19555392 A JP19555392 A JP 19555392A JP H0639379 A JPH0639379 A JP H0639379A
Authority
JP
Japan
Prior art keywords
ozone
water
palladium catalyst
ultraviolet
decomposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19555392A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawada
和彦 川田
Toshiki Manabe
敏樹 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP19555392A priority Critical patent/JPH0639379A/en
Publication of JPH0639379A publication Critical patent/JPH0639379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To remove sufficiently a decomposed product with oxidative force such as remaining ozone, hydrogen peroxide etc., by irradiating water contg. ozone with an ultraviolet ray and bringing the water contg. ozone irradiated with the ultraviolet ray into contact with a palladium catalyst. CONSTITUTION:Water contg. ozone to be treated at first passes through the first flow path 3 and flows into an irradiation part 1, wherein it is irradiated with an ultraviolet ray and a part of ozone is decomposed by the ultraviolet ray. Then, the ultraviolet ray-irradiated water contg. ozone passes through the second flow path 4 and is sent to a palladium catalyst part 2 of the downstream side, where it is brought into contact with the palladium catalyst and ozone in the water is furthermore decomposed and the water wherein ozone has been decomposed passes through the third flow path 5 and is sent to a required part as a ozone-decomposed and treated water. In addition, the ultraviolet irradiation apparatus used in an ultraviolet irradiation part 1 is not especially restricted but a UV lamp is used and the palladium catalyst used at a palladium catalyst part 2 is constituted of a metal palladium and a carrier for palladium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水中の溶存オゾンを除
去する方法、及びオゾン除去装置に関し、更に詳述すれ
ば電子工業の洗浄用水、発電用ボイラ補給水、ボイラ給
水、ボイラ復水、上水等の製造過程において被処理水を
オゾン処理した際に、その処理水中に残留する溶存オゾ
ンの除去に有効な、水中のオゾン除去方法及び除去装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing dissolved ozone in water, and an ozone removing apparatus. More specifically, it is used for cleaning water in the electronic industry, boiler make-up water for power generation, boiler feed water, boiler condensate, The present invention relates to a method and apparatus for removing ozone in water, which is effective in removing dissolved ozone remaining in the treated water when the treated water is subjected to ozone treatment in the manufacturing process of tap water or the like.

【0002】[0002]

【従来の技術】水中のオゾンの除去方法として、従来よ
り薬品添加による分解、活性炭による分解、紫外線照射
による分解等の方法がある。
2. Description of the Related Art As methods for removing ozone from water, there have been conventionally known methods such as decomposition by addition of chemicals, decomposition by activated carbon, and decomposition by ultraviolet irradiation.

【0003】薬品添加によるオゾンの分解方法は、オゾ
ンを含む被処理水中にチオ硫酸ナトリウム等の還元剤を
添加して中和する方法と、苛性ソーダ等を添加してpH
を上げて塩基性にする事によって、オゾンが酸素に自己
分解する事を利用する方法とがある。
The ozone can be decomposed by adding chemicals, such as a method of neutralizing by adding a reducing agent such as sodium thiosulfate to the water to be treated containing ozone, and a method of adding caustic soda to adjust the pH.
There is a method that utilizes the fact that ozone self-decomposes into oxygen by raising the temperature to make it basic.

【0004】活性炭による方法は、比較的遅い流速で被
処理水と活性炭を接触させて触媒反応でオゾンを分解さ
せる方法である。
The method using activated carbon is a method in which water to be treated and activated carbon are brought into contact with each other at a relatively low flow rate to decompose ozone by a catalytic reaction.

【0005】また、紫外線を照射すると水中のオゾン
が、光化学的に分解する事が知られている。
It is also known that ozone in water is photochemically decomposed when irradiated with ultraviolet rays.

【0006】これらの方法では、添加した薬品の処理設
備を設ける必要が生じ、残オゾンが完全に除去できなか
ったり、分解の過程で過酸化水素が発生したり、また活
性炭が破壊して微粉炭を生じたりする問題がある。例え
ば、電子工業用の洗浄用水を製造する装置は、複数のユ
ニットプロセスにより構成されており、その中には塩化
ビニル等の配管材や、イオン交換樹脂、限外濾過膜およ
び逆浸透膜などの合成高分子素材が数多く使われてい
る。このような合成高分子素材は残オゾンによって酸化
劣化し、また微粉炭の発生はこれらの膜の目詰まりの原
因となり、更に微粉炭にはオゾン分解により生じた極く
微量の過酸化水素が吸着している可能性があり、そのた
めか微粉炭が膜やイオン交換樹脂層に補足された際に膜
の表面やイオン交換樹脂を酸化劣化させる問題がある。
この様に完全に分解できなかったオゾンや副生成物とし
ての過酸化水素によって構成部材が酸化分解されて劣化
し、水質悪化の原因、および部材の交換頻度が増加し
て、運転コストが上昇するなどの問題が生じてきた。
[0006] In these methods, it is necessary to provide a treatment facility for the added chemicals, residual ozone cannot be completely removed, hydrogen peroxide is generated in the process of decomposition, and activated carbon is destroyed to generate pulverized coal. There is a problem that causes. For example, an apparatus for producing cleaning water for the electronic industry is composed of a plurality of unit processes, and among them, piping materials such as vinyl chloride, ion exchange resins, ultrafiltration membranes and reverse osmosis membranes are used. Many synthetic polymer materials are used. Such synthetic polymer materials are oxidatively deteriorated by residual ozone, and the generation of pulverized coal causes clogging of these membranes. Furthermore, the pulverized coal adsorbs a very small amount of hydrogen peroxide generated by ozone decomposition. Therefore, there is a problem that when the pulverized coal is captured by the membrane or the ion exchange resin layer, the surface of the membrane or the ion exchange resin is oxidatively deteriorated.
In this way, the components that are not completely decomposed are decomposed by oxidative decomposition due to ozone and hydrogen peroxide as a by-product, which causes deterioration of water quality and the frequency of replacement of members, which increases operating costs. And other problems have arisen.

【0007】[0007]

【発明が解決しようとする課題】本発明は、薬品の添加
をする事なく水中のオゾンおよび酸化力を有する副生成
物を完全に除去する方法及び装置を提供することを目的
とするもので、本発明を用いることにより、用水のオゾ
ン処理を例えば電子工業の洗浄用水製造プロセスに組み
込み可能とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and apparatus for completely removing ozone and by-products having oxidizing power in water without adding chemicals. By using the present invention, ozone treatment of water can be incorporated into, for example, a washing water manufacturing process of the electronic industry.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、オゾンを含有する水に紫外線を照射し、次
いで紫外線を照射したオゾンを含有する水をパラジウム
触媒と接触させるもので、オゾンを含有する水又は紫外
線を照射したオゾンを含有する水に水素を溶解させるこ
とを含む。
In order to achieve the above object, the present invention is to irradiate water containing ozone with ultraviolet rays, and then contact the water containing ozone irradiated with ultraviolet rays with a palladium catalyst, Dissolving hydrogen in water containing ozone or water containing ozone irradiated with ultraviolet rays.

【0009】また、本発明は水中のオゾン除去装置を、
オゾンを含有する水が流通する流通路と、前記流通路に
沿って配設した紫外線照射部と、前記紫外線照射部より
も下流側の流通路に配設したパラジウム触媒部とから構
成するもので、紫外線照射部の上流側又は紫外線照射部
とパラジウム触媒部との間の流通路に水素溶解手段を有
することを含む。
The present invention also provides an apparatus for removing ozone in water,
A flow passage through which water containing ozone flows, an ultraviolet irradiation unit arranged along the flow passage, and a palladium catalyst unit arranged in a flow passage downstream of the ultraviolet irradiation unit. , And having a hydrogen-dissolving means on the upstream side of the ultraviolet irradiation section or in the flow path between the ultraviolet irradiation section and the palladium catalyst section.

【0010】以下、本発明を図面を参照して説明する。The present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施態様を示すもので図
中1は紫外線照射部、2はパラジウム触媒部で、これら
照射部1、触媒部2には第1流通路3、第2流通路4、
第3流通路5が連結してある。処理されるオゾンを含有
する水は、まず第1流通路3を通って前記照射部1に流
入し、ここで紫外線の照射を受け、これによりオゾンの
一部が紫外線分解される。
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is an ultraviolet irradiation unit, 2 is a palladium catalyst unit, and the irradiation unit 1 and the catalyst unit 2 have a first flow passage 3 and a second flow passage. Road 4,
The third flow passage 5 is connected. The water containing ozone to be treated first flows into the irradiation unit 1 through the first flow passage 3 and is irradiated with ultraviolet rays, whereby a part of ozone is decomposed by ultraviolet rays.

【0012】次いで、紫外線を照射したオゾンを含有す
る水は第2流通路4を通って照射部1の下流側に配設し
たパラジウム触媒部2へ送られ、ここでパラジウム触媒
と接触して水中のオゾンは更に分解される。オゾンが分
解された水は第3流通路5を通り、オゾン分解処理水と
して所望の部所へ送られる。
Then, the ozone-containing water irradiated with the ultraviolet rays is sent to the palladium catalyst section 2 arranged downstream of the irradiation section 1 through the second flow passage 4, where it is brought into contact with the palladium catalyst to be submerged in water. The ozone is further decomposed. The water in which ozone is decomposed passes through the third flow passage 5 and is sent to a desired place as ozone decomposition treated water.

【0013】紫外線照射部1で用いられる紫外線照射装
置は、特に限定されるものではないが一般にUVランプ
と称されているもの(波長170nmから400nmの
紫外線を発生するランプ)が利用できる。紫外線を30
W・h/m3 以上で照射すればオゾンの分解は促進され
る。さらに紫外線の照射量を300W・h/m3 以上と
すればオゾンを完全に除去できるが、その副生成物が増
加していく。従って、被処理水に対する紫外線の照射量
は、一般的に30〜300W・h/m3 が好ましい。
The UV irradiator used in the UV irradiator 1 is not particularly limited, but what is generally called a UV lamp (a lamp which emits UV having a wavelength of 170 nm to 400 nm) can be used. 30 UV rays
Irradiation at Wh / m 3 or higher accelerates ozone decomposition. Further, if the irradiation amount of ultraviolet rays is 300 W · h / m 3 or more, ozone can be completely removed, but the by-products increase. Therefore, the irradiation amount of ultraviolet rays to the water to be treated is generally preferably 30 to 300 W · h / m 3 .

【0014】パラジウム触媒部2で用いるパラジウム触
媒は、金属状パラジウムとパラジウムの担体からなる。
担体としては、イオン交換樹脂、活性炭および無機交換
体等が挙げられる。金属状パラジウムとしては有機合成
等で一般に還元触媒として用いられる微粉末状のものが
好ましい。パラジウム触媒は、紫外線照射装置で完全に
分解されなかったオゾン、及び紫外線照射によって生じ
た過酸化水素等の酸化力を持つ副生成物を分解する事が
できる。パラジウム触媒によるオゾン、および酸化力を
有する副生物の分解の機構は、完全に解明されている訳
ではないが、触媒反応的に分解を促進していると考えら
れる。これらの処理によってオゾン分解の生成物は、最
終的に全て酸素(O2 )となる。O2 は、溶存酸素とし
て被処理水中に残存するか、溶解度を越えたものについ
ては、気泡となって被処理水中より放出される。
The palladium catalyst used in the palladium catalyst section 2 comprises metallic palladium and a palladium carrier.
Examples of the carrier include ion exchange resins, activated carbon and inorganic exchangers. The metallic palladium is preferably a fine powder which is generally used as a reduction catalyst in organic synthesis and the like. The palladium catalyst is capable of decomposing ozone which has not been completely decomposed by the ultraviolet irradiation device and byproducts having an oxidizing power such as hydrogen peroxide generated by the ultraviolet irradiation. Although the mechanism of decomposition of ozone and byproducts having oxidizing power by a palladium catalyst is not completely understood, it is considered that the decomposition is catalytically promoted. By these treatments, the products of ozonolysis finally become all oxygen (O 2 ). O 2 remains as dissolved oxygen in the water to be treated, or if it exceeds the solubility, it becomes bubbles and is released from the water to be treated.

【0015】パラジウム触媒部2の通水量は目的によっ
て異なるが、電子工業の洗浄用水に用いる場合等は、担
体を充填して固定床にしてSV10からSV300で通
水することが望ましい。
The amount of water passing through the palladium catalyst portion 2 varies depending on the purpose, but when it is used for washing water in the electronics industry, it is desirable to fill the carrier with a fixed bed to pass water through SV10 to SV300.

【0016】図2は本発明の他の実施態様を示すもので
ある。
FIG. 2 shows another embodiment of the present invention.

【0017】この態様にあっては、紫外線照射部1とパ
ラジウム触媒部2とを連結する第2流通路4に水素供給
管6を連結し、第2流通路4に水素ガスを供給する手段
とするものである。水素ガスを第2流通路4内のオゾン
を含む水に供給、溶解する手段は適宜選択し得るが、例
えば単にT字管形式で流通路4に水素供給管6を連結
し、この水素供給管6から直接流通路4内に水素ガスを
供給しても良く、またエゼクタ等を用いて効率よく水素
ガスを溶解させることもできる。水素を供給することで
パラジウム触媒でのオゾンおよび副生成物の分解が促進
され、さらに被処理水中の溶存酸素を H2 +1/2
2 →H2 O の反応によって除去できる。このとき水
素の供給量を調整すれば、被処理水の溶存酸素濃度を1
ppb以下まで低減できる。
In this embodiment, a hydrogen supply pipe 6 is connected to the second flow passage 4 connecting the ultraviolet irradiation unit 1 and the palladium catalyst unit 2, and means for supplying hydrogen gas to the second flow passage 4 is provided. To do. The means for supplying and dissolving the hydrogen gas in the water containing ozone in the second flow passage 4 can be appropriately selected. For example, the hydrogen supply pipe 6 is simply connected to the flow passage 4 in the form of a T-shaped pipe. Hydrogen gas may be directly supplied from 6 to the inside of the flow passage 4, or the hydrogen gas can be efficiently dissolved by using an ejector or the like. By supplying hydrogen, the decomposition of ozone and by-products on the palladium catalyst is promoted, and the dissolved oxygen in the water to be treated is changed to H 2 +1/2.
It can be removed by the reaction of O 2 → H 2 O. At this time, if the supply amount of hydrogen is adjusted, the dissolved oxygen concentration of the water to be treated becomes 1
It can be reduced to ppb or less.

【0018】水素の供給量は特に制限はないが、一般的
にオゾンを含有する水中に、水素濃度が0.9mg/l
以上となるように供給することが好ましい。
The amount of hydrogen supplied is not particularly limited, but generally, in water containing ozone, the hydrogen concentration is 0.9 mg / l.
It is preferable to supply the above.

【0019】図3は本発明の更に他の実施態様を示すも
ので、この態様にあっては水素供給管6を第1流通路3
に連結し、紫外線照射部1の上流側(前段)において水
素を供給している。このように水素の添加位置は、パラ
ジウム触媒よりも上流側であれば任意であり、添加場所
による効果の差はほとんどない。
FIG. 3 shows still another embodiment of the present invention. In this embodiment, the hydrogen supply pipe 6 is connected to the first flow passage 3
, And hydrogen is supplied on the upstream side (previous stage) of the ultraviolet irradiation unit 1. As described above, the hydrogen adding position is arbitrary as long as it is located upstream of the palladium catalyst, and there is almost no difference in effect depending on the adding place.

【0020】以下に実施例を示すが本発明はこれらに限
定されるものでは無い。
Examples are shown below, but the present invention is not limited to these.

【0021】[0021]

【実施例】【Example】

実施例1 図1に示される構成の装置を用い、純酸素を原料として
発生させたオゾン化酸素を吹き込んだオゾン濃度15p
pmのオゾン水(溶存酸素濃度20.2ppm、過酸化
水素は検出されず)を紫外線殺菌器(千代田工販製 S
X−1/2)に紫外線の照射量30W・h/m3 で通水
した。続いて、上記紫外線を照射した水をパラジウム触
媒樹脂(ロームアンドハース社製 AMBERLYST
ER−206)を充填したカラム(触媒樹脂塔)にS
V120で通水した。この時のパラジウム触媒樹脂塔処
理水のオゾン濃度、過酸化水素濃度並びに溶存酸素濃度
を表に示す。
Example 1 Using the apparatus having the configuration shown in FIG. 1, ozone concentration of 15 p in which ozonized oxygen generated from pure oxygen as a raw material was blown
pm ozone water (dissolved oxygen concentration 20.2ppm, hydrogen peroxide is not detected) UV sterilizer (Chiyoda Kou S
Water was passed through X-1 / 2) at a UV irradiation dose of 30 W · h / m 3 . Subsequently, the water irradiated with the above ultraviolet rays was treated with palladium catalyst resin (AMBERLYST manufactured by Rohm and Haas Co.).
ER-206) is packed in a column (catalyst resin tower) filled with S
Water was passed at V120. The ozone concentration, hydrogen peroxide concentration, and dissolved oxygen concentration of the palladium catalyst resin tower treated water at this time are shown in the table.

【0022】実施例2 実施例1の装置で、紫外線殺菌器とパラジウム触媒樹脂
塔の間に水素ガスをエゼクターを用いて導入した。この
とき、パラジウム触媒樹脂塔入口水の溶存水素濃度を
3.5ppmになるように調整した。この時のパラジウ
ム触媒樹脂塔処理水のオゾン濃度、過酸化水素濃度並び
に溶存酸素濃度を表に示す。なお、オゾン濃度はオゾン
計(オービスフェア製 model 27505)、過
酸化水素濃度は過マンガン酸カリウムによる滴定、溶存
酸素濃度は、溶存酸素計(東亜電波工業製 DO−30
A)を用いて測定した。
Example 2 In the apparatus of Example 1, hydrogen gas was introduced between the ultraviolet sterilizer and the palladium catalyst resin tower using an ejector. At this time, the dissolved hydrogen concentration of the palladium catalyst resin tower inlet water was adjusted to 3.5 ppm. The ozone concentration, hydrogen peroxide concentration, and dissolved oxygen concentration of the palladium catalyst resin tower treated water at this time are shown in the table. The ozone concentration was measured with an ozone meter (Model 27505 manufactured by Orvissphere), the hydrogen peroxide concentration was titrated with potassium permanganate, and the dissolved oxygen concentration was measured with a dissolved oxygen meter (DO-30 manufactured by Toa Denpa Kogyo).
It was measured using A).

【0023】実施例3 実施例1の装置で、紫外線照射部として用いた紫外線殺
菌器の前に水素ガスをエゼクターを用いて導入した。こ
れにより、紫外線殺菌器入口水は溶存水素で飽和され
た。この時のパラジウム触媒樹脂塔処理水のオゾン濃
度、過酸化水素濃度並びに溶存酸素濃度を表に示す。
Example 3 In the apparatus of Example 1, hydrogen gas was introduced using an ejector in front of the ultraviolet sterilizer used as the ultraviolet irradiation section. As a result, the water entering the ultraviolet sterilizer was saturated with dissolved hydrogen. The ozone concentration, hydrogen peroxide concentration, and dissolved oxygen concentration of the palladium catalyst resin tower treated water at this time are shown in the table.

【0024】比較例1 実施例1と同じオゾン水を紫外線殺菌器(千代田工販製
SX−1/2)に照射量30W・h/m3 で通水し
た。この時の紫外線殺菌器の処理水のオゾン濃度、過酸
化水素濃度並びに溶存酸素濃度を表に示す。
Comparative Example 1 The same ozone water as in Example 1 was passed through an ultraviolet sterilizer (SX-1 / 2, manufactured by Chiyoda Kogyo Co., Ltd.) at an irradiation dose of 30 W · h / m 3 . The ozone concentration, hydrogen peroxide concentration and dissolved oxygen concentration of the treated water of the ultraviolet sterilizer at this time are shown in the table.

【0025】比較例2 実施例1と同じオゾン水を紫外線殺菌器(千代田工販製
SX−1/2)に照射量300W・h/m3 で通水し
た。この時の紫外線殺菌器の処理水のオゾン濃度、過酸
化水素濃度並びに溶存酸素濃度を表に示す。
Comparative Example 2 The same ozone water as in Example 1 was passed through an ultraviolet sterilizer (SX-1 / 2 manufactured by Chiyoda Kogyo Co., Ltd.) at an irradiation dose of 300 W · h / m 3 . The ozone concentration, hydrogen peroxide concentration and dissolved oxygen concentration of the treated water of the ultraviolet sterilizer at this time are shown in the table.

【0026】比較例3 実施例1と同じオゾン濃度15ppmのオゾン水をSV
40で活性炭塔に通水した。この時の活性炭塔の処理水
のオゾン濃度、過酸化水素濃度並びに溶存酸素濃度を表
に示す。
Comparative Example 3 The same ozone water having an ozone concentration of 15 ppm as in Example 1 was used as an SV.
At 40, water was passed through the activated carbon tower. The ozone concentration, hydrogen peroxide concentration and dissolved oxygen concentration of the treated water of the activated carbon tower at this time are shown in the table.

【0027】この例にあっては、オゾンの除去はある程
度できたが、本発明の実施例ほど完全ではなく、また処
理水には活性炭の微粒子が分散していた。
In this example, ozone was removed to some extent, but it was not as complete as in the examples of the present invention, and fine particles of activated carbon were dispersed in the treated water.

【0028】[0028]

【表1】 以上の結果からわかるように紫外線照射装置とパラジウ
ム触媒を組み合わせる事でオゾン並びに分解によって生
じる過酸化水素等の分解生成物を完全にしかも簡便に除
去できる事がわかった。従来法の紫外線照射あるいは活
性炭によるオゾン分解に比べて高効率であり、活性炭で
問題になる微粉炭(微粒子)の放出といったものがなく
被処理水を汚染する事なくオゾンを分解する事ができる
手法である事がわかる。
[Table 1] As can be seen from the above results, ozone and a decomposition product such as hydrogen peroxide generated by decomposition can be completely and easily removed by combining an ultraviolet irradiation device and a palladium catalyst. A method that is more efficient than conventional methods such as UV irradiation or ozone decomposition by activated carbon, and can decompose ozone without polluting treated water without the emission of pulverized coal (fine particles), which is a problem with activated carbon. I understand that.

【0029】[0029]

【発明の効果】本発明は、水中の溶存オゾン分解の方法
として紫外線照射装置とパラジウム触媒を組み合わせる
事で、装置の構成部材を酸化劣化させる虞れのある残オ
ゾン、過酸化水素等の酸化力のある分解生成物を充分に
除去できる。更に、水素ガスを添加することにより、溶
存酸素も減少できる。
INDUSTRIAL APPLICABILITY According to the present invention, by combining an ultraviolet irradiation device and a palladium catalyst as a method for decomposing dissolved ozone in water, the oxidizing power of residual ozone, hydrogen peroxide, etc. which may cause oxidative deterioration of the constituent members of the device. It is possible to sufficiently remove some decomposition products. Further, by adding hydrogen gas, dissolved oxygen can also be reduced.

【0030】この方法を用いる事で耐酸化性が低く、オ
ゾン処理と組み合わせて用いる事ができなかったイオン
交換樹脂や逆浸透膜等とのオゾン処理の組み合わせが可
能となる。
By using this method, it is possible to combine the ozone treatment with an ion exchange resin, a reverse osmosis membrane, etc., which has low oxidation resistance and cannot be used in combination with the ozone treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の他の実施態様を示す構成図である。FIG. 2 is a configuration diagram showing another embodiment of the present invention.

【図3】本発明の更に他の実施態様を示す構成図であ
る。
FIG. 3 is a configuration diagram showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 紫外線照射部 2 パラジウム触媒部 3 第1流通路 4 第2流通路 5 第3流通路 6 水素供給管 DESCRIPTION OF SYMBOLS 1 Ultraviolet irradiation part 2 Palladium catalyst part 3 1st flow path 4 2nd flow path 5 3rd flow path 6 Hydrogen supply pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 オゾンを含有する水に紫外線を照射し、
次いで紫外線を照射したオゾンを含有する水をパラジウ
ム触媒と接触させることを特徴とする水中のオゾン除去
方法。
1. Irradiating water containing ozone with ultraviolet rays,
Next, a method for removing ozone in water, which comprises contacting water containing ozone irradiated with ultraviolet rays with a palladium catalyst.
【請求項2】 オゾンを含有する水又は紫外線を照射し
たオゾンを含有する水に水素を溶解させる請求項1記載
のオゾン除去方法。
2. The ozone removing method according to claim 1, wherein hydrogen is dissolved in water containing ozone or water containing ozone irradiated with ultraviolet rays.
【請求項3】 オゾンを含有する水が流通する流通路
と、前記流通路に沿って配設した紫外線照射部と、前記
紫外線照射部よりも下流側の流通路に配設したパラジウ
ム触媒部とからなる水中のオゾン除去装置。
3. A flow passage through which water containing ozone flows, an ultraviolet ray irradiating portion arranged along the flow passage, and a palladium catalyst portion arranged in a flow passage downstream of the ultraviolet ray irradiating portion. A device for removing ozone from water.
【請求項4】 紫外線照射部の上流側又は紫外線照射部
とパラジウム触媒部との間の流通路に水素溶解手段を有
してなる請求項3記載のオゾン除去装置。
4. The ozone removing device according to claim 3, further comprising hydrogen dissolving means on the upstream side of the ultraviolet irradiation section or in the flow passage between the ultraviolet irradiation section and the palladium catalyst section.
JP19555392A 1992-07-22 1992-07-22 Method and apparatus for removing ozone in water Pending JPH0639379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19555392A JPH0639379A (en) 1992-07-22 1992-07-22 Method and apparatus for removing ozone in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19555392A JPH0639379A (en) 1992-07-22 1992-07-22 Method and apparatus for removing ozone in water

Publications (1)

Publication Number Publication Date
JPH0639379A true JPH0639379A (en) 1994-02-15

Family

ID=16343024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19555392A Pending JPH0639379A (en) 1992-07-22 1992-07-22 Method and apparatus for removing ozone in water

Country Status (1)

Country Link
JP (1) JPH0639379A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241598A (en) * 1994-03-04 1995-09-19 Nomura Micro Sci Co Ltd Water treatment apparatus
JPH0871547A (en) * 1994-09-05 1996-03-19 Nomura Micro Sci Co Ltd Water treatment method
WO2002005960A1 (en) * 2000-07-19 2002-01-24 Ebara Corporation Ozone removing material and method for preparing the same
JP2007098244A (en) * 2005-10-03 2007-04-19 Nippon Rensui Co Ltd Recycling method of ozone-containing drain
JP2013522021A (en) * 2010-03-15 2013-06-13 シム,ジョン ソプ Gas collection type gas-liquid reaction device, water treatment device using the same, and gas purification device
JP2018094531A (en) * 2016-12-16 2018-06-21 栗田工業株式会社 Ultra pure water manufacturing apparatus and operation method of ultra pure water manufacturing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241598A (en) * 1994-03-04 1995-09-19 Nomura Micro Sci Co Ltd Water treatment apparatus
JPH0871547A (en) * 1994-09-05 1996-03-19 Nomura Micro Sci Co Ltd Water treatment method
WO2002005960A1 (en) * 2000-07-19 2002-01-24 Ebara Corporation Ozone removing material and method for preparing the same
US7291312B2 (en) 2000-07-19 2007-11-06 Ebara Corporation Ozone removing material and method for preparing the same
JP2007098244A (en) * 2005-10-03 2007-04-19 Nippon Rensui Co Ltd Recycling method of ozone-containing drain
JP2013522021A (en) * 2010-03-15 2013-06-13 シム,ジョン ソプ Gas collection type gas-liquid reaction device, water treatment device using the same, and gas purification device
JP2018094531A (en) * 2016-12-16 2018-06-21 栗田工業株式会社 Ultra pure water manufacturing apparatus and operation method of ultra pure water manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP3491666B2 (en) Method and apparatus for controlling TOC component removal
CN109906206B (en) Water treatment method and apparatus
KR100581746B1 (en) System for treating water
TWI732969B (en) Water treatment method and apparatus
JPH1199395A (en) Treatment of organic matter containing water
US6846468B2 (en) Method for decomposing bromic acid by photocatalyst and apparatus therefor
JPH0639379A (en) Method and apparatus for removing ozone in water
JPH1057749A (en) Method for deodorizing air by ozonized water and air deodorizer
JP2007083171A (en) Method and apparatus for treating water
JP3506171B2 (en) Method and apparatus for removing TOC component
JPH06254549A (en) Processing device for ozone-containing water
EP0242941B1 (en) Process and apparatus for the deodorization of air
JP3560631B2 (en) Water treatment equipment
JP5826667B2 (en) Washing wastewater treatment apparatus and washing wastewater treatment method
JP2006272052A (en) Method and device for treating organic substance-containing water
JP2006280999A (en) Method for detoxifying organic arsenical compound
WO1995003261A1 (en) Treating unsaturated hydrocarbons
JP2001017995A (en) Treatment of volatile organochlorine compound and device therefor
JPH1128482A (en) Production of pure water
JPH1142486A (en) Promoted oxidation device by ozone contact means
JP5720122B2 (en) Ultrapure water production system
JPH09174048A (en) Method for removing organic substance in water
JP4230675B2 (en) Treatment of bromic acid-containing wastewater
JPH11114588A (en) Production of dissolved oxygen in water
JP2001104996A (en) Water treatment method and apparatus