JPH0638392Y2 - Multi-stage electric furnace - Google Patents

Multi-stage electric furnace

Info

Publication number
JPH0638392Y2
JPH0638392Y2 JP1989027521U JP2752189U JPH0638392Y2 JP H0638392 Y2 JPH0638392 Y2 JP H0638392Y2 JP 1989027521 U JP1989027521 U JP 1989027521U JP 2752189 U JP2752189 U JP 2752189U JP H0638392 Y2 JPH0638392 Y2 JP H0638392Y2
Authority
JP
Japan
Prior art keywords
heating element
electric furnace
unit
stage electric
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989027521U
Other languages
Japanese (ja)
Other versions
JPH02119388U (en
Inventor
博仁 後藤
浩 吉岡
Original Assignee
三城物研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三城物研株式会社 filed Critical 三城物研株式会社
Priority to JP1989027521U priority Critical patent/JPH0638392Y2/en
Publication of JPH02119388U publication Critical patent/JPH02119388U/ja
Application granted granted Critical
Publication of JPH0638392Y2 publication Critical patent/JPH0638392Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Furnace Details (AREA)
  • Control Of Resistance Heating (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、2000℃以下の温度を得る電気炉に利用できる
特殊な単位発熱体を複数個積層し、それぞれの発熱素子
を独立に温度制御することによって温度勾配を積極的に
可変できる多段型電気炉に関する。
[Detailed Description of the Invention] (Industrial application field) The present invention is to stack a plurality of special unit heating elements that can be used in an electric furnace that obtains a temperature of 2000 ° C. or less, and control the temperature of each heating element independently. The present invention relates to a multi-stage electric furnace in which the temperature gradient can be positively changed.

(従来の技術) 第11図は電気炉に使用される従来の発熱体を示す斜視図
であり、1は棒状をなす発熱体、2は帯状をなす発熱
体、3は線状をなす発熱体、4Aは筒状発熱部bに単数の
(すなわち1本の)螺旋状溝cを設け、両端に電極aが
設けられた発熱体、4Bは筒状発熱部bおよびその一端に
設けた電極aに複数の(すなわち2本の)螺旋状の溝
c、cを設けた発熱体である。
(Prior Art) FIG. 11 is a perspective view showing a conventional heating element used in an electric furnace, wherein 1 is a rod-shaped heating element, 2 is a strip-shaped heating element, and 3 is a linear heating element. , 4A is a heating element in which a single (that is, one) spiral groove c is provided in the tubular heating portion b and electrodes a are provided at both ends, and 4B is a tubular heating portion b and an electrode a provided at one end thereof. Is a heating element in which a plurality of (that is, two) spiral grooves c, c are provided.

一般に、棒状の発熱体1には、SiC系あるいはLaCrO3
の材質が用いられ、帯状発熱体2または線状発熱体3に
は、NiCr系、FeAl系、Pt系、Mo系、W系の材質が用いら
れ、筒状発熱体4Aまたは4Bの発熱部bには、SiC系ある
いはC系の材質が用いられる。
In general, SiC-based or LaCrO 3 -based material is used for the rod-shaped heating element 1, and NiCr-based, FeAl-based, Pt-based, Mo-based, or W-based heating material is used for the strip-shaped heating element 2 or the linear heating element 3. A material is used, and a SiC-based or C-based material is used for the heating portion b of the cylindrical heating element 4A or 4B.

第12図ないし第14図は従来の電気炉の例であり、第12図
は第11図に示した棒状発熱体1を炉7に井桁をなすよう
に組付け、井桁内に容器8あるいは試料をセットするよ
うに構成したものである。
12 to 14 show an example of a conventional electric furnace, and FIG. 12 shows the rod-shaped heating element 1 shown in FIG. It is configured to set.

第13図は前記棒状発熱体1を円筒状炉9に軸心方向に同
芯状に複数本配設したものである。筒状炉9内に前記筒
状発熱体4Aまたは4Bを1本挿入したものもある。
FIG. 13 shows a plurality of the rod-shaped heating elements 1 arranged in the cylindrical furnace 9 concentrically in the axial direction. There is also one in which one of the cylindrical heating elements 4A or 4B is inserted into the cylindrical furnace 9.

第14図は円筒状炉9内に2〜3組の線状発熱体3を設け
たものを示す。
FIG. 14 shows a cylindrical furnace 9 provided with two to three sets of linear heating elements 3.

(考案が解決しようとする課題) 第11図の棒状発熱体1を第12図のように井桁に組んだも
のは、同一平面内に発熱部を配置することができないた
め、各段の棒状発熱体1ごとに発熱温度の調節を行なっ
ても、精度の高い温度勾配を得ることはできない。
(Problems to be solved by the invention) When the rod-shaped heating element 1 shown in FIG. 11 is assembled into a cross girder as shown in FIG. 12, the heating portions cannot be arranged in the same plane. Even if the heat generation temperature is adjusted for each body 1, a highly accurate temperature gradient cannot be obtained.

また、第13図に示すように、棒状発熱体1を軸心方向に
複数本配列したもの、あるいは第11図の筒状発熱体4Aま
たは4Bを1本設けたものは、発熱部の温度分布は一定で
あるから、炉内に任意の温度勾配を得ることがでいな
い。温度勾配を得るには、第15あるいは第16図に示すよ
うに、発熱体1の端部の温度勾配A、Bを利用しなけれ
ばならず、また、任意の温度勾配を得るには、発熱体1
の長さにより温度勾配が変わることを利用して、所定の
温度勾配が得られる長さの発熱体1を選択しなければな
らないから、種々の形式の炉を準備しなければならな
い。第15図は発熱体1が長い場合、第16図は短い場合を
示している。
In addition, as shown in FIG. 13, a plurality of rod-shaped heating elements 1 arranged in the axial direction or one cylindrical heating element 4A or 4B of FIG. Is constant, it is not possible to obtain any temperature gradient in the furnace. To obtain the temperature gradient, the temperature gradients A and B at the end of the heating element 1 must be used as shown in FIG. 15 or FIG. Body 1
Since it is necessary to select the heating element 1 having a length that can obtain a predetermined temperature gradient by utilizing the fact that the temperature gradient changes depending on the length of the furnace, various types of furnaces must be prepared. FIG. 15 shows the case where the heating element 1 is long, and FIG. 16 shows the case where it is short.

また、第14図に示したものにおいては、複数組の線状発
熱体3のうちの任意のものに通電することにより、温度
分布を変えることはできるが、おおまかな温度分布しか
得られない。また、制御態様がおおまかであるため、第
17図の分布図に示すように、炉内温度が均一でなくな
る。
In the case shown in FIG. 14, the temperature distribution can be changed by energizing any one of the plurality of sets of linear heating elements 3, but only a rough temperature distribution can be obtained. In addition, since the control mode is rough,
As shown in the distribution chart in Fig. 17, the temperature inside the furnace is not uniform.

また、第14図の構成においては、円筒形耐火物でなる炉
9の内周に線状発熱体3を挿入固定することは、炉9が
長い場合、または細い場合には不可能である。また、炉
9が太い場合、または短い場合は、取付け作業上は問題
ないが、電気炉の使用時に発熱体が一本断線しただけで
も取り出して交換作業を行なわなければならない。ま
た、第14図において、線状発熱体3の代わりに帯状発熱
体2を用いた場合は、電気炉の軸心方向に発熱体2の帯
面が平行になり、独立して温度調節できる幅が広くな
り、温度勾配を変化させるための発熱体としては不向き
である。
Further, in the configuration of FIG. 14, it is impossible to insert and fix the linear heating element 3 on the inner circumference of the furnace 9 made of a cylindrical refractory when the furnace 9 is long or thin. Further, if the furnace 9 is thick or short, there is no problem in installation work, but even if a single heating element is broken during use of the electric furnace, it must be taken out and replaced. Further, in FIG. 14, when the strip heating element 2 is used instead of the linear heating element 3, the strip surface of the heating element 2 becomes parallel to the axial direction of the electric furnace, and the width where the temperature can be adjusted independently. Is wide and is not suitable as a heating element for changing the temperature gradient.

本考案は、最近の新素材開発技の急速な発展に伴ない、
電気炉の温度を任意に調節して均一温度分布あるいは任
意の温度勾配を得たいという新たな要求に応じ、また、
発熱素子の交換を容易とする等の要求に応じることが可
能な発熱体を利用した電気炉を提供することを目的とし
てなされたものである。
The present invention, along with the rapid development of recent new material development techniques,
In response to the new demand to control the temperature of the electric furnace to obtain a uniform temperature distribution or an arbitrary temperature gradient,
The purpose of the present invention is to provide an electric furnace using a heating element that can meet requirements such as easy replacement of heating elements.

(課題を解決するための手段) 上記の目的を達成するため、本考案による多段型電気炉
は、リング状の発熱部の両端に外方に一体に突設したア
ーム部を形成し、かつ各アームの先端に電極を設けた発
熱体と、リング状をなす耐火絶縁材とを有し、隣接する
耐火絶縁材の合わせ面に凹部を設けて該凹部に前記発熱
体のアーム部を嵌合して挟持した構造により、発熱体と
耐火絶縁材とを多段に積層すると共に、各発熱体をそれ
ぞれ独立に発熱させる駆動回路を設けたことを特徴とす
る。本考案においては、1個の発熱体と2個の耐火絶縁
材とを組合わせて単位発熱素子とし、単位発熱素子の厚
みを2種以上に異ならせる構造や、単位発熱素子間に、
リング状をなしかつ内周部が前記耐火絶縁材の内周より
内側に突出し、発熱体からの熱線を反射させて単位発熱
素子間の熱的干渉を減少させる反射板を介在させた構造
や、複数の発熱体のうち、少なくとも一部を冷却媒体を
流通可能な中空にした管に置き換えた構造も採用され
る。
(Means for Solving the Problems) In order to achieve the above-mentioned object, a multi-stage electric furnace according to the present invention forms arm portions integrally projecting outward at both ends of a ring-shaped heat generating portion, and A heating element having an electrode at the tip of an arm and a ring-shaped refractory insulating material are provided, and a concave portion is provided in a mating surface of adjacent fireproof insulating materials, and the arm portion of the heating element is fitted into the concave portion. The heating element and the fireproof insulating material are laminated in multiple stages by the sandwiched structure, and a driving circuit for independently heating each heating element is provided. In the present invention, one heating element and two refractory insulating materials are combined to form a unit heating element, and a structure in which the thickness of the unit heating element is changed to two or more, or between the unit heating elements,
A structure in which a ring-shaped and inner peripheral portion projects inward from the inner periphery of the refractory insulating material, and a reflecting plate is interposed to reflect heat rays from the heating element and reduce thermal interference between the unit heating elements, A structure in which at least a part of the plurality of heating elements is replaced with a hollow tube through which a cooling medium can flow is also adopted.

(作用) 本考案の電気炉は、発熱体を必要に応じた数だけ積層
し、各発熱体にそれぞれ独立に通電し発熱させることに
より、任意の温度勾配が得られる。また、単位発熱素子
の厚さを2種以上にして組合わせることにより、温度調
節精度の高い部分と粗い部分とが構成される。単位発熱
素子間に反射板を介在させた場合は、熱線が隣接する単
位発熱素子へ放射されることが防止される。冷却媒体を
流通可能な中空の発熱体を設けた場合には、その冷却媒
体流通発熱体層付近の温度を急激に低下させることがで
きる。
(Operation) In the electric furnace of the present invention, an arbitrary temperature gradient can be obtained by stacking as many heating elements as necessary and energizing each heating element independently to generate heat. Also, by combining two or more thicknesses of the unit heating elements, a portion with high temperature adjustment accuracy and a rough portion are formed. When the reflecting plate is interposed between the unit heating elements, heat rays are prevented from being radiated to the adjacent unit heating elements. When a hollow heating element capable of circulating a cooling medium is provided, the temperature in the vicinity of the cooling medium circulating heating element layer can be rapidly lowered.

(実施例) 第1図は本考案に用いる発熱体の一例を示す平面図、第
2図はその正面図であり、本考案による発熱体10は、中
空部11の周囲に円形のリング状をなす発熱部12を有し、
発熱部12の両端にアーム部13を一体に有し、アーム部13
の両端に導電性の高い部材からなる電極14が形成され
る。
(Example) FIG. 1 is a plan view showing an example of a heating element used in the present invention, and FIG. 2 is a front view thereof. The heating element 10 according to the present invention has a circular ring shape around a hollow portion 11. It has an eggplant heating unit 12,
Arms 13 are integrally formed at both ends of the heat generating portion 12,
Electrodes 14 made of a highly conductive member are formed on both ends of the electrode.

発熱部12とアーム部13とは一般的には同じ材質を用い、
SiC系、LaCrO3系の発熱体の場合には、粉末冶金法、鋳
型注入法またはシート成形法により、厚みを1mmないし2
0mm程度にすることができる。C系の場合は、板材の機
械加工法または粉末冶金法により、厚みを1mmないし20m
m程度にすることができる。NiCr系、FeAl系、Pt系、Mo
系、W系あるいはTa系等の金属材料の場合は、板材のプ
レス加工法、放電加工法、機械加工法、粉末冶金法ある
いは鋳型法により、厚みを0.1mmないし15mm程度にする
ことができる。
Generally, the heat generating part 12 and the arm part 13 are made of the same material,
In the case of SiC-based or LaCrO 3 -based heating elements, powder metallurgy, mold injection method or sheet molding method can reduce the thickness to 1 mm to 2 mm.
It can be about 0 mm. In the case of C type, the thickness is 1mm to 20m depending on the plate machining method or powder metallurgy method.
It can be around m. NiCr, FeAl, Pt, Mo
In the case of a metal material such as a W-based, W-based, or Ta-based metal, the thickness can be set to about 0.1 mm to 15 mm by a press working method of a plate material, an electric discharge machining method, a machining method, a powder metallurgy method, or a mold method.

第3図は第1図および第2図に示した積層用発熱体10を
用いて構成した単位発熱素子15の一部破断平面図、第4
図はその一部破断正面図である。この発熱素子15は、発
熱体10のアーム部13を、上下の耐火絶縁材16の合わせ面
の少なくとも一方に設けた凹部17に嵌合して挟持し、か
つ単位発熱素子15を独立に温度調節するために、熱電対
18を挟んで組合わせたものであり、上下の耐火絶縁材16
間の内周に、発熱部12の被加熱体との接触を防止するた
めの発熱体収容用凹部19が形成される。
FIG. 3 is a partially cutaway plan view of a unit heating element 15 constructed by using the stacking heating element 10 shown in FIG. 1 and FIG.
The figure is a partially cutaway front view thereof. The heating element 15 is configured such that the arm portion 13 of the heating element 10 is fitted and sandwiched in a recess 17 provided in at least one of the mating surfaces of the upper and lower refractory insulating materials 16, and the temperature of each unit heating element 15 is adjusted independently. To thermocouple
It is a combination that sandwiches 18 and has a top and bottom fire-resistant insulation material 16
A heating element accommodating recess 19 for preventing contact of the heating element 12 with the object to be heated is formed on the inner periphery of the space.

第5図は単位発熱素子15を積層することにより構成され
る電気炉の一部および他の制御手段の構成を示す図であ
り、各単位発熱素子15を、各単位発熱素子15間の熱的干
渉を減少させる反射板20を介して積層することにより、
電気炉を構成したものである。各反射板20はリング状を
なしかつ内周部が前記耐火絶縁材16の内周より内側に突
出し、発熱体10からの熱線を反射させて異なる層が加熱
されることを防止する。
FIG. 5 is a diagram showing a part of an electric furnace constituted by stacking the unit heating elements 15 and the configuration of other control means. By stacking through the reflector 20 which reduces interference,
It constitutes an electric furnace. Each reflection plate 20 has a ring shape and an inner peripheral portion thereof protrudes inward from the inner periphery of the refractory insulating material 16 to reflect heat rays from the heating element 10 and prevent different layers from being heated.

この構成において、熱各熱電対18により検出される温度
tiと、指令温度Tiとが計算機24に入力され、駆動回路25
により各発熱体10に通電する電流値が決定され、所望の
炉内温度分布(例えば均一温度分布または所定の勾配を
有する温度分布)に設定される。
In this configuration, the temperature detected by each thermocouple 18
The t i and the command temperature T i are input to the computer 24, and the driving circuit 25
Thus, the value of the current flowing through each heating element 10 is determined, and the desired temperature distribution in the furnace (for example, uniform temperature distribution or temperature distribution having a predetermined gradient) is set.

このように、各単位発熱素子15ごとに熱電対18を設け、
各単位発熱素子15ごとに電流をコントロールすることに
より、高精度の温度調節が可能となる。
In this way, a thermocouple 18 is provided for each unit heating element 15,
By controlling the current for each unit heating element 15, it is possible to adjust the temperature with high accuracy.

第5図の実施例における積層用発熱体10はSiC系のもの
で作り、内径60mm、厚み6mmであり、上下の耐火絶縁材1
6を含めた単位発熱素子15の厚さは15mmであった。な
お、金属発熱体を用いた場合は、単位発熱素子15の厚さ
を8mmとすることができた。この厚さは、近い将来さら
に小さくすることが可能である。
The heating element 10 for lamination in the embodiment shown in FIG. 5 is made of a SiC type material, has an inner diameter of 60 mm and a thickness of 6 mm, and has upper and lower refractory insulating materials 1.
The thickness of the unit heating element 15 including 6 was 15 mm. When the metal heating element was used, the thickness of the unit heating element 15 could be 8 mm. This thickness can be further reduced in the near future.

第6図(A)は本考案の他の実施例であり、電気炉を、
厚い単位発熱素子15Aと、薄い単位発熱素子15Bとの2種
のものを積層したもので、例えば図示のように、単結晶
21を引上げ(または引下げ)成長させる場合、固液界面
22のような厳密な温度調節精度や温度勾配(第6図
(B)参照)が必要となる部分は薄い単位発熱素子15B
を用い、比較的厳密な温度調節が必要でない育成結晶の
温度保持部分は厚い単位発熱素子15Aを設けることによ
り、全体として温度調節精度を保持し、しかも全体を薄
いもので構成した場合に比較し、廉価となり、温度調節
も容易となる。なお、薄い単位発熱素子15Bとして金属
発熱体を用い、厚い単位発熱体15Aとして脆性のあるセ
ラミック発熱体を用いれば、発熱体の破損しにくい電気
炉が構成される。
FIG. 6 (A) shows another embodiment of the present invention in which an electric furnace is
Two kinds of thick unit heating elements 15A and thin unit heating elements 15B are laminated, and as shown in the figure, for example, a single crystal
When pulling up (or pulling down) 21, solid-liquid interface
The thin unit heating element 15B is a part where a strict temperature control accuracy and temperature gradient (see Fig. 6 (B)) like 22 are required.
By using a thick unit heating element 15A for the temperature holding portion of the grown crystal that does not require relatively strict temperature control, the temperature control accuracy is maintained as a whole, and compared with the case where the whole is made thin. It becomes cheaper and temperature control becomes easier. If a metal heating element is used as the thin unit heating element 15B and a brittle ceramic heating element is used as the thick unit heating element 15A, an electric furnace in which the heating element is not easily damaged is constructed.

第7図(A)は単位発熱体15に水管23等の冷却媒体を流
通させる中空管を内蔵した冷却部材を積層したもので、
第7図(B)に示すような急激な温度勾配を得ることが
できる。
FIG. 7 (A) shows a unit heating element 15 on which a cooling member having a hollow tube for circulating a cooling medium such as a water tube 23 is laminated.
A steep temperature gradient as shown in FIG. 7 (B) can be obtained.

第8図は発熱部12Aを四角形のリング状に形成した発熱
体10Aの平面図であり、角筒形の炉として構成されるも
のである。
FIG. 8 is a plan view of a heating element 10A in which the heating portion 12A is formed in a quadrangular ring shape, and is configured as a rectangular tube-shaped furnace.

第9図および第10図は電気炉の蓋あるいは底の部分に用
いられる発熱体10B、10Cを示す平面図であり、中空部11
を複数個有し、その周囲に形成される発熱部12B、12Cは
それぞれ複数個の連続する長方形あるいは長円形によっ
て構成される。なお、中空部11は熱電対の挿入口等に利
用される。
9 and 10 are plan views showing the heating elements 10B and 10C used for the lid or the bottom of the electric furnace.
The plurality of heat generating portions 12B and 12C formed around the plurality of heat generating portions 12B and 12C are each formed of a plurality of continuous rectangles or ellipses. The hollow portion 11 is used as a thermocouple insertion port or the like.

上記実施例においては、単位発熱素子を1つの発熱体と
その上下2枚の絶縁材とにより構成したが、本考案によ
る単位発熱素子はこの構成に限定されない。
In the above embodiment, the unit heating element is composed of one heating element and two insulating materials above and below the heating element, but the unit heating element according to the present invention is not limited to this structure.

(考案の効果) 請求項1によれば、各発熱体を薄く構成でき、さらに要
求に応じた厚さ、積層数の電気炉を容易に実現すること
ができる。また、前記発熱体を複数枚積層して多段型電
気炉を構成したので、長尺の試料を一定温度または任意
の温度勾配中で加熱処理できるため、長尺品の低歪品が
実現される。また、単結晶を引上げまたは引下げ育成す
る場合は、固液界面の温度勾配または育成結晶の保持温
度勾配が任意に調節できるため、良質の単結晶が得られ
る。また、高精度の均一温度分布が得られるので、材料
の熱的な物性測定用に最適な電気炉が実現される。ま
た、長さの短い小型炉でありながら、均一温度分布の部
分を長くできるので、製造用電気炉の小型化に役立てる
ことができる。また、単位発熱素子を積層することによ
り電気炉が組立てられ、分離することができるので、電
気炉の組立て並びに修理が簡単にでき、経済性の高い電
気炉が実現する。
(Effect of the Invention) According to the first aspect, each heating element can be made thin, and an electric furnace having a thickness and a number of laminated layers according to requirements can be easily realized. In addition, since a multi-stage electric furnace is configured by laminating a plurality of the heating elements, a long sample can be heat-treated at a constant temperature or at an arbitrary temperature gradient, so that a long product with low distortion is realized. . In the case of pulling up or pulling down a single crystal, a good quality single crystal can be obtained because the temperature gradient at the solid-liquid interface or the holding temperature gradient of the grown crystal can be adjusted arbitrarily. Further, since a highly accurate uniform temperature distribution can be obtained, an electric furnace most suitable for measuring the thermal properties of materials can be realized. Further, even though it is a small furnace having a short length, it is possible to lengthen a portion having a uniform temperature distribution, which can be useful for downsizing of an electric furnace for production. Further, since the electric furnace can be assembled and separated by stacking the unitary heating elements, the electric furnace can be easily assembled and repaired, and an economical electric furnace is realized.

請求項2によれば、温度調節精度を要する個所に薄い単
位発熱素子を積層し、それほど高い温度調節精度を要し
ない個所に厚い単位発熱素子を用いることにより、全体
として温度調節精度を保持し、しかも全体を薄いもので
構成した場合に比較し、廉価となり、温度調節も容易と
なる。
According to the second aspect, the thin unit heating element is laminated at a place where the temperature adjustment accuracy is required, and the thick unit heating element is used at a place where the temperature adjustment accuracy is not so high, so that the temperature adjustment accuracy is maintained as a whole, In addition, it is cheaper and the temperature can be easily adjusted as compared with the case where the whole is made thin.

請求項3によれば、単位発熱素子間に介在させた反射板
により、発熱素子間の熱的干渉が減少するため、温度調
節精度をより向上させることができる。
According to the third aspect, the reflection plate interposed between the unitary heating elements reduces thermal interference between the heating elements, so that the temperature adjustment accuracy can be further improved.

請求項4によれば、冷却媒体を流通させる中空管の存在
により急激な温度勾配を実現することができる。
According to the fourth aspect, a steep temperature gradient can be realized by the existence of the hollow tube through which the cooling medium flows.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による積層用発熱体の一実施例を示す平
面図、第2図は第1図の正面図、第3図は第1図の発熱
体を用いて構成された単位発熱素子の一例を示す一部破
断平面図、第4図は第3図の一部破断正面図、第5図は
第3図および第4図に示した単位発熱素子を用いて構成
された電気炉を示す構成図、第6図(A)は本考案によ
る電気炉の他の実施例を示す断面図、同(B)はその温
度分布の一例図、第7図(A)は本考案による電気炉の
他の実施例を示す断面図、同(B)はその温度分布の一
例図、第8図ないし第10図は本考案による発熱体の他の
実施例を示す平面図、第11図は従来の発熱体の各例を示
す斜視図、第12図ないし第14図は従来の電気炉を示す斜
視図、第15図ないし第17図は従来の電気炉の温度分布の
一例を示すグラフである。 10、10A〜10C:積層用発熱体、11:中空部、12、12A〜12
C:発熱部、13:アーム部、14:電極、15、15A、15B:単位
発熱素子、16:耐火絶縁材、18:熱電対、20:反射板、23:
水管、24:計算機、25:駆動回路
FIG. 1 is a plan view showing an embodiment of a heating element for lamination according to the present invention, FIG. 2 is a front view of FIG. 1, and FIG. 3 is a unit heating element constructed using the heating element of FIG. FIG. 4 is a partially cutaway plan view showing an example, FIG. 4 is a partially cutaway front view of FIG. 3, and FIG. 5 is an electric furnace constructed by using the unit heating elements shown in FIGS. 3 and 4. FIG. 6A is a sectional view showing another embodiment of the electric furnace according to the present invention, FIG. 6B is an example of its temperature distribution, and FIG. 7A is an electric furnace according to the present invention. FIG. 8B is a cross-sectional view showing another embodiment of the present invention, FIG. 8B is an example view of its temperature distribution, FIGS. Is a perspective view showing each example of the heating element, FIGS. 12 to 14 are perspective views showing a conventional electric furnace, and FIGS. 15 to 17 are graphs showing an example of the temperature distribution of the conventional electric furnace. . 10, 10A-10C: Heating element for lamination, 11: Hollow part, 12, 12A-12
C: Heating part, 13: Arm part, 14: Electrode, 15, 15A, 15B: Unit heating element, 16: Fireproof insulating material, 18: Thermocouple, 20: Reflector, 23:
Water pipe, 24: calculator, 25: drive circuit

Claims (4)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】リング状の発熱部の両端に外方に一体に突
設したアーム部を形成し、かつ各アームの先端に電極を
設けた発熱体と、リング状をなす耐火絶縁材とを有し、
隣接する耐火絶縁材の合わせ面に凹部を設けて該凹部に
前記発熱体のアーム部を嵌合して挟持した構造により、
発熱体と耐火絶縁材とを多段に積層すると共に、各発熱
体をそれぞれ独立に発熱させる駆動回路を設けたことを
特徴とする多段型電気炉。
1. A heating element having an arm portion integrally projecting outwardly formed at both ends of a ring-shaped heat generating portion, and an electrode provided at an end of each arm, and a ring-shaped refractory insulating material. Have,
With a structure in which a concave portion is provided on a mating surface of adjacent fireproof insulating materials, and the arm portion of the heating element is fitted and sandwiched in the concave portion,
A multi-stage electric furnace characterized in that a heating element and a fireproof insulating material are laminated in multiple stages, and a drive circuit for independently heating each heating element is provided.
【請求項2】請求項1において、1個の発熱体と2個の
耐火絶縁材とを組合わせて単位発熱素子とし、単位発熱
素子の厚みを温度調節精度に対応して2種以上に異なら
せて設定したことを特徴とする多段型電気炉。
2. The unit heating element according to claim 1, wherein one heating element and two refractory insulating materials are combined, and the thickness of the unit heating element is different in two or more types according to the temperature control accuracy. A multi-stage electric furnace characterized by being set accordingly.
【請求項3】請求項1または2において、1個の発熱体
と2個の耐火絶縁材とを組合わせて単位発熱素子とし、
該単位発熱素子間に、リング状をなしかつ内周部が前記
耐火絶縁材の内周より内側に突出し、発熱体からの熱線
を反射させて単位発熱素子間の熱的干渉を減少させる反
射板を介在させたことを特徴とする多段型電気炉。
3. The unit heating element according to claim 1, wherein one heating element and two refractory insulating materials are combined to form a unit heating element.
A reflector plate that has a ring shape between the unit heating elements and has an inner peripheral portion that protrudes inward from the inner periphery of the refractory insulating material to reflect heat rays from the heating element and reduce thermal interference between the unit heating elements. A multi-stage electric furnace characterized by interposing an electric furnace.
【請求項4】請求項1、2または3のいずれかにおい
て、複数の発熱体のうち、一部を冷却媒体を流通可能な
中空構造にしたことを特徴とする多段型電気炉。
4. A multi-stage electric furnace according to claim 1, 2 or 3, wherein a part of the plurality of heating elements has a hollow structure through which a cooling medium can flow.
JP1989027521U 1989-03-11 1989-03-11 Multi-stage electric furnace Expired - Lifetime JPH0638392Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989027521U JPH0638392Y2 (en) 1989-03-11 1989-03-11 Multi-stage electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989027521U JPH0638392Y2 (en) 1989-03-11 1989-03-11 Multi-stage electric furnace

Publications (2)

Publication Number Publication Date
JPH02119388U JPH02119388U (en) 1990-09-26
JPH0638392Y2 true JPH0638392Y2 (en) 1994-10-05

Family

ID=31250083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989027521U Expired - Lifetime JPH0638392Y2 (en) 1989-03-11 1989-03-11 Multi-stage electric furnace

Country Status (1)

Country Link
JP (1) JPH0638392Y2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615514U (en) * 1979-07-17 1981-02-10
JPS60200484A (en) * 1984-03-23 1985-10-09 松下電器産業株式会社 Heater element
JPS611878A (en) * 1984-06-14 1986-01-07 Kyokuto Kaihatsu Kogyo Co Ltd Piston type concrete pump

Also Published As

Publication number Publication date
JPH02119388U (en) 1990-09-26

Similar Documents

Publication Publication Date Title
US4503319A (en) Heater for hot isostatic pressing apparatus
JPS63248085A (en) Electrically resistant thick film track and heating element employing the same
DE4022846A1 (en) METHOD AND DEVICE FOR CONTROLLING AND LIMITING THE PERFORMANCE OF A HEATING AREA MADE OF GLASS CERAMIC OR A COMPARABLE MATERIAL
JPH09210573A (en) Electric furnace
EP1621048B1 (en) Multi-zone ceramic heating system and method of manufacture thereof
US4167403A (en) Apparatus and method for maintaining calibration of a thermocouple used in a bushing for the drawing of glass fiber
US5764850A (en) Silicon carbide foam electric heater for heating gas directed therethrough
JPH0638392Y2 (en) Multi-stage electric furnace
EP2288230A1 (en) Heating element unit and heating device
US3121154A (en) Electric heaters
US9642192B2 (en) Method and manufacturing assembly for sintering fuel cell electrodes and impregnating porous electrodes with electrolyte powders by induction heating for mass production
EP1219961B1 (en) Planar gas sensor with patterned heater
US9643893B2 (en) Method of manufacturing joint body of conductive ceramic body and metal body
JPH0878142A (en) Ceramic heater
JP3128325B2 (en) Small electric furnace for optical fiber processing
JPH10330804A (en) Sintering device
JP2016531076A (en) Glass sheet manufacturing method and apparatus including an enclosure that is induction heated
CN209323034U (en) Graphite heater and crystal growing furnace
US5267609A (en) Heat radiation tube
JP6903525B2 (en) Ceramic member
EP1416771A2 (en) Resistance-heating element, and electric resistance furnace using the same
GB1391203A (en) Heating element
JP4053277B2 (en) Electric furnace
KR20040035281A (en) Molding heater for heating semiconductor substrate
KR20070119266A (en) Electro photographic type image forming apparatus