JP2017037033A - Method for cleaning surface of detection unit of light receiver/emitter installed on water passing-type turbidimeter with scattered light method - Google Patents

Method for cleaning surface of detection unit of light receiver/emitter installed on water passing-type turbidimeter with scattered light method Download PDF

Info

Publication number
JP2017037033A
JP2017037033A JP2015159446A JP2015159446A JP2017037033A JP 2017037033 A JP2017037033 A JP 2017037033A JP 2015159446 A JP2015159446 A JP 2015159446A JP 2015159446 A JP2015159446 A JP 2015159446A JP 2017037033 A JP2017037033 A JP 2017037033A
Authority
JP
Japan
Prior art keywords
water
detection unit
turbidimeter
cleaning
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015159446A
Other languages
Japanese (ja)
Inventor
拓人 後藤
Takuto Goto
拓人 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015159446A priority Critical patent/JP2017037033A/en
Publication of JP2017037033A publication Critical patent/JP2017037033A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide cleaning method that efficiently cleans a detection unit while continuously measuring the turbidness of processed water of industrial waste water by using a water passing-type turbidimeter with a scattered light method and can prevent deterioration in measurement accuracy.SOLUTION: A cleaning method is for cleaning the surface of a detection unit 17 containing a light receiver and a light emitter installed inside the detection unit of a turbidimeter with a scattered light method when measuring the turbidness of processed water of industrial waste water by using the passing water-type turbidimeter with a scattered light method. The cleaning method emits cleaning water to the surface of the detection unit with an inclination angle 60-80° to the normal of the surface of the detection unit.SELECTED DRAWING: Figure 1

Description

本発明は、各種の工場に設置される様々な設備機器から排出される排水(以下、工場排水という)を工場外へ排出するために処理された、処理水の濁度を測定する際に処理水中の懸濁物の量を検出する濁度計に配設される受発光器の検出部表面を洗浄する方法に関するものである。   The present invention is used to measure the turbidity of treated water that has been treated to discharge wastewater discharged from various equipment installed in various factories (hereinafter referred to as factory wastewater) to the outside of the factory. The present invention relates to a method for cleaning the surface of a detection unit of a light-receiving / emitting device disposed in a turbidimeter that detects the amount of suspension in water.

工場排水には種々の物質が溶解しているので、工場排水を工場外へ排出する際には、それらの物質を除去し、排水基準をクリアする水質まで浄化する必要がある。工場排水に溶解した物質(以下、溶解物質という)を除去する技術としては、中和剤の添加(すなわちpHの調整)や凝集剤の添加等によって溶解物質を分離除去する技術が実用化されている。その工場排水の処理工程の一例を図3に示す。   Since various substances are dissolved in the factory effluent, when discharging the factory effluent outside the factory, it is necessary to remove these substances and purify the water quality to meet the effluent standards. As a technique for removing substances dissolved in factory wastewater (hereinafter referred to as dissolved substances), a technique for separating and removing dissolved substances by adding a neutralizing agent (that is, adjusting pH) or adding a flocculant has been put into practical use. Yes. An example of the processing process of the factory waste water is shown in FIG.

図3に示す処理工程では、場内に設置された各設備から工場排水1を原水槽2に誘導して一旦貯留する。そして原水槽2から工場排水1を中和設備3内の混合槽3aへ供給して、工場排水1中の溶解物質を均一に分散させる。次に、1次中和槽3b、2次中和槽3cにてそれぞれ中和剤10を添加し、さらに凝集槽3dにて凝集剤11を添加して、溶解物質を凝集させた後、沈殿槽4へ供給して、凝集した大粒の溶解物質を沈殿させる。ここで凝集沈殿した溶解物質9(以下、沈殿物という)は、沈殿槽4の底部から排出される。なお沈殿物9は、産業廃棄物として処理を施された後に、廃棄される。   In the treatment process shown in FIG. 3, the factory waste water 1 is guided to the raw water tank 2 from each facility installed in the site and temporarily stored. And the factory waste water 1 is supplied from the raw water tank 2 to the mixing tank 3a in the neutralization equipment 3, and the dissolved substance in the factory waste water 1 is uniformly dispersed. Next, the neutralizing agent 10 is added in the primary neutralizing tank 3b and the secondary neutralizing tank 3c, respectively, and the flocculant 11 is further added in the coagulating tank 3d to coagulate the dissolved substance, followed by precipitation. It supplies to the tank 4, and the aggregated large-sized dissolved substance is precipitated. The dissolved substance 9 (hereinafter referred to as “precipitate”) coagulated and precipitated here is discharged from the bottom of the precipitation tank 4. The precipitate 9 is disposed after being treated as industrial waste.

このようにして沈殿物9を除去された工場排水1は、凝集した溶解物質の微細な粒子が浮遊しているので、その微細な粒子(以下、懸濁物質という)を除去するために、ろ過槽5へ供給される。ろ過によって懸濁物質を除去された工場排水1は処理水30として、貯留槽6に一旦貯留され、さらに排水溝7を通って工場外へ排出される。   In the industrial waste water 1 from which the precipitate 9 has been removed in this way, since fine particles of the agglomerated dissolved substance are floating, filtration is performed to remove the fine particles (hereinafter referred to as suspended substances). It is supplied to the tank 5. The factory waste water 1 from which suspended substances have been removed by filtration is temporarily stored as treated water 30 in the storage tank 6 and further discharged through the drain groove 7 to the outside of the factory.

このとき、適正な沈殿処理やろ過処理が行なわれなかった場合は、懸濁物質が混入した工場排水1が排水溝から場外へ排出される虞がある。そこで、一連の処理工程が適切に行なわれていることを確認するために、排水溝7にて濁度計8を用いて処理水30の濁度(すなわち懸濁物質の量)を測定している。そして濁度の測定値が予め設定された基準値を超えた場合は、処理水30の排出を停止して、沈殿処理やろ過処理を適正に行なうために、中和設備3や沈殿槽4の操業条件を調整する。   At this time, if appropriate precipitation treatment or filtration treatment is not performed, the factory wastewater 1 mixed with suspended substances may be discharged from the drainage channel to the outside. Therefore, in order to confirm that a series of treatment steps are properly performed, the turbidity (that is, the amount of suspended solids) of the treated water 30 is measured by using the turbidimeter 8 in the drain groove 7. Yes. When the measured value of turbidity exceeds a preset reference value, the discharge of the treated water 30 is stopped, and the neutralization equipment 3 and the sedimentation tank 4 are used in order to appropriately perform the precipitation treatment and the filtration treatment. Adjust operating conditions.

排水溝7内の処理水30の濁度を測定するにあたって、従来から、浸漬型の濁度計8が広く使用されている。浸漬型の濁度計8は、排水溝7を流れる処理水30に濁度計8を浸漬して濁度を連続的に測定するものである。工場排水1の処理過程において、pHを調整する中和剤として石灰を使用するため、処理水30中には微細なCa化合物が懸濁しており、このようなCa化合物は、濁度計8の検出部表面に付着することがあり、放置しておくと検出部表面を汚すことになり、濁度計8の受発光器での光を散乱させてしまい、適正な濁度測定ができなくなることがある。そのため、濁度計8の検出部表面は適当なタイミングで洗浄する必要がある。その洗浄作業は、作業員が濁度計8を排水溝7から取り出して、検出部の汚れを塩酸等で洗浄し、再び排水溝7内に浸漬させるという手順で行なわれる。   In measuring the turbidity of the treated water 30 in the drain groove 7, an immersion type turbidimeter 8 has been widely used conventionally. The immersion-type turbidimeter 8 is for continuously measuring the turbidity by immersing the turbidimeter 8 in the treated water 30 flowing through the drainage groove 7. Since lime is used as a neutralizing agent for adjusting pH in the process of treating the industrial waste water 1, fine Ca compounds are suspended in the treated water 30, and such Ca compounds are contained in the turbidimeter 8 It may adhere to the surface of the detection unit, and if left unattended, it will contaminate the surface of the detection unit, scatter the light at the light receiving / emitting device of the turbidimeter 8 and prevent proper turbidity measurement. There is. Therefore, the surface of the detection part of the turbidimeter 8 needs to be washed at an appropriate timing. The cleaning operation is performed by a procedure in which an operator takes out the turbidimeter 8 from the drainage groove 7, cleans the dirt of the detection unit with hydrochloric acid or the like, and immerses it again in the drainage groove 7.

このような作業は、定期的に作業者が現場へ出向いて実施する人力作業となる。また、濁度計8を排水溝7から取り外し、さらに取り付ける作業は、排水溝7に設けた開口部の周辺で行なうので、安全面の問題も生じる。   Such a work is a human-powered work that is regularly performed by an operator who visits the site. Moreover, since the operation | work which removes the turbidimeter 8 from the drainage groove 7, and also attaches is performed around the opening part provided in the drainage groove 7, the problem of a safety surface also arises.

特許文献1には、浸漬型の検出器の検出部に圧縮気体を噴射して検出器を洗浄する方法が開示されている。しかし散乱光方式濁度計のような発光部とその光の散乱光を検出する受光部を有する濁度計の場合には、バックグラウンドの影響を極力抑える必要があり、一定の配管流路を形成してそこに濁度計を設置する通水型とすることが多く、配管流路内に圧縮気体を多量に吹き込むことは、好ましくないという問題がある。   Patent Document 1 discloses a method of cleaning a detector by injecting compressed gas onto a detection portion of an immersion type detector. However, in the case of a turbidimeter that has a light emitting part such as a scattered light turbidimeter and a light receiving part that detects the scattered light, it is necessary to suppress the influence of the background as much as possible. In many cases, the water flow type is formed and a turbidimeter is installed therein, and it is not preferable to blow a large amount of compressed gas into the pipe flow path.

このように従来の技術では、通水型の散乱光方式濁度計の検出部を連続的かつ効率的に洗浄し、しかも測定精度の低下を防止することが可能な洗浄技術は、まだ確立されていない。   As described above, in the conventional technique, a cleaning technique capable of continuously and efficiently cleaning the detection unit of the water-flow type scattered light turbidimeter and preventing a decrease in measurement accuracy is still established. Not.

特開2005-211858号公報JP 2005-211858 JP

本発明は、従来の技術の問題点を解消し、通水型の散乱光方式濁度計を用いて、工場排水の処理水の濁度を連続的に測定しながら、検出部を効率的に洗浄して測定精度の低下を防止できる洗浄方法を提供することを目的とする。   The present invention eliminates the problems of the prior art and efficiently detects the turbidity while continuously measuring the turbidity of the treated water of the factory effluent using a water flow type scattered light turbidimeter. It aims at providing the washing | cleaning method which can wash | clean and prevent the fall of a measurement precision.

本発明者は、通水型の散乱光方式濁度計において効果的に検出部の表面を洗浄できる技術について検討した。そして、気体を使用せず、洗浄水を用いて洗浄する技術に着目した。   This inventor examined the technique which can wash | clean the surface of a detection part effectively in a water flow type scattered light system turbidimeter. And it paid attention to the technique which wash | cleans using washing water, without using gas.

そこで、濁度を連続的に測定しながら、検出部に種々の洗浄水を様々な条件で噴射して、洗浄の進行状況、および測定精度の変化を調査する実験を行なった。その結果、浄水(たとえば工場用水、水道水等)が安価で入手し易く、しかも検出部の洗浄に有効であることを見出した。   Therefore, while continuously measuring the turbidity, various washing water was sprayed to the detection unit under various conditions, and an experiment was conducted to investigate the progress of washing and the change in measurement accuracy. As a result, the present inventors have found that purified water (for example, factory water, tap water, etc.) is inexpensive and easily available, and is effective for cleaning the detection unit.

浄水を用いて検出部の表面へ適正な条件で吹き付けて洗浄すると、検出部表面に付着した懸濁物が浄水の動圧により機械的に剥離し、検出部の表面を洗浄することができる。そこで本発明者は、噴射される浄水が濁度の測定精度に及ぼす影響について検討した。その結果、通水型の散乱光方式濁度計では、適正な条件で浄水を噴射すれば、安定した測定ができるという知見が得られた。   When cleaning is performed by spraying the surface of the detection unit under appropriate conditions using purified water, the suspension adhering to the surface of the detection unit is mechanically separated by the dynamic pressure of the purified water, and the surface of the detection unit can be cleaned. Then, this inventor examined the influence which the purified water sprayed had on the measurement precision of turbidity. As a result, it was found that with a water flow type scattered light turbidimeter, stable water can be measured if purified water is jetted under appropriate conditions.

本発明は、このような知見に基づいてなされたものである。
すなわち本発明は、通水型の散乱光方式濁度計を用いて工場排水の処理水の濁度を検出する際に、散乱光方式濁度計の受発光器が内蔵される検出部の表面を洗浄する洗浄方法において、表面の法線に対して60〜80°の傾斜角を設けて洗浄水を表面に噴射する検出部の表面の洗浄方法である。
The present invention has been made based on such knowledge.
That is, when detecting the turbidity of the treated water of the factory effluent using a water flow type scattered light turbidimeter, the present invention provides a surface of the detection unit in which the light receiving / emitting device of the scattered light turbidimeter is built. In the cleaning method for cleaning the surface of the detection unit, the surface of the detection unit is provided with an inclination angle of 60 ° to 80 ° with respect to the normal of the surface and sprays cleaning water onto the surface.

本発明によれば、通水型の散乱光方式濁度計を用いて、工場排水中の浮遊物や溶解物を中和処理や沈殿処理、ろ過処理等で処理した処理水の濁度を連続的に測定しながら、測定器の検出部の表面を効率的に洗浄し、しかも測定精度の低下を防止できるので、産業上格段の効果を奏する。   According to the present invention, the turbidity of treated water that has been treated by neutralization treatment, precipitation treatment, filtration treatment, etc., of suspended matter or dissolved matter in factory wastewater is continuously obtained using a water-flow type scattered light turbidimeter. Since the surface of the detection part of the measuring instrument can be efficiently cleaned and the measurement accuracy can be prevented from being lowered while the measurement is performed, it is possible to achieve a remarkable industrial effect.

本発明を適用する通水型の散乱光方式濁度計の例を示す断面図である。It is sectional drawing which shows the example of the water flow type | mold scattered light type turbidimeter to which this invention is applied. 図1中の検出部と光源部を拡大して示す断面図である。It is sectional drawing which expands and shows the detection part and light source part in FIG. 工場排水の処理工程の一例を示すフロー図である。It is a flowchart which shows an example of the process of a factory wastewater. 濁度の測定結果の推移を示すグラフである。It is a graph which shows transition of the measurement result of turbidity.

本発明を適用する通水型の散乱光方式濁度計の例を図1に示す。通水型の散乱光方式濁度計は円筒状の容器13(以下、筒状容器という)を有しており、排水溝(図示せず)内の処理水30をポンプ(図示せず)で吸い上げて、常時、流入口12から筒状容器13内に供給する。筒状容器13の内部は、筒状容器13上面から流入口12よりも低い位置まで隔壁14が設けられており、その隔壁14が筒状容器13の内部を流入口12側の流路13a(以下、流入側流路という)、および、排出口15側の流路13b(以下、排出側流路という)に区分している。   An example of a water flow type scattered light turbidimeter to which the present invention is applied is shown in FIG. The water flow type scattered light turbidimeter has a cylindrical container 13 (hereinafter referred to as a cylindrical container), and the treated water 30 in a drainage groove (not shown) is pumped (not shown). Sucked up and supplied into the cylindrical container 13 from the inlet 12 at all times. Inside the cylindrical container 13, a partition wall 14 is provided from the upper surface of the cylindrical container 13 to a position lower than the inlet 12, and the partition 14 passes through the inside of the cylindrical container 13 on the inlet 13 side flow path 13 a ( Hereinafter, the flow path is divided into an inflow side flow path) and a flow path 13b on the discharge port 15 side (hereinafter referred to as a discharge side flow path).

流入口12から筒状容器13内に供給された処理水30は、流入側流路13a内を隔壁14に沿って下方へ流れて、隔壁14下端と筒状容器13下面との隙間を通り、さらに排出側流路13b内を上方へ流れて排出口15から、再び排水溝へ戻される。なお、図1中の矢印は処理水30の流れを示す。   The treated water 30 supplied from the inlet 12 into the cylindrical container 13 flows downward along the partition wall 14 in the inflow side flow path 13a, passes through the gap between the lower end of the partition wall 14 and the bottom surface of the cylindrical container 13, Further, it flows upward in the discharge side flow path 13b and is returned to the drainage groove from the discharge port 15 again. In addition, the arrow in FIG. 1 shows the flow of the treated water 30.

流入側流路13aでは、処理水30が下方へ流れる一方で、処理水30中の気泡16は上方へ上昇し分離される。したがって、気泡16は排出側流路13bへ流れ込まないので、後述する濁度の測定における測定精度の低下を防止できる。   In the inflow channel 13a, the treated water 30 flows downward, while the bubbles 16 in the treated water 30 rise upward and are separated. Accordingly, since the bubbles 16 do not flow into the discharge side flow path 13b, it is possible to prevent a decrease in measurement accuracy in the turbidity measurement described later.

検出部17は、発光器18と受光器19を備えており、排出側流路13b内の処理水30の濁度を測定するように取付けられる。たとえば図1に示すように、筒状容器13の流入側流路13aの外壁から検出部17を挿入して隔壁14を貫通させ、発光器18と受光器19を排出側流路13bに配置すれば、排出側流路13bで濁度を測定できる。あるいは、図示を省略するが、排出側流路13bの外壁に検出部17を取付けても良い。   The detection unit 17 includes a light emitter 18 and a light receiver 19, and is attached so as to measure the turbidity of the treated water 30 in the discharge side flow path 13b. For example, as shown in FIG. 1, the detector 17 is inserted from the outer wall of the inflow side flow path 13a of the cylindrical container 13 to penetrate the partition wall 14, and the light emitter 18 and the light receiver 19 are disposed in the discharge side flow path 13b. For example, the turbidity can be measured in the discharge side channel 13b. Or although illustration is abbreviate | omitted, you may attach the detection part 17 to the outer wall of the discharge side flow path 13b.

濁度を測定する際には発光器18から光を照射し、その光が処理水30中を浮遊している懸濁物質で反射することによって受光器19で受光される。このようにして懸濁物質を検出し、さらに演算処理を行なって濁度を測定する。   When the turbidity is measured, light is emitted from the light emitter 18, and the light is reflected by the suspended substance floating in the treated water 30 to be received by the light receiver 19. In this way, suspended substances are detected, and further arithmetic processing is performed to measure turbidity.

既に説明したように、排出側流路13b内の工場排水1には気泡16は存在しないので、排出側流路13b内の処理水30の濁度を測定することによって、濁度を測定精度の低下を防止できる。   As already described, since the bubbles 16 do not exist in the industrial waste water 1 in the discharge side flow path 13b, the turbidity can be measured accurately by measuring the turbidity of the treated water 30 in the discharge side flow path 13b. Decline can be prevented.

ここで図1中の発光器18、受光器19、およびその周辺を拡大して図2に示し、濁度の測定と発光器18、受光器19が内蔵された検出部の表面の洗浄について説明する。   Here, FIG. 2 shows an enlarged view of the light emitter 18, the light receiver 19, and the periphery thereof in FIG. To do.

発光器18は濁度計の検出部17の先端の表面17aから処理水30へ向けて光を発光し、受光器19は処理水30側から反射してくる光を受光する。処理水30中に光反射するような懸濁物が全くない場合は、受光器19で受光される反射光はほとんどない。   The light emitter 18 emits light toward the treated water 30 from the surface 17a at the tip of the turbidimeter detector 17, and the light receiver 19 receives the light reflected from the treated water 30 side. When there is no suspended matter that reflects light in the treated water 30, almost no reflected light is received by the light receiver 19.

しかし、処理水30中に懸濁物質20があった場合、図2に示すように発光器18から照射した光18a(以下、照射光という)は、懸濁物質20で反射し、反射光19aとして受光器18で受光されることになる。したがって、照射光18aを一定に保持し、反射光19aの強度を測定することにより、懸濁物質20の濃度を測定することができる。これにより、処理水30中に懸濁物質20の濃度が上昇したときに、濁度計によりその現象を検知することができ、工場排水1の処理工程で異常が生じていることを検知することができる。   However, when the suspended matter 20 is present in the treated water 30, the light 18a irradiated from the light emitter 18 (hereinafter referred to as irradiated light) is reflected by the suspended matter 20 as shown in FIG. As shown in FIG. Therefore, the concentration of the suspended solid 20 can be measured by keeping the irradiation light 18a constant and measuring the intensity of the reflected light 19a. As a result, when the concentration of the suspended matter 20 in the treated water 30 increases, the turbidimeter can detect the phenomenon and detect that an abnormality has occurred in the treatment process of the factory waste water 1. Can do.

ただし発光器18と受光器19が内蔵された検出部の表面17aが汚れた状態となってしまうと、測定値に誤差が生じる。   However, if the surface 17a of the detection unit including the light emitter 18 and the light receiver 19 becomes dirty, an error occurs in the measurement value.

そこで、本発明では検出部17の表面17aの汚れを解消するために、筒状容器13に検出部17を取り付けた状態で、筒状容器13への通水を一旦停止し、筒状容器13内の水を排水する。これにより検出部17の表面17aを空気中に暴露した状態とし、そこへ洗浄水ノズル21から洗浄水を検出部17の表面17aに噴射して、検出部17の表面17aに付着した汚れを除去する。   Therefore, in the present invention, in order to eliminate the contamination of the surface 17a of the detection unit 17, with the detection unit 17 attached to the cylindrical container 13, water flow to the cylindrical container 13 is temporarily stopped, and the cylindrical container 13 is stopped. Drain the water inside. As a result, the surface 17a of the detection unit 17 is exposed to the air, and cleaning water is sprayed from the cleaning water nozzle 21 onto the surface 17a of the detection unit 17 to remove dirt adhered to the surface 17a of the detection unit 17. To do.

使用する洗浄水は、浄水(たとえば工場用水、水道水等)であることが好ましい。その理由は、本発明の対象設備である工場の排水処理設備では、一般に浄水配管が導入されており、利用し易いからである。また、排水処理後の処理水30を使用することもできる。本発明では、後述するように、検出部17の表面17aへ効果的に洗浄水を噴射することで、検出部17の表面17aに付着堆積しようとする汚れを機械的に除去するものであるため、所定の条件で噴射することができれば、処理水30を使用することができるのである。この場合、排出水量を増やすことがない、という利点がある。   The washing water used is preferably purified water (for example, factory water, tap water, etc.). The reason is that, in a wastewater treatment facility of a factory that is a target facility of the present invention, a water purification pipe is generally introduced and it is easy to use. Moreover, the treated water 30 after waste water treatment can also be used. In the present invention, as will be described later, the cleaning water is effectively sprayed onto the surface 17a of the detection unit 17, thereby mechanically removing the dirt that adheres to and accumulates on the surface 17a of the detection unit 17. The treated water 30 can be used if it can be sprayed under predetermined conditions. In this case, there is an advantage that the amount of discharged water is not increased.

洗浄水の噴射方向21aと検出部17の表面17aの法線方向とのなす角θが小さすぎる場合は、発光器18から照射する照射光18aが洗浄水ノズル21に反射して受光器19で受光されるため、懸濁物の濃度を測定する精度を悪化させる虞がある。角θが大きすぎる場合は、検出部17の表面17aの汚れに対し効果的に洗浄を行なうことが難しく、汚れを除去できない。したがって、角θは60〜80°が好ましい。   If the angle θ formed by the washing water injection direction 21a and the normal direction of the surface 17a of the detection unit 17 is too small, the irradiation light 18a emitted from the light emitter 18 is reflected by the washing water nozzle 21 and is received by the light receiver 19. Since the light is received, the accuracy of measuring the concentration of the suspension may be deteriorated. When the angle θ is too large, it is difficult to effectively clean the surface 17a of the detection unit 17 and the contamination cannot be removed. Therefore, the angle θ is preferably 60 to 80 °.

また、洗浄水の噴射速度が小さすぎる場合は、検出部17の表面17aの汚れを除去できない。噴射速度が大きすぎる場合は、検出部17が損傷する原因になる。したがって、洗浄水の噴射速度は、洗浄水ノズル21先端のノズル口にて5〜20m/秒が好ましい。洗浄水ノズル21先端と噴射した水が検出部17の表面17aに到達する距離は、5〜20cm程度が好適である。   Further, when the cleaning water injection speed is too low, the dirt on the surface 17a of the detection unit 17 cannot be removed. If the injection speed is too high, the detection unit 17 may be damaged. Accordingly, the jetting speed of the cleaning water is preferably 5 to 20 m / sec at the nozzle port at the tip of the cleaning water nozzle 21. The distance that the tip of the washing water nozzle 21 and the sprayed water reach the surface 17a of the detection unit 17 is preferably about 5 to 20 cm.

さらに、洗浄水の流量が小さすぎる場合は、検出部17の表面17aの汚れを除去できない。流量が大きすぎる場合は、検出部17の表面17aへの衝撃が強く損傷を与える虞もあるため、洗浄水の流量は10〜30L/分が好適である。   Furthermore, when the flow rate of the washing water is too small, the dirt on the surface 17a of the detection unit 17 cannot be removed. When the flow rate is too large, the impact on the surface 17a of the detection unit 17 is strong and may cause damage, so the flow rate of cleaning water is preferably 10 to 30 L / min.

以上に説明した通り、本発明の洗浄方法は、処理水の濁度を測定する濁度計の検出部17を効率的に洗浄し、しかも測定精度の低下を防止することが可能である。また、排水溝内の工場排水をポンプで吸い上げて散乱光方式濁度計に供給する通水型であるから、排水溝から離れた平坦な場所に散乱光方式濁度計を設置することができると共に、検出部17の表面17aの洗浄が筒状容器13中に恒常的に設置されている洗浄水ノズル21からの洗浄水の噴射により行なうことができるので、シーケンサー制御等による自動洗浄が可能となる。そのため、検出部17の表面17aの洗浄のために、作業員が排水溝まで出向いて濁度計を取り出し、取り付けるといった現場作業をなくすことができ、その洗浄作業の安全性が向上する。   As described above, the cleaning method of the present invention can efficiently clean the detection unit 17 of the turbidimeter that measures the turbidity of treated water, and can prevent a decrease in measurement accuracy. In addition, since it is a water flow type that pumps up factory wastewater in the drainage channel and supplies it to the scattered light method turbidimeter, it is possible to install the scattered light method turbidity meter in a flat place away from the drainage channel At the same time, the surface 17a of the detection unit 17 can be cleaned by jetting cleaning water from the cleaning water nozzle 21 that is constantly installed in the cylindrical container 13, so that automatic cleaning by sequencer control or the like is possible. Become. For this reason, in order to clean the surface 17a of the detection unit 17, it is possible to eliminate on-site work such that an operator goes to the drainage groove to take out and attach the turbidimeter, and the safety of the cleaning work is improved.

製鉄工場の排水溝から工場排水の処理水をポンプで吸い上げて、図1に示す通水型の散乱光方式濁度計に供給し、定期的に受光器の洗浄を行ないながら、濁度の指標となる懸濁物質の量(mg/L)を40日間連続的に測定する実験を行なった。これを発明例とする。なお、この発明例の実験では、水道水を洗浄水として使用し、その流量を13L/分、洗浄水ノズル先端のノズル口における噴射速度を8m/秒、角θを75°として、シーケンサー制御によって12時間毎に5分間噴射した。この洗浄のために、筒状容器13への通水を一旦停止し、測定を中断した時間は10分間であった。   The treated water of the factory wastewater is sucked up from the drainage channel of the steel factory and supplied to the water flow type scattered light turbidity meter shown in Fig. 1, and the turbidity indicator is periodically cleaned while the receiver is cleaned. An experiment was conducted in which the amount of suspended solids (mg / L) was continuously measured for 40 days. This is an invention example. In the experiment of this invention example, tap water was used as washing water, the flow rate was 13 L / min, the injection speed at the nozzle port at the tip of the washing water nozzle was 8 m / sec, the angle θ was 75 °, and sequencer control was performed. Sprayed every 12 hours for 5 minutes. For this cleaning, water flow to the cylindrical container 13 was temporarily stopped and the measurement was interrupted for 10 minutes.

比較のために、図1に示す通水型の散乱光方式濁度計の洗浄水ノズルを使用せず(すなわち検出部17の表面17aの洗浄を行なわず)、発明例と同様に処理水の懸濁物質の量を40日間連続的に測定する実験を行なった。これを比較例1とする。   For comparison, the cleaning water nozzle of the water flow type scattered light turbidimeter shown in FIG. 1 is not used (that is, the surface 17a of the detection unit 17 is not cleaned), and the treated water is the same as the invention example. An experiment was conducted in which the amount of suspended material was continuously measured for 40 days. This is referred to as Comparative Example 1.

また、排水溝に従来の浸漬型濁度計を設置して、発明例と同じ処理水の懸濁物質の量を40日間測定する実験を行なった。これを比較例2とする。なお、この比較例2の実験では、1日に1回ずつ作業員が浸漬型濁度計を排水溝から取り出して、検出部17の表面17aを塩酸水溶液で洗浄した。その洗浄作業の全体の作業時間は2時間/回であり、洗浄作業中に浸漬型濁度計を排水溝から取り出して洗浄し、元に戻すまでの時間は10分間であった。そしてその10分間は懸濁物質の量の測定を停止した。   In addition, a conventional immersion type turbidimeter was installed in the drainage ditch and an experiment was conducted to measure the amount of suspended matter in the treated water as in the invention example for 40 days. This is referred to as Comparative Example 2. In the experiment of Comparative Example 2, the worker took out the immersion type turbidimeter from the drainage groove once a day and cleaned the surface 17a of the detection unit 17 with an aqueous hydrochloric acid solution. The total operation time of the cleaning operation was 2 hours / time, and it took 10 minutes for the immersion turbidimeter to be removed from the drainage channel during the cleaning operation and cleaned and returned to its original state. The measurement of the amount of suspended solids was stopped for 10 minutes.

それぞれの実験において、各1日に得られた測定データの平均値の推移を図4に示す。ただし発明例1では、洗浄時に筒状容器13内を排水し、洗浄を行ない、再度通水を行なうまでの10分間は測定を中断した。   In each experiment, the transition of the average value of the measurement data obtained on each day is shown in FIG. However, in Invention Example 1, the inside of the cylindrical container 13 was drained at the time of cleaning, the cleaning was performed, and the measurement was interrupted for 10 minutes until the water was passed again.

図4に示す通り、発明例では、40日間にわたって濁度(すなわち懸濁物質の量)を安定して測定できた。これは、受光器を十分に洗浄できた結果、検出部17の表面17aに懸濁物質が堆積しなかったことを意味している。   As shown in FIG. 4, in the inventive example, turbidity (that is, the amount of suspended solids) could be stably measured over 40 days. This means that the suspended substance did not accumulate on the surface 17a of the detection unit 17 as a result of sufficiently washing the light receiver.

一方、比較例1では、実験開始から1週間程度で濁度が上昇し始め、2週間程度で飽和したので、実験を中止した。これは、散乱光方式濁度計が、検出部17の表面17aに堆積した懸濁物質を検出して、それに基づいて濁度を演算したことを意味している。したがって比較例1の測定結果は、工場排水の真の濁度に対して大きな誤差が生じている。   On the other hand, in Comparative Example 1, the turbidity started to increase in about one week from the start of the experiment and was saturated in about two weeks, so the experiment was stopped. This means that the scattered light turbidimeter has detected the suspended matter deposited on the surface 17a of the detection unit 17 and calculated the turbidity based on the suspended matter. Therefore, the measurement result of Comparative Example 1 has a large error with respect to the true turbidity of the factory effluent.

比較例2では、濁度の測定結果は、発明例と同等であった。しかし、既に説明した通り、比較例2では測定を停止する時間が1日あたり10分発生した。   In Comparative Example 2, the measurement result of turbidity was equivalent to that of the invention example. However, as already explained, in Comparative Example 2, the time for stopping the measurement occurred 10 minutes per day.

また洗浄作業については、比較例2では、作業員が濁度計を排水溝から取り出して、検出部17の表面17aの汚れを塩酸等で洗浄し、再び排水溝内に浸漬させるという手順で行なった。この一連の作業は負荷が大きいばかりでなく、排水溝上で作業を行なうので、安全性の観点からも問題があった。しかも、この洗浄作業は熟練度に応じて洗浄の効果にばらつきが生じ易いと共に、検出器の復旧位置の誤りやスイッチの入れ忘れといったヒューマンエラーを皆無にすることができなかった。これに対して発明例は、シーケンサー制御によって洗浄水の噴射を行なったので、無人で検出部17の表面17aを洗浄することができた。   In Comparative Example 2, the cleaning operation is performed by a procedure in which an operator removes the turbidimeter from the drainage groove, cleans the dirt on the surface 17a of the detection unit 17 with hydrochloric acid, and soaks it again in the drainage groove. It was. This series of work not only has a heavy load, but also works on the drainage channel, so there is a problem from the viewpoint of safety. Moreover, this cleaning operation tends to cause variations in the cleaning effect depending on the level of skill, and it has been impossible to eliminate human errors such as an error in the recovery position of the detector and forgetting to turn on the switch. On the other hand, in the invention example, since the washing water was jetted by the sequencer control, the surface 17a of the detection unit 17 could be washed unattended.

1 工場排水
2 原水槽
3 中和設備
3a 混合槽
3b 1次中和槽
3c 2次中和槽
3d 凝集槽
4 沈殿槽
5 ろ過槽
6 貯留槽
7 排水溝
8 濁度計
9 沈殿物
10 中和剤
11 凝集剤
12 流入口
13 筒状容器
13a 流入側流路
13b 排出側流路
14 隔壁
15 排出口
16 気泡
17 検出部
17a 検出部の表面
18 発光器
18a 照射光
19 受光器
19a 反射光
20 懸濁物質
21 洗浄水ノズル
21a 噴射方向
30 処理水
1 Factory drain 2 Raw water tank 3 Neutralization equipment
3a Mixing tank
3b Primary neutralization tank
3c Secondary neutralization tank
3d Coagulation tank 4 Sedimentation tank 5 Filtration tank 6 Storage tank 7 Drainage channel 8 Turbidimeter 9 Precipitate
10 Neutralizing agent
11 Flocculant
12 Inlet
13 Tubular container
13a Inlet side flow path
13b Discharge side flow path
14 Bulkhead
15 outlet
16 bubbles
17 Detector
17a Detector surface
18 Light emitter
18a Irradiation light
19 Receiver
19a Reflected light
20 Suspended material
21 Washing water nozzle
21a Injection direction
30 treated water

Claims (1)

通水型の散乱光方式濁度計を用いて工場排水の処理水の濁度を測定する際に、前記散乱光方式濁度計の受発光器が内蔵される検出部の表面を洗浄する洗浄方法において、前記表面の法線に対して60〜80°の傾斜角を設けて洗浄水を前記表面に噴射することを特徴とする検出部の表面の洗浄方法。   Cleaning that cleans the surface of the detector unit that contains the light emitter / receiver of the scattered light turbidimeter when measuring the turbidity of treated water from factory effluents using a water flow type scattered light turbidimeter In the method, the method for cleaning the surface of the detection unit is characterized in that cleaning water is sprayed onto the surface with an inclination angle of 60 to 80 ° with respect to the normal of the surface.
JP2015159446A 2015-08-12 2015-08-12 Method for cleaning surface of detection unit of light receiver/emitter installed on water passing-type turbidimeter with scattered light method Pending JP2017037033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015159446A JP2017037033A (en) 2015-08-12 2015-08-12 Method for cleaning surface of detection unit of light receiver/emitter installed on water passing-type turbidimeter with scattered light method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159446A JP2017037033A (en) 2015-08-12 2015-08-12 Method for cleaning surface of detection unit of light receiver/emitter installed on water passing-type turbidimeter with scattered light method

Publications (1)

Publication Number Publication Date
JP2017037033A true JP2017037033A (en) 2017-02-16

Family

ID=58048639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159446A Pending JP2017037033A (en) 2015-08-12 2015-08-12 Method for cleaning surface of detection unit of light receiver/emitter installed on water passing-type turbidimeter with scattered light method

Country Status (1)

Country Link
JP (1) JP2017037033A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520971A (en) * 2018-11-13 2019-03-26 国电南瑞科技股份有限公司 A kind of flow type turbidity transducer caliberating device
CN109839293A (en) * 2019-04-03 2019-06-04 宁波荣安生物药业有限公司 For automatic sampling and clarifying effect detection device after the clarification of production of vaccine virus liquid
WO2020059366A1 (en) * 2018-09-20 2020-03-26 栗田工業株式会社 Flocculation state monitoring sensor
CN111351787A (en) * 2020-03-20 2020-06-30 杭州绿洁环境科技股份有限公司 Circulation type turbidity calibration and calibration equipment
CN114468915A (en) * 2022-02-11 2022-05-13 珠海格力电器股份有限公司 Tableware cleaning device and control method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059366A1 (en) * 2018-09-20 2020-03-26 栗田工業株式会社 Flocculation state monitoring sensor
JP2020046352A (en) * 2018-09-20 2020-03-26 栗田工業株式会社 Aggregation state monitoring sensor
CN112204382A (en) * 2018-09-20 2021-01-08 栗田工业株式会社 Agglutination state monitoring sensor
US11474036B2 (en) 2018-09-20 2022-10-18 Kurita Water Industries Ltd. Flocculation state monitoring sensor
CN109520971A (en) * 2018-11-13 2019-03-26 国电南瑞科技股份有限公司 A kind of flow type turbidity transducer caliberating device
CN109839293A (en) * 2019-04-03 2019-06-04 宁波荣安生物药业有限公司 For automatic sampling and clarifying effect detection device after the clarification of production of vaccine virus liquid
CN109839293B (en) * 2019-04-03 2022-04-19 宁波荣安生物药业有限公司 Be used for automatic sampling and clarification effect detection device behind bacterin production virus liquid clarification
CN111351787A (en) * 2020-03-20 2020-06-30 杭州绿洁环境科技股份有限公司 Circulation type turbidity calibration and calibration equipment
CN114468915A (en) * 2022-02-11 2022-05-13 珠海格力电器股份有限公司 Tableware cleaning device and control method thereof
CN114468915B (en) * 2022-02-11 2023-11-24 珠海格力电器股份有限公司 Tableware cleaning device and control method thereof

Similar Documents

Publication Publication Date Title
JP2017037033A (en) Method for cleaning surface of detection unit of light receiver/emitter installed on water passing-type turbidimeter with scattered light method
JP5801031B2 (en) Water treatment system
JP2019162603A (en) Coagulant addition amount control device, sludge concentration system and coagulant addition amount control method
CN107922221A (en) Method for treating water and water treatment facilities
JP7049109B2 (en) Treatment method of oil-impregnated wastewater
CA3034125C (en) Test apparatus for a waste water treatment system
WO2012010744A1 (en) Method and system for treating aqueous streams
JP2003305454A (en) Intake water quality controller
KR100786776B1 (en) Apparatus for water treatment using membrane filtration
CN105540801A (en) Fluoride-containing wastewater treatment system and method
JP2008168199A (en) Membrane separation activated sludge apparatus and its operation method
KR101229011B1 (en) Decanter having monitoring and the sbr wastewater treatment system therewith
JP2012200631A (en) Method for evaluating fouling of separation membrane and method for operating membrane separation equipment
JPH0638951B2 (en) How to monitor water-based dirt
RU2019115114A (en) A DEVICE FOR SEPARATING WATER AND SOLID PARTICLES OF SPRAYED WATER IN A CONTINUOUS CASTING MACHINE AND A METHOD FOR CONTINUOUS CONTROL AND CONTROL OF CORROSION BACKGROUND
JP5796419B2 (en) Water treatment method and water treatment apparatus
JP4385311B2 (en) Scum detection method and apparatus
KR101217950B1 (en) Immersed membrane separation tank and water purification system comprising the same
CN212214694U (en) A monitoring facilities and mud-water separation equipment for mud-water separation
JP6582757B2 (en) Water quality measuring method and apparatus
RU2688619C1 (en) Method and apparatus for treating water
KR101131500B1 (en) Sedimentation rate analyzer of water purification plant and th method of that
JP2008058000A (en) Aggregation state detection system
JP2019055362A (en) Membrane filtration device and membrane filtration method
JP6060305B1 (en) Belt type concentrator and its operation method