JPH0638951B2 - How to monitor water-based dirt - Google Patents

How to monitor water-based dirt

Info

Publication number
JPH0638951B2
JPH0638951B2 JP2090006A JP9000690A JPH0638951B2 JP H0638951 B2 JPH0638951 B2 JP H0638951B2 JP 2090006 A JP2090006 A JP 2090006A JP 9000690 A JP9000690 A JP 9000690A JP H0638951 B2 JPH0638951 B2 JP H0638951B2
Authority
JP
Japan
Prior art keywords
cooling water
water
water system
value
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2090006A
Other languages
Japanese (ja)
Other versions
JPH03288586A (en
Inventor
隆彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2090006A priority Critical patent/JPH0638951B2/en
Publication of JPH03288586A publication Critical patent/JPH03288586A/en
Publication of JPH0638951B2 publication Critical patent/JPH0638951B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水系の汚れのモニタリング方法に係り、特に懸
濁物質の流入・流出がある循環冷却水系内の、汚れとし
ての懸濁物質の付着・堆積や、懸濁物質の増加を容易に
かつ正確にモニターすることができる水系の汚れのモニ
タリング方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for monitoring contaminants in a water system, and in particular, to the attachment of suspended substances as contaminants in a circulating cooling water system where inflow and outflow of suspended substances occur. -A method for monitoring water-based fouling that can easily and accurately monitor deposition and increase in suspended solids.

[従来の技術] 開放循環冷却水系では、主に工業用水が循環使用されて
いる。このような水系では蒸発、飛散及びブローにより
保有水量が減少するので、その分補給水を加えて保有水
量が一定となるように調節される。近年、水質の悪化に
伴ない工業用水の懸濁物質は増加する傾向にある。工業
用水中の懸濁物質は、冷却水系内で濃縮され系外に排出
されるが、一方では、冷却水系内で濃縮される過程で流
れの停滞する部分や流速の遅い熱交換器等に付着・堆積
して、伝熱阻害、流路閉塞及び金属材料の腐食などの様
々な障害をひき起こすという問題がある。
[Prior Art] In the open circulation cooling water system, industrial water is mainly circulated. In such a water system, the amount of retained water decreases due to evaporation, scattering, and blowing, so supplementary water is added by that amount so that the amount of retained water is adjusted to be constant. In recent years, the suspended solids of industrial water have been increasing along with the deterioration of water quality. Suspended substances in industrial water are concentrated in the cooling water system and discharged out of the system.On the other hand, they are attached to the part where the flow is stagnant in the process of being concentrated in the cooling water system and the heat exchanger with a slow flow rate. -There is a problem that it accumulates and causes various obstacles such as heat transfer inhibition, flow path blockage, and corrosion of metallic materials.

このような問題を解決するために、従来においては、冷
却水系に分散剤やスライムコントロール剤等の水処理剤
を添加したり、系内の懸濁物質を低濃度に抑えるための
濾過処理を行なうなどの対策が講じられている。
In order to solve such a problem, conventionally, a water treatment agent such as a dispersant or a slime control agent is added to the cooling water system, or a filtration treatment for suppressing the suspended substance in the system to a low concentration is performed. Such measures have been taken.

[発明が解決しようとする課題] しかしながら、季節変動、水質変動等により時々刻々変
化する系内の懸濁物質の付着・堆積挙動を把握し、適正
な濃度及び頻度で水処理剤を添加したり、また、適正な
濾過水量を設定することは非常に困難である。このた
め、従来においては、これらの処理方法の設定条件は経
験的に決められており、水処理剤の過小又は過剰添加、
濾過水量の過小又は過剰通水により、十分な処理効果が
得られず前述したような障害を防止し得ない、或いは、
処理コストが必要以上に高騰するなどの不具合を招いて
いた。
[Problems to be Solved by the Invention] However, it is necessary to grasp the adhesion and deposition behavior of suspended solids in the system, which changes momentarily due to seasonal fluctuations, water quality fluctuations, etc., and to add a water treatment agent at an appropriate concentration and frequency. Moreover, it is very difficult to set an appropriate amount of filtered water. Therefore, conventionally, the setting conditions of these treatment methods have been empirically determined, and an excessive or excessive addition of the water treatment agent,
If the amount of filtered water is too small or too large, sufficient treatment effect cannot be obtained and the above-mentioned trouble cannot be prevented, or
This caused problems such as the processing cost rising more than necessary.

本発明は上記従来の問題点を解決し、時々刻々と変化す
る系内の状況にも十分に対応して、水系内の汚れ(懸濁
物質)を容易かつ正確に、迅速にモニターすることによ
り、適切な汚れ防止対策を実施することを可能とする水
系の汚れのモニタリング方法を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems and sufficiently copes with the situation in the system that changes moment by moment, and easily, accurately, and rapidly monitors the dirt (suspended substance) in the water system. The purpose of the present invention is to provide a method for monitoring water-based dirt that enables appropriate anti-fouling measures to be implemented.

[課題を解決するための手段] 本発明の水系の汚れのモニタリング方法は、濾過器を設
けていない冷却水系又は濾過器を設けた冷却水系の保有
水量を補給水により補充するようにした循環冷却水系に
おける懸濁物質の付着ないし堆積傾向をモニタリングす
ることにより水系の汚れをモニタリングする方法であっ
て、冷却水の電気伝導度もしくはイオン濃度と、補給水
の電気伝導度もしくはイオン濃度と、を求めて各数値を
下記(I)式 に代入して冷却水の濃縮倍数を算出すると共に、冷却水
と補給水の濁度を求め、かつ、濾過器を設けていない冷
却水系の場合には、更に循環冷却水の滞留時間を求め、
下記(II)式 に従って当該冷却水系の懸濁物質の付着ないし堆積傾向
の度合の指標となる汚れ計算値を算出し、濾過器を設け
た冷却水系の場合には、更に循環冷却水の滞留時間と、
濾過水量と、濾過器出口水の濁度と、保有水量とを求
め、下記(III)式 に従って当該冷却水系の懸濁物質の付着ないし堆積傾向
の度合の指標となる汚れ計算値を算出し、算出された汚
れ計算値と予め設定した基準値とを比較することによ
り、前記冷却水系の懸濁物質の付着ないし堆積傾向の度
合をモニタリングすることを特徴とする。
[Means for Solving the Problems] The method for monitoring the contamination of a water system according to the present invention is a circulation cooling system in which the amount of water held in a cooling water system not provided with a filter or a cooling water system provided with a filter is replenished with makeup water. A method for monitoring the contamination of a water system by monitoring the adhesion or accumulation tendency of suspended matter in the water system, wherein the electric conductivity or ion concentration of cooling water and the electric conductivity or ion concentration of makeup water are calculated. Each numerical value by the following formula (I) To calculate the concentration multiple of cooling water, determine the turbidity of the cooling water and makeup water, and, in the case of a cooling water system without a filter, further determine the residence time of the circulating cooling water,
Formula (II) below In accordance with the calculation of the dirt calculation value as an index of the degree of adhesion or deposition tendency of the suspended matter of the cooling water system, in the case of a cooling water system provided with a filter, further the residence time of the circulating cooling water,
Calculate the amount of filtered water, the turbidity of the outlet water of the filter, and the amount of retained water, and use the following formula (III) In accordance with the above, a calculated fouling value, which is an index of the degree of adhesion or accumulation tendency of suspended matter in the cooling water system, is calculated, and the calculated fouling calculation value is compared with a preset reference value to determine the suspension of the cooling water system. It is characterized by monitoring the degree of adhesion or deposition tendency of turbid substances.

[作用] 本発明においては、濾過器を設けていない冷却水系の場
合には、冷却水及び補給水の濁度及び電気伝導度もしく
はイオン濃度と、冷却水系の規模や運転条件等によって
定められる循環冷却水の滞留時間とから、懸濁物質の付
着量ないし堆積傾向の度合の指標となる汚れ計算値を算
出する。また、濾過器を設けた冷却水系の場合には、更
に、濾過水量と、濾過器出口水の濁度と、保有水量とを
用いて汚れ計算値を算出する。
[Operation] In the present invention, in the case of a cooling water system not provided with a filter, circulation determined by the turbidity and electrical conductivity or ion concentration of the cooling water and makeup water and the scale and operating conditions of the cooling water system. From the residence time of the cooling water, the calculated soiling value, which serves as an index of the amount of suspended solids or the degree of deposition tendency, is calculated. Further, in the case of a cooling water system provided with a filter, a fouling calculation value is further calculated using the filtered water amount, the turbidity of the filter outlet water, and the retained water amount.

なお、懸濁物質とは、微生物や系外から取り込まれる砂
等の汚れ分であり、イオンではない。従って塩分とは全
く異なるものである。
The suspended substance is a contaminant such as sand taken in by microorganisms or outside the system and is not an ion. Therefore, it is completely different from salinity.

濾過器の有無による冷却水系の汚れ計算値の算出式であ
る前記(II),(III)式について以下に説明する。
The formulas (II) and (III), which are calculation formulas for the calculation value of the contamination of the cooling water system depending on the presence or absence of the filter, will be described below.

前記(II)式において、分子の「補給水の濁度×濃縮倍
数−冷却水の濁度」は、補給水から持ち込まれた総濁度
から、今の現実の冷却水濁度を引いたもので、この値が
+になれば濁度成分が系内に汚れとして付着・堆積する
傾向にあることを意味し、逆に−になれば、水系内で微
生物が増殖したか、又は冷却塔から大気中の濁度成分が
系内に持ち込まれる傾向を示す。
In the above formula (II), the molecule “turbidity of makeup water × concentration factor−turbidity of cooling water” is the total turbidity brought in from the makeup water minus the actual cooling water turbidity. If this value becomes +, it means that the turbidity component tends to adhere and accumulate as dirt in the system, and if it becomes −, on the other hand, microorganisms grew in the water system, or The turbidity component in the atmosphere tends to be brought into the system.

分母の滞留時間は単位滞留時間当りとするために設けら
れたもので、冷却水系の規模によらず、付着ないし堆積
傾向の度合を把握するためのものである。
The retention time of the denominator is provided so as to be per unit retention time, and is for grasping the degree of adhesion or deposition tendency regardless of the scale of the cooling water system.

系内に濾過器がある場合には、濾過器により除去される
濁質量を補正する必要があり、それが(III)式の[濾
過水量×(冷却水の濁度−濾過器出口水の濁度)/保有
水量]に相当する。
If there is a filter in the system, it is necessary to correct the turbid mass removed by the filter, which is calculated by the formula (III) [filtered water amount x (turbidity of cooling water-turbidity of filter outlet water. Degree) / amount of water held].

いずれの場合も、汚れ計算値が一定の範囲を超えると懸
濁物質の付着ないし堆積傾向の度合が大きくなることを
示し、従って、本発明においては、算出された汚れ計算
値を予め定めた基準値と比較し、汚れ計算値が一定範囲
内となるように薬注制御する。
In any case, it is shown that when the calculated soiling value exceeds a certain range, the degree of adhesion or deposition tendency of suspended solids increases, and therefore, in the present invention, the calculated soiled calculated value is a predetermined criterion. The value is compared with the value, and chemical injection control is performed so that the calculated stain value is within a certain range.

なお、補給水及び冷却水の濁度を測定するための装置と
しては、SS計、濁度計又はそれらに代わるもの、例え
ば、一定距離の光路に対する光の吸収を定量的に計測で
きるようなものを用いることができる。ただし、SS計
の場合にはその値を用いても良いが、濁度等、その他の
値を使用するときには、予め、懸濁物質含有量と濁度の
関係から比例定数を求め、それを用いて値を補正する。
As a device for measuring the turbidity of the makeup water and the cooling water, an SS meter, a turbidimeter, or an alternative thereto, for example, a device capable of quantitatively measuring the absorption of light in an optical path at a certain distance. Can be used. However, in the case of the SS meter, that value may be used, but when using other values such as turbidity, obtain the proportional constant from the relationship between suspended matter content and turbidity in advance and use it. To correct the value.

そして、冷却水の濃縮倍数は、電気伝導度計(μs/c
m)又は各種イオンメーター等の測定値から、前記
(I)式により求めることができる。
And the concentration multiple of the cooling water is the conductivity meter (μs / c
It can be determined from the measurement value of m) or various ion meters and the like by the above formula (I).

本発明者は、前記(II)又は(III)式により求められ
た汚れ計算値が±0.1g/m3/hrの範囲を超えて
いる場合には、ファウリングが生じることを見出した
が、このような場合には、 薬注ポンプが停止している場合には、薬注ポンプを作
動させる。
The present inventor has found that fouling occurs when the calculated stain value determined by the formula (II) or (III) exceeds the range of ± 0.1 g / m 3 / hr. In such a case, if the chemical injection pump is stopped, operate the chemical injection pump.

薬注ポンプが作動している場合には薬注量を2〜50
%増加させる。
Dosing volume is 2 to 50 when dosing pump is operating
%increase.

などの処理を行なう。薬注の代りにブローを行なうこと
もできるが、流入水中にSSが含有されているため、ブ
ローによってもSS量に殆ど差異はない。従って、薬注
処理の方が効果的である。その他、濾過水量を増加させ
るなどの処理を講じることもできる。なお、汚れの判定
基準は前記(II)又は(III)式の計算値である汚れ計
算値が±0.1g/m3/hrの範囲に限らず、その他
の値としてもよいことは言うまでもない。
And so on. Blowing can be performed instead of chemical dosing, but since SS is contained in the inflow water, there is almost no difference in SS amount even by blowing. Therefore, the chemical injection treatment is more effective. In addition, treatment such as increasing the amount of filtered water can be taken. Needless to say, the criterion for determining the stain is not limited to the range where the calculated stain value, which is the calculated value of the formula (II) or (III), is ± 0.1 g / m 3 / hr, and may be any other value. .

本発明においては、前記濃縮倍数及び汚れ計算値の算出
並びに薬注制御はマイクロプロセッサー、シーケンサー
又はパソコンを用いて自動的に行なうことが有利であ
る。
In the present invention, it is advantageous to automatically perform the calculation of the concentration multiple and the calculated soil value and the chemical injection control by using a microprocessor, a sequencer or a personal computer.

[実施例] 以下図面を参照して実施例について説明する。Embodiments Embodiments will be described below with reference to the drawings.

第1図は本発明の実施例を説明するための冷却水系の系
統図である。符号10は冷却塔であり、12は熱交換器
である。この冷却塔10と熱交換器12との間には冷却
水供給管14と冷却水戻管16が配設され、冷却水供給
管14に循環ポンプ17が設けられている。
FIG. 1 is a system diagram of a cooling water system for explaining an embodiment of the present invention. Reference numeral 10 is a cooling tower, and 12 is a heat exchanger. A cooling water supply pipe 14 and a cooling water return pipe 16 are provided between the cooling tower 10 and the heat exchanger 12, and a circulation pump 17 is provided in the cooling water supply pipe 14.

冷却塔10はケーシング18内に充填材20が設置さ
れ、充填材20の上側に散水器22が設けられている。
この散水器22には前記冷却水戻管16が接続されてい
る。充填材20の下側には散水器22から散水された冷
却水を受けるピット24が設けられており、該ピット2
4に前記冷却水供給管14が接続されている。また、ブ
ロー用のブロー配管25が設けられている。ケーシング
18の上部にはファン26が設置され、側面には通風用
開口28が設けられている。
In the cooling tower 10, a filler 20 is installed inside a casing 18, and a water sprinkler 22 is provided above the filler 20.
The cooling water return pipe 16 is connected to the sprinkler 22. A pit 24 for receiving the cooling water sprinkled from the sprinkler 22 is provided below the filling material 20.
4 is connected to the cooling water supply pipe 14. Further, a blow pipe 25 for blowing is provided. A fan 26 is installed on the top of the casing 18, and a ventilation opening 28 is provided on the side surface.

熱交換器12は奪熱部として設置され、冷却塔10は放
熱部として設置されている。そして、熱交換器12、冷
却塔10、冷却水供給管14、冷却水戻管16により循
環系が形成されている。
The heat exchanger 12 is installed as a heat removal part, and the cooling tower 10 is installed as a heat dissipation part. A circulation system is formed by the heat exchanger 12, the cooling tower 10, the cooling water supply pipe 14, and the cooling water return pipe 16.

30はこの冷却水系に補給水を供給するための補給水供
給管(以下、補給管という。)であり、その先端はケー
シング18内に差し込まれるようにして設置されてい
る。
Reference numeral 30 denotes a makeup water supply pipe (hereinafter referred to as a makeup pipe) for supplying makeup water to the cooling water system, and the tip of the makeup water supply pipe is installed so as to be inserted into the casing 18.

また、この冷却水系にスケール防止剤等の水処理剤を薬
注するための薬注手段として、薬注配管32がケーシン
グ18に差し込まれるようにして設置されており、該薬
注配管32は薬注ポンプ34を介して薬注タンク36に
接続されている。
Further, a chemical injection pipe 32 is installed so as to be inserted into the casing 18 as a chemical injection means for injecting a water treatment agent such as a scale inhibitor into the cooling water system. It is connected to a chemical injection tank 36 via an injection pump 34.

次に、循環系及び補給系の水質検査を行なうための装置
構成について説明する。
Next, an apparatus configuration for performing water quality inspection of the circulation system and the replenishment system will be described.

冷却水供給管14からは冷却水を引き抜くための配管3
8が分岐しており、該配管38にはバルブVと濁度計
40及び電気伝導度計42とが設けられ、その先端はケ
ーシング18に差し込まれている。
Piping 3 for drawing cooling water from the cooling water supply pipe 14
8 is branched, a valve V 1 , a turbidity meter 40 and an electric conductivity meter 42 are provided in the pipe 38, and the tip thereof is inserted into the casing 18.

また、補給管30には補給水を引き抜くための配管44
が分岐しており、該配管44にはバルブVと濁度計4
6及び電気伝導度計48とが設けられ、その先端はケー
シング18に差し込まれている。
In addition, the supply pipe 30 has a pipe 44 for extracting makeup water.
Is branched, and a valve V 2 and a turbidimeter 4 are connected to the pipe 44.
6 and an electric conductivity meter 48 are provided, the tip of which is inserted into the casing 18.

濁度計40及び46並びに電気伝導度計42及び48の
検出値(濁度計40、46及び電気伝導度計42、48
の出力はいずれも4〜20mA)はそれぞれ演算部(演
算回路、薬注コントロール用発信機能付)50に入力さ
れる。
Detected values of turbidimeters 40 and 46 and electric conductivity meters 42 and 48 (turbidity meters 40 and 46 and electric conductivity meters 42 and 48)
Each of the outputs of 4 to 20 mA) is input to an arithmetic unit (with an arithmetic circuit and a drug injection control transmission function) 50.

一方、薬注ポンプ34にはインバータ(薬注ポンプの注
入量調節器)52が接続され、演算部50の信号により
薬注量を制御できるように構成されている。
On the other hand, an inverter (injection amount regulator of the chemical injection pump) 52 is connected to the chemical injection pump 34, and the chemical injection amount can be controlled by a signal from the calculation unit 50.

このように構成された冷却水系の作動について次に説明
する。
The operation of the cooling water system configured as described above will be described below.

冷却塔10から循環ポンプ17、冷却水供給管14を経
て熱交換器12に供給された冷却水は、該熱交換器12
にて熱を奪った後冷却水戻管16で冷却塔に戻される。
また、蒸発水、ブロー水、飛散損失水を補うために補給
管30から補給水がこの系内に補給される。また、薬注
配管32からスケール防止剤等が薬注される。
The cooling water supplied from the cooling tower 10 to the heat exchanger 12 via the circulation pump 17 and the cooling water supply pipe 14 is
After depriving the heat at, it is returned to the cooling tower by the cooling water return pipe 16.
In addition, makeup water is replenished into the system from the replenishment pipe 30 in order to supplement the evaporated water, blow water, and water lost by scattering. Further, a scale inhibitor or the like is dosed from the dose pipe 32.

この循環系を循環する水の濁度及び電気伝導度と、補給
水の濁度及び電気伝導度が、濁度計40、46及び電気
伝導度計42、48並びにバルブV,Vの開閉によ
り連続的又は間欠的に測定され、演算部50においては
これらの検出信号と冷却水系の規模や運転条件によって
定まる循環冷却水の滞留時間に基づいて前述の計算式に
従って汚れ計算値が算出され、その値に基いて判定が行
なわれている。そして、汚れ計算値が基準範囲を超え、
汚れ発生と判断されるときにはインバータ52により薬
注ポンプ34の作動を制御して薬注量を制御する。
The turbidity and electrical conductivity of the water circulating in this circulation system and the turbidity and electrical conductivity of the makeup water are determined by the turbidity meters 40 and 46 and the electrical conductivity meters 42 and 48, and the opening and closing of the valves V 1 and V 2 . Is continuously or intermittently measured by the calculation unit 50, and in the calculation unit 50, the fouling calculation value is calculated according to the above-described calculation formula based on the detection signals and the residence time of the circulating cooling water determined by the scale and operating conditions of the cooling water system, The determination is made based on that value. And the dirt calculation value exceeds the reference range,
When it is determined that dirt has occurred, the operation of the chemical injection pump 34 is controlled by the inverter 52 to control the chemical injection amount.

なお、第1図に示す例では、濾過器のない場合を示した
が、本発明は濾過器を用いた系にも適用できることは言
うまでもない。なお、この場合には濾過器の出口水の濁
度を検出する装置を設ける必要がある。
In addition, in the example shown in FIG. 1, the case without a filter is shown, but it goes without saying that the present invention can be applied to a system using a filter. In this case, it is necessary to provide a device for detecting the turbidity of the outlet water of the filter.

以下に実験例を挙げて、本発明をより具体的に説明す
る。
Hereinafter, the present invention will be described more specifically with reference to experimental examples.

実験例1 石油化学プラントの冷却水系に第1図に示す装置を設置
し、本発明に従って汚れの状態をモニタリングして、そ
の結果に基づいて5重量%次亜塩素酸ソーダの注入量を
コントロールした。本冷却水系の懸濁物質含有量/濁度
は1の関係であった。次亜塩素酸ソーダの注入頻度は、
毎日3時間であり、本実験例では、前記(II)式による
汚れ計算値が±0.1g/m3/hrの範囲となるよう
に注入ストロークを60/hr±30/hrの範囲
で制御した。
Experimental Example 1 The apparatus shown in FIG. 1 was installed in the cooling water system of a petrochemical plant, the state of dirt was monitored according to the present invention, and the injection amount of 5 wt% sodium hypochlorite was controlled based on the result. . The suspended matter content / turbidity of this cooling water system had a relationship of 1. The injection frequency of sodium hypochlorite is
In this experimental example, the injection stroke is controlled within the range of 60 / hr ± 30 / hr so that the calculated soil value by the formula (II) is within the range of ± 0.1 g / m 3 / hr in this experimental example. did.

比較のため、第1図に示す装置による制御を行なわず、
5重量%次亜塩素酸ソーダの注入量を4月〜10月は8
0/hr、11月〜3月は50/hrと設定した場
合についての結果を第3図及び第1表に示す。
For comparison, the control by the device shown in FIG.
The injection amount of 5% by weight sodium hypochlorite is 8 in April to October.
The results in the case of setting 0 / hr and 50 / hr from November to March are shown in FIG. 3 and Table 1.

なお、第2図及び第3図において、グラフ内の数値は前
記(II)式により算出した汚れ計算値を表わす。また、
●は冷却水の濁度(実測値)であり▽は補給水の濁度
(実測値)に前記(I)式で求めた濃縮倍数を乗じた計
算値である。
In FIGS. 2 and 3, the numerical values in the graphs represent the stain calculation values calculated by the equation (II). Also,
● indicates the turbidity of the cooling water (measured value), and ∇ indicates the calculated value obtained by multiplying the turbidity of the makeup water (measured value) by the concentration multiple obtained by the formula (I).

本実施例のプラントでは、春先から夏場にかけて理論計
算による濁度の上昇が見られる。第1図の装置取付前に
は、系内に汚れの堆積が生じ冷却水系の濁度は低下して
いた(第3図)。これに対し、第1図の装置取付後に
は、理論値と実測値の間の差異は殆どなくなり(第2
図)、検査時の状況は第1表に示すように、第1図の装
置取付以前には汚れの付着・堆積が激しく、2次腐食が
観察されたのに対し、第1図の装置取付後には汚れの付
着・堆積は殆ど認められず、腐食も殆ど生じていなかっ
た。
In the plant of this example, an increase in turbidity due to theoretical calculation is seen from early spring to summer. Before the device shown in FIG. 1 was attached, dirt was accumulated in the system and the turbidity of the cooling water system was lowered (FIG. 3). On the other hand, after mounting the device shown in FIG. 1, there is almost no difference between the theoretical value and the actually measured value (second
(Fig.) As shown in Table 1, the situation at the time of inspection was such that before the installation of the device in Fig. 1, the adhesion and accumulation of dirt was severe and the secondary corrosion was observed. After that, almost no dirt was attached or accumulated, and corrosion was hardly generated.

[発明の効果] 以上詳述した通り、本発明の水系の汚れのモニタリング
方法によれば、季節変動等により時々刻々と変化する水
系の汚れの状態を懸濁物質の付着ないし堆積傾向の度合
として容易にかつ正確に、良好な応答性により検出する
ことができる。従って、本発明を採用してその結果に基
いて薬注又は濾過処理を行なうことにより、 汚れの状態に応じて適正な薬品処理が行なえる。
[Effects of the Invention] As described in detail above, according to the method for monitoring water-based dirt of the present invention, the state of water-based dirt, which changes from moment to moment due to seasonal fluctuations, etc. It can be detected easily and accurately with good responsiveness. Therefore, by adopting the present invention and performing chemical injection or filtration treatment based on the result, proper chemical treatment can be performed according to the state of dirt.

薬剤の過剰注入によるロスを軽減できる。Loss due to excessive drug injection can be reduced.

適正な濾過処理を行なえる。Appropriate filtration processing can be performed.

濾過装置の性能の評価も行なえる。即ち、濾過不良、
例えば濾過層内のチャンネリングなどを早期に発見でき
る。
The performance of the filtration device can also be evaluated. That is, poor filtration,
For example, channeling in the filtration layer can be found early.

等の効果が奏され、系内の汚れの付着・堆積による各種
障害、例えば伝熱阻害、流路閉塞、2次腐食等を効果的
に防止することが可能とされる。
It is possible to effectively prevent various obstacles due to adhesion and accumulation of dirt in the system, such as heat transfer inhibition, flow path blockage, and secondary corrosion.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例装置の系統図、第2図及び第3
図は実験例1の結果を示すグラフである。 10…冷却塔、12…熱交換器、 14…冷却水供給管、16…冷却水戻管、 17…循環ポンプ、30…補給管、 32…薬注配管、34…薬注ポンプ、 40、46…濁度計、 42、48…電気伝導度計、 50…演算部、52…インバータ。
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 and FIG.
The figure is a graph showing the results of Experimental Example 1. DESCRIPTION OF SYMBOLS 10 ... Cooling tower, 12 ... Heat exchanger, 14 ... Cooling water supply pipe, 16 ... Cooling water return pipe, 17 ... Circulation pump, 30 ... Supply pipe, 32 ... Chemical injection pipe, 34 ... Chemical injection pump, 40, 46 ... Turbidity meter, 42, 48 ... Electrical conductivity meter, 50 ... Calculation unit, 52 ... Inverter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】濾過器を設けていない冷却水系又は濾過器
を設けた冷却水系の保有水量を補給水により補充するよ
うにした循環冷却水系における懸濁物質の付着ないし堆
積傾向をモニタリングすることにより水系の汚れをモニ
タリングする方法であって、 冷却水の電気伝導度もしくはイオン濃度と、 補給水の電気伝導度もしくはイオン濃度と、 を求めて各数値を下記(I)式に代入して冷却水の濃縮
倍数を算出すると共に、冷却水と補給水の濁度を求め、
かつ、 濾過器を設けていない冷却水系の場合には、更に循環冷
却水の滞留時間を求め、下記(II)式に従って当該冷却
水系の懸濁物質の付着ないし堆積傾向の度合の指標とな
る汚れ計算値を算出し、 濾過器を設けた冷却水系の場合には、更に循環冷却水の
滞留時間と、濾過水量と、濾過器出口水の濁度と、保有
水量とを求め、下記(III)式に従って当該冷却水系の
懸濁物質の付着ないし堆積傾向の度合の指標となる汚れ
計算値を算出し、 算出された汚れ計算値と予め設定した基準値とを比較す
ることにより、前記冷却水系の懸濁物質の付着ないし堆
積傾向の度合をモニタリングすることを特徴とする冷却
水系の汚れのモニタリング方法。
Claims: 1. By monitoring the adhesion or accumulation tendency of suspended matter in a circulating cooling water system in which the amount of water held in a cooling water system not provided with a filter or in a cooling water system provided with a filter is replenished with makeup water. This is a method of monitoring water-based dirt, in which the electric conductivity or ion concentration of cooling water and the electric conductivity or ion concentration of makeup water are obtained, and each numerical value is substituted into the formula (I) below to obtain cooling water. And calculate the turbidity of the cooling water and makeup water,
Moreover, in the case of a cooling water system without a filter, the retention time of the circulating cooling water is further calculated, and dirt that is an index of the degree of adhesion or accumulation tendency of suspended matter in the cooling water system is calculated according to the following formula (II). Calculate the calculated value, and in the case of a cooling water system equipped with a filter, calculate the retention time of circulating cooling water, the amount of filtered water, the turbidity of the water at the outlet of the filter, and the amount of retained water. By calculating the calculated fouling value as an index of the degree of adhesion or accumulation tendency of suspended matter in the cooling water system according to the formula, and comparing the calculated fouling calculation value with a preset reference value, the cooling water system A method for monitoring contaminants in a cooling water system, which comprises monitoring the degree of adhesion or deposition tendency of suspended solids.
JP2090006A 1990-04-04 1990-04-04 How to monitor water-based dirt Expired - Lifetime JPH0638951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090006A JPH0638951B2 (en) 1990-04-04 1990-04-04 How to monitor water-based dirt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090006A JPH0638951B2 (en) 1990-04-04 1990-04-04 How to monitor water-based dirt

Publications (2)

Publication Number Publication Date
JPH03288586A JPH03288586A (en) 1991-12-18
JPH0638951B2 true JPH0638951B2 (en) 1994-05-25

Family

ID=13986543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090006A Expired - Lifetime JPH0638951B2 (en) 1990-04-04 1990-04-04 How to monitor water-based dirt

Country Status (1)

Country Link
JP (1) JPH0638951B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855791A (en) * 1996-02-29 1999-01-05 Ashland Chemical Company Performance-based control system
DE19847275A1 (en) * 1998-10-14 2000-04-20 Henkel Kgaa Process to calculate the quantity of coolant additive to be added to a closed coolant system operates without the use of tracer substances
DE19857544A1 (en) * 1998-12-14 2000-06-15 Henkel Kgaa Control of the drain in cooling circuits
FR2795713B1 (en) * 1999-07-01 2003-10-03 Suez Lyonnaise Des Eaux METHOD FOR CONDUCTING URBAN WASTEWATER TREATMENT PLANTS, BASED ON LOAD INDICATIONS
JP4711187B2 (en) * 2006-03-31 2011-06-29 アクアス株式会社 Water treatment chemical injection method and injection system thereof
JP5345344B2 (en) * 2008-06-20 2013-11-20 オルガノ株式会社 Scale inhibitor supply management method and supply management apparatus
WO2010147189A1 (en) * 2009-06-19 2010-12-23 旭硝子株式会社 Top roller, float glass production device, and float glass production method
JP5943196B2 (en) * 2012-06-26 2016-06-29 栗田工業株式会社 Water treatment facility control method, control program, and water treatment system
JP5895967B2 (en) * 2014-04-18 2016-03-30 栗田工業株式会社 Concentration multiple measurement device, concentration multiple measurement method, and water quality index value measurement method
JP6582757B2 (en) * 2015-09-01 2019-10-02 栗田工業株式会社 Water quality measuring method and apparatus
JP7284634B2 (en) * 2019-05-20 2023-05-31 アクアス株式会社 Cooling tower water quality control device and its water quality control method
CN110759523A (en) * 2019-10-22 2020-02-07 上海铱钶环保科技有限公司 Method and equipment for treating circulating cooling water by lime softening and ozone
JP2022056057A (en) * 2020-09-29 2022-04-08 三菱重工業株式会社 Water quality management device of plant, plant, and water quality management method of plant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551805A (en) * 1978-05-22 1980-01-09 Kurita Water Ind Ltd Water quality controller
JPS57204277A (en) * 1981-06-10 1982-12-14 Hitachi Ltd Method for controlling water quality of aqueous recirculatory cooling system
JPS58122082A (en) * 1982-01-18 1983-07-20 Fuji Facom Corp Controlling method of salt concentration in circulating water system

Also Published As

Publication number Publication date
JPH03288586A (en) 1991-12-18

Similar Documents

Publication Publication Date Title
JPH0638951B2 (en) How to monitor water-based dirt
US5360549A (en) Feed back control deposit inhibitor dosage optimization system
JP5801031B2 (en) Water treatment system
BR112020005049B1 (en) METHOD
PT1980535E (en) Performance-based control system
US5246594A (en) Process for controlling the ph value of an acid scrubbing liquid
JP7354113B2 (en) Cooling water monitoring and control system
JPS62129698A (en) Anticorrosion and antidirt control device for condenser
US11662314B2 (en) System and method of inline deposit detection in process fluid
JP2017037033A (en) Method for cleaning surface of detection unit of light receiver/emitter installed on water passing-type turbidimeter with scattered light method
Prince What causes customer complaints about discoloured drinking water?
JP2000185276A (en) Water monitoring member and water monitor apparatus using the same and filter device of water monitoring member
EP0224270A1 (en) Method of monitoring the inner surface of copper-alloy condensor tubes
JP2794772B2 (en) Prediction method of corrosion of water-based metal
JP2581630B2 (en) Precipitation scale removal device
CN105884112A (en) Comprehensive treatment device for circulating water
US20180215640A1 (en) System for Treating the Water for a Cooling Tower
CN206696273U (en) A kind of flow cell based on the measurement of high impurity high microsteping waste water in-line meter
EP2188611A1 (en) Apparatus and method for monitoring deposition in systems containing process liquids
JPH1128474A (en) Method for evaluating slime generation condition of paper pulp production process and slime control method therefor
US4535622A (en) Non-clogging deposit monitor
CN110088559B (en) Cooling tower adjusting method and system
CN206725549U (en) A kind of flow cell of in-line meter measurement
JPH04278198A (en) Control method of contamination of copper alloy member
JP2020085264A (en) Heat exchange system and monitoring method of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090525

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 16

EXPY Cancellation because of completion of term