JPH10330804A - Sintering device - Google Patents

Sintering device

Info

Publication number
JPH10330804A
JPH10330804A JP9147460A JP14746097A JPH10330804A JP H10330804 A JPH10330804 A JP H10330804A JP 9147460 A JP9147460 A JP 9147460A JP 14746097 A JP14746097 A JP 14746097A JP H10330804 A JPH10330804 A JP H10330804A
Authority
JP
Japan
Prior art keywords
sintering
heating
temperature
raw material
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9147460A
Other languages
Japanese (ja)
Other versions
JP3781072B2 (en
Inventor
Kazumi Mori
和美 森
Koichi Amano
孝一 天野
Tomotoshi Mochizuki
智俊 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP14746097A priority Critical patent/JP3781072B2/en
Publication of JPH10330804A publication Critical patent/JPH10330804A/en
Application granted granted Critical
Publication of JP3781072B2 publication Critical patent/JP3781072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sinter both the ceramic and the conductive substance, and to cope with an increase in size by filling the raw powder in a sintering space of a sintering die, providing a heating body to generate the heat through the energization between an electrode and the raw powder, and achieving the pressure sintering. SOLUTION: The raw powder 3 is filled in a sintering space 2 in the center of a sintering mold 1. Heating bodies 4a, 4b which is solid and cylindrical and formed of graphite, etc., are slidably fitted to lower and upper parts inside the sintering die 1. Electrodes 5a, 5b are provided on upper and lower parts of the heating bodies 4a, 4b. The electrodes 5a, 5b comprise punches to press the heating bodies 4a, 4b, and energize the heating bodies 4a, 4b. A hydraulic device is connected to upper and lower end of the electrodes 5a, 5b to pressure the heating bodies 4a, 4b. The power from a power source 8 is controlled by a thyristor 9, and dropped by a transformer 10, and then, supplied to the electrodes 5a, 5b and resistance heaters 6a, 6b. A temperature sensor 11 is provided inside or outside the sintering die 1 to measure the temperature of the sintered body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結型に充填した
セラミックスや導電性の原料粉末を焼結する焼結装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintering apparatus for sintering ceramic or conductive raw material powder filled in a sintering mold.

【0002】[0002]

【従来の技術】セラミックスや金属、炭化物、窒化物な
どの導電性物体の原料粉末を、焼結型に充填して加熱し
一対のパンチで加圧して焼結体の製造が行われる。この
焼結体を製造する焼結装置は加熱方式によりいくつかの
方式に分類される。ヒータによる間接加熱方式は焼結型
の周囲に抵抗加熱ヒータなどのヒータを配置し焼結型を
表面から加熱し、この中の原料粉末を間接的に加熱す
る。本方式はセラミックスと導電性物質の両方の焼結に
適用でき広く用いられている。
2. Description of the Related Art A sintered body is manufactured by filling a raw material powder of a conductive object such as ceramics, metal, carbide, nitride or the like into a sintering mold, heating and pressing with a pair of punches. The sintering apparatus for producing this sintered body is classified into several types depending on the heating method. In the indirect heating method using a heater, a heater such as a resistance heater is arranged around a sintering die, the sintering die is heated from the surface, and the raw material powder in the sintering die is indirectly heated. This method is applicable to both sintering of ceramics and conductive materials and is widely used.

【0003】誘導加熱方式は、焼結型を電磁誘導により
直接加熱する加熱方式である。従って、抵抗加熱方式に
比較し、焼結体の加熱速度が速い。通電方式は一対のパ
ンチを電極とし直流、または直流とパルス電流を原料粉
末に通電し、原料粉末の抵抗熱で加熱する。通電方式に
ついては、特開昭64−55303,特開平5−708
04,特開平5−117707に開示されている。
The induction heating method is a heating method in which a sintering mold is directly heated by electromagnetic induction. Therefore, the heating rate of the sintered body is higher than that of the resistance heating method. In the energization method, a direct current or a direct current and a pulse current are applied to the raw material powder using a pair of punches as electrodes, and the raw material powder is heated by resistance heat. The energization method is described in JP-A-64-55303 and JP-A-5-708.
04, JP-A-5-117707.

【0004】[0004]

【発明が解決しようとする課題】ヒータ等の間接加熱方
式では、焼結型へのエネルギ伝達は主としてヒータ表面
温度とヒータを囲む断熱囲壁の内壁温度できまる。ヒー
タ材および断熱囲壁材の耐熱性には限界があるため、エ
ネルギ伝達には限界があり、ある限度以上に加熱時間は
短縮できない。近年の焼結体大型化に伴い焼結型やパン
チなどの被加熱物も大型化している。間接加熱方式の場
合、上記の理由によりエネルギ伝達には限界があるた
め、被加熱物の大型化は加熱時間の増大を招いている。
誘導加熱方式は高周波電力発生装置が必要であり、電源
設備に費用がかかり経済性に問題がある。
In the indirect heating system such as a heater, the energy transfer to the sintering mold is mainly determined by the surface temperature of the heater and the temperature of the inner wall of the heat insulating enclosure surrounding the heater. Since the heat resistance of the heater material and the heat insulating enclosure material is limited, the energy transfer is limited, and the heating time cannot be reduced beyond a certain limit. With the increase in size of sintered bodies in recent years, objects to be heated, such as sintering dies and punches, have also increased in size. In the case of the indirect heating method, there is a limit in energy transfer for the above-described reason, and thus, the size of the object to be heated increases the heating time.
The induction heating method requires a high-frequency power generator, so that the power supply equipment is expensive and has a problem in economy.

【0005】通電方式は原料粉末を直接加熱するため加
熱時間は短いが、原料粉末の種類により加熱条件が異な
り、操業が難しい。また温度は原料粉末の中心温度が最
も高くなる傾向にあり、焼結体温度制御が難しい。な
お、間接加熱では焼結型表面が最も温度が高く、原料粉
末が最も低い状況とまったく逆になっている。通電方式
の場合、原料粉末中心に温度センサを設置すれば焼結体
の温度制御も容易となるが、高温高圧下であるためこれ
に耐えるセンサはない。従って、一般的には、焼結型外
表面、または焼結型内面を熱電対、放射温度計などのセ
ンサにより計測することになる。温度制御は、原料粉末
の最高温度を制御する必要がある。
In the energization method, the heating time is short because the raw material powder is directly heated, but the heating conditions vary depending on the type of the raw material powder, and the operation is difficult. In addition, the temperature tends to be highest at the center temperature of the raw material powder, and it is difficult to control the temperature of the sintered body. In the indirect heating, the temperature of the surface of the sintered mold is the highest, and the situation is completely opposite to the situation where the raw material powder is the lowest. In the case of the energization method, if a temperature sensor is provided at the center of the raw material powder, the temperature control of the sintered body becomes easy. Therefore, generally, the outer surface of the sintered mold or the inner surface of the sintered mold is measured by a sensor such as a thermocouple or a radiation thermometer. In the temperature control, it is necessary to control the maximum temperature of the raw material powder.

【0006】間接加熱による原料粉末の温度制御は焼結
型に設けられたセンサの温度により行えばよく容易であ
るが、通電方式では焼結型に設けられたセンサの温度が
原料粉末の温度より低いため、センサの温度は原料粉末
の推定温度となる。従って直接温度制御には使用でき
ず、計算などによる補償が必要になるが厳密な補償は一
般に困難である。また原料粉末の大型化に伴い、センサ
温度と粉末中心温度の温度差は拡大する。従って装置の
大型化は通電方式の場合特に困難であった。
It is easy to control the temperature of the raw material powder by indirect heating by the temperature of the sensor provided in the sintering mold. However, in the case of the energization method, the temperature of the sensor provided in the sintering mold is lower than the temperature of the raw material powder. Because of the low temperature, the temperature of the sensor is the estimated temperature of the raw material powder. Therefore, it cannot be used for direct temperature control and requires compensation by calculation or the like, but strict compensation is generally difficult. Also, as the size of the raw material powder increases, the temperature difference between the sensor temperature and the powder center temperature increases. Therefore, it has been particularly difficult to increase the size of the apparatus in the case of the energization method.

【0007】本発明は、かかる問題点に鑑みてなされた
もので、セラミックスと導電性物質の両方の焼結がで
き、大型化にも対応できる焼結装置を提供することを目
的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a sintering apparatus capable of sintering both ceramics and a conductive substance and capable of coping with an increase in size.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明では、焼結型の焼結空間に充填され
た原料粉末を一対のパンチよりなる電極で加圧し通電し
て焼結する焼結装置であって、前記電極と原料粉末の間
には通電により発熱する発熱体が設けられており、前記
焼結型は通電により発熱する導電体で構成されている。
In order to achieve the above object, according to the first aspect of the present invention, a raw material powder filled in a sintering sintering space is pressurized by an electrode composed of a pair of punches and energized for firing. In the sintering apparatus, a heating element that generates heat when energized is provided between the electrode and the raw material powder, and the sintering mold is formed of a conductor that generates heat when energized.

【0009】発熱体および焼結型に通電して各自の有す
る電気抵抗により発熱して原料粉末を加熱する。これに
より原料粉末がセラミックスまたは導電性物質のいずれ
であっても焼結することができる。また原料粉末が導電
性物質の場合は、この原料粉末にも通電され自己の有す
る電気抵抗によって発熱するので加熱能力が向上する。
Electric power is supplied to the heating element and the sintering mold to generate heat by the electric resistance of the heating element and to heat the raw material powder. This allows sintering regardless of whether the raw material powder is a ceramic or a conductive substance. When the raw material powder is a conductive substance, the raw material powder is also energized and generates heat by its own electric resistance, so that the heating capacity is improved.

【0010】請求項2の発明では、前記発熱体の発熱量
は前記電極の発熱量より大きくする。
According to the second aspect of the present invention, the calorific value of the heating element is made larger than the calorific value of the electrode.

【0011】発熱体の発熱量を電極の発熱量より大きく
することにより原料粉末を効果的に加熱することができ
る。
By making the calorific value of the heating element larger than the calorific value of the electrodes, the raw material powder can be effectively heated.

【0012】請求項3の発明では、前記焼結型は前記発
熱体を経由して電極より通電される。
According to the third aspect of the present invention, the sintering mold is energized from the electrode via the heating element.

【0013】一方の電極より流れる電流は、先ず一方の
発熱体を通りこの発熱体を発熱させ、次に焼結型を通っ
てこれを発熱させる。ついで他方の発熱体を発熱させた
後、他方の電極へ戻る。これにより発熱体の電気抵抗が
焼結型の電気抵抗より大きくても発熱体に電流は確実に
流れこれを発熱させる。
The current flowing from one electrode first passes through one heating element and causes the heating element to generate heat, and then passes through a sintering mold to generate heat. Then, after the other heating element is heated, the process returns to the other electrode. As a result, even if the electric resistance of the heating element is higher than the electric resistance of the sintering type, the electric current surely flows through the heating element to generate heat.

【0014】請求項4の発明では、前記焼結型は前記発
熱体を経由して電極より通電され、さらに電極から直接
にも通電されている。
In the invention of claim 4, the sintering mold is energized from the electrode via the heating element, and is also energized directly from the electrode.

【0015】発熱体と焼結型の電気抵抗をそれぞれ適切
な値に設定することにより、それぞれの発生する発熱量
を設定することができる。焼結型には電極と発熱体の両
方から電流が流れるようにすることにより、その発熱量
の設定の自由度を大きくすることができる。
By setting the electric resistance of the heating element and the electric resistance of the sintering mold to appropriate values, the amount of heat generated can be set. By allowing current to flow from both the electrode and the heating element in the sintered mold, the degree of freedom in setting the heat generation amount can be increased.

【0016】請求項5の発明では、前記焼結型の周囲に
はヒータが設けられている。
In the invention of claim 5, a heater is provided around the sintering mold.

【0017】原料粉末の温度設定、温度分布は焼結の重
要な要因の1つである。特に温度条件の厳しい焼結体の
処理、大型焼結体の処理などは、発熱体や焼結型に通電
して加熱する通電方式では、焼結体の充分な温度制御が
てきない。ヒータによる間接加熱方式を採用することに
より、焼結体の温度制御精度を高めることができる。
The temperature setting and temperature distribution of the raw material powder are one of the important factors of sintering. In particular, in the treatment of a sintered body under severe temperature conditions and the treatment of a large-sized sintered body, a sufficient temperature control of the sintered body cannot be achieved by an energization method in which a heating element or a sintering mold is energized and heated. By employing an indirect heating method using a heater, the accuracy of controlling the temperature of the sintered body can be improved.

【0018】請求項6の発明では、前記ヒータに投入さ
れるエネルギ量を前記通電により加熱される電極、発熱
体および焼結型に投入されるエネルギ量よりも大きく
し、焼結型の温度より原料粉末の温度が低くなるように
加熱する。
According to the present invention, the amount of energy input to the heater is made larger than the amount of energy input to the electrode, the heating element and the sintering mold heated by the energization, and the energy amount is set to be lower than the temperature of the sintering mold. The raw material powder is heated so that the temperature thereof becomes low.

【0019】焼結型の周囲にヒータを設け焼結型の外面
に温度センサを設けて温度を制御しながら加熱するとと
もに電極、発熱体および焼結型に通電して加熱する。ヒ
ータに投入するエネルギ量を通電によるエネルギ量より
大きくし原料粉末の温度が焼結型の温度より低くなるよ
うなエネルギ比率とする。これによりヒータによる間接
加熱方式と同程度の温度制御特性を保ちながら、放出さ
れる熱を通電により補償することにより、焼結体加熱を
短時間で行うことを可能にする。
A heater is provided around the sintering mold, and a temperature sensor is provided on the outer surface of the sintering mold to heat while controlling the temperature. The amount of energy input to the heater is made larger than the amount of energy by energization, and the energy ratio is set so that the temperature of the raw material powder becomes lower than the temperature of the sintering mold. This makes it possible to perform heating of the sintered body in a short time by compensating the released heat by energizing while maintaining the same temperature control characteristics as the indirect heating method using a heater.

【0020】[0020]

【発明の実施の形態】以下本発明の実施形態について、
図面を参照して説明する。図1は本発明の第1実施形態
の焼結装置の構成図である。焼結型1は中空円筒状でグ
ラファイトで構成されており、内部中央が原料粉末3を
充填する焼結空間2となっている。この焼結型1の内部
上下には、中実円筒状でグラファイトで構成された発熱
体4a,4bが摺動自在に嵌合している。発熱体4a,
4bの上下には電極5a,5bが設けられている。電極
5a,5bは発熱体4a,4bを押圧するパンチを構成
するとともに発熱体4a,4bに通電する。焼結型1の
周囲には抵抗ヒータ6a,6bが設けられ、焼結型1を
加熱する。焼結型1,発熱体4a,4b,電極5a,5
bの発熱体4側,抵抗ヒータ6a,6bは断熱囲壁7に
より囲まれ断熱性を保持している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described with reference to the drawings. FIG. 1 is a configuration diagram of a sintering apparatus according to a first embodiment of the present invention. The sintering mold 1 has a hollow cylindrical shape and is made of graphite, and the center of the inside is a sintering space 2 in which the raw material powder 3 is filled. Heating elements 4a and 4b made of graphite and having a solid cylindrical shape are slidably fitted to upper and lower portions of the inside of the sintered mold 1. Heating element 4a,
Electrodes 5a and 5b are provided above and below 4b. The electrodes 5a and 5b constitute a punch for pressing the heating elements 4a and 4b, and energize the heating elements 4a and 4b. Resistance heaters 6a and 6b are provided around the sintering mold 1 to heat the sintering mold 1. Sintering mold 1, heating elements 4a, 4b, electrodes 5a, 5
The heating element 4 side of b and the resistance heaters 6a and 6b are surrounded by a heat insulating wall 7 and maintain heat insulation.

【0021】電極5a,5bの上下端には図示しない油
圧装置が接続され発熱体4a,4bを加圧するようにな
っている。電源8は50または60Hzなどの商用電源
を用いる。電源8よりの電力をサイリスタ9で制御し、
トランス10で降圧した後、電極5a,5bおよび抵抗
ヒータ6a,6bに通電する。焼結型1の内面または外
面には温度センサ11が設けられており、焼結体の温度
を計測する。制御部12はこの温度センサ11の計測値
に基づきサイリスタ9を制御して電流を制御する。上記
の説明は上下両方の電極5a,5bと発熱体4a,4b
とを油圧装置で上下から加圧するとしたが、上下いずれ
かの電極5と発熱体4のみを加圧し、他方は固定するよ
うにしてもよい。なおこの方式は以下に述べる実施形態
にも適用できる。
Hydraulic devices (not shown) are connected to the upper and lower ends of the electrodes 5a, 5b to press the heating elements 4a, 4b. As the power supply 8, a commercial power supply such as 50 or 60 Hz is used. The power from the power source 8 is controlled by the thyristor 9,
After the voltage is reduced by the transformer 10, the electrodes 5a and 5b and the resistance heaters 6a and 6b are energized. A temperature sensor 11 is provided on the inner surface or the outer surface of the sintering mold 1, and measures the temperature of the sintered body. The control unit 12 controls the thyristor 9 based on the measurement value of the temperature sensor 11 to control the current. The above description is based on both the upper and lower electrodes 5a, 5b and the heating elements 4a, 4b.
Is pressurized from above and below by a hydraulic device, but it is also possible to pressurize only one of the upper and lower electrodes 5 and the heating element 4 and fix the other. Note that this method can also be applied to the embodiments described below.

【0022】図2は図1のX−X断面図である。ヒータ
6は焼結型1の周囲に一定間隔で同心状に配置されてい
る。ヒータ6は図で右側のヒータ6aと左側のヒータ6
bとにわけて通電され制御されている。なお、以降に示
す実施形態の断面図も同様な構成となっている。
FIG. 2 is a sectional view taken along line XX of FIG. The heaters 6 are arranged concentrically around the sintering mold 1 at regular intervals. The heater 6 includes a right heater 6a and a left heater 6 in the drawing.
b and is controlled by being energized. The cross-sectional views of the following embodiments have the same configuration.

【0023】発熱体4a,4bと焼結型1の電気抵抗は
それぞれに発生させる発熱量を考慮して設定される。発
熱体4a,4bと電極5a,5bとの接合部は原料粉末
3を加圧した状態で焼結型1の外側になるような構成と
なっており、電流は発熱体4a,4bを経由して焼結型
1に流れる。これにより発熱体4a,4bの電気抵抗を
焼結型1のものより大きくしても、電流は確実に発熱体
4a,4bを通過してこれを発熱させる。原料粉末3が
セラミックスの場合は加熱は発熱体4a,4b、焼結型
1および必要に応じて抵抗ヒータ6a,6bにより行わ
れる。電極5a,5bと抵抗ヒータ6a,6bへの電流
の制御はサイリスタ9によって行われる。なお、抵抗ヒ
ータ6a,6bの加熱制御は、抵抗ヒータ6a,6bを
一本づつまたは複数のクループに分け、オン、オフする
ようにしてもよい。原料粉末3が金属、炭化物、窒化物
などの導電性物質である場合は、原料粉末3にも通電さ
れ、その抵抗により発熱する。これにより加熱能力が増
大する。
The electric resistances of the heating elements 4a, 4b and the sintering mold 1 are set in consideration of the amount of heat generated respectively. The junction between the heating elements 4a, 4b and the electrodes 5a, 5b is configured to be outside the sintering mold 1 in a state where the raw material powder 3 is pressed, and current flows through the heating elements 4a, 4b. And flows into the sintering mold 1. Thus, even if the electric resistance of the heating elements 4a, 4b is larger than that of the sintered mold 1, the current surely passes through the heating elements 4a, 4b to generate heat. When the raw material powder 3 is ceramics, heating is performed by the heating elements 4a and 4b, the sintering mold 1, and, if necessary, the resistance heaters 6a and 6b. The control of the current to the electrodes 5a, 5b and the resistance heaters 6a, 6b is performed by the thyristor 9. The heating of the resistance heaters 6a and 6b may be controlled on and off by dividing the resistance heaters 6a and 6b one by one or into a plurality of groups. When the raw material powder 3 is a conductive substance such as a metal, carbide, or nitride, the raw material powder 3 is also energized and generates heat due to its resistance. This increases the heating capacity.

【0024】次にヒータ6(6は6a,6bを表す。他
の符号についても同様とする)による間接加熱と発熱体
4,電極5,焼結型1による通電加熱とに供給する電力
の割合についてその一例を説明する。図3はヒータ6に
よる間接加熱の場合の温度分布と、温度と供給電力との
関係を示す。(A)は原料粉末3の上下方向の中心を通
る直線P上の温度分布を示す。a点は焼結型1の外面で
温度センサ11が設けられている位置であり、b点は原
料粉末3の表面、c点は原料粉末3の中心である。温度
分布はa点より中心に行くに従い低くなっており、c点
で最低となっている。(B)はa,b,c点の温度T
a,Tb,Tcの時間経過を示し、(C)はこのときの
電力供給値の時間経過を示す。TaがMになるまでは電
力P1が供給され、以降はMを維持する電力P0が供給
される。TaがMになるまでの期間を昇温加熱期間、T
aを温度Mに保持する期間を定常加熱期間とする。
(B)において温度が飽和するf点以降では、Ta>T
b>Tcの関係が成立している。
Next, the ratio of the electric power supplied to the indirect heating by the heater 6 (6 represents 6a and 6b; the same applies to other symbols) and the electric heating by the heating element 4, the electrode 5, and the sintering mold 1. An example will be described. FIG. 3 shows a temperature distribution in the case of indirect heating by the heater 6 and a relationship between the temperature and the supplied power. (A) shows a temperature distribution on a straight line P passing through the center of the raw material powder 3 in the vertical direction. Point a is the position where the temperature sensor 11 is provided on the outer surface of the sintering mold 1, point b is the surface of the raw material powder 3, and point c is the center of the raw material powder 3. The temperature distribution becomes lower toward the center from the point a, and becomes the lowest at the point c. (B) shows the temperature T at points a, b, and c.
a, Tb, and Tc show the lapse of time, and (C) shows the lapse of the power supply value at this time. Electric power P1 is supplied until Ta reaches M, and thereafter electric power P0 that maintains M is supplied. The period until Ta becomes M is referred to as a heating and heating period.
The period during which a is maintained at the temperature M is defined as a steady heating period.
After point f where the temperature is saturated in (B), Ta> T
The relationship of b> Tc is established.

【0025】図4は通電加熱の場合の温度分布と、温度
と供給電力との関係を示す。(A)は原料粉末3の上下
方向の中心を通る直線P上の温度分布を示す。a点は焼
結型1の外面で温度センサ11が設けられている位置で
あり、b点は原料粉末3の表面、c点は原料粉末3の中
心である。温度分布はa点より中心に行くに従い高くな
っており、c点で最高となっている。(B)はa,b,
c,の温度Ta,Tb,Tcの時間経過を示し、(C)
はこのときの電力供給値の時間経過を示す。Taが温度
Nになるまでは電力Q1が供給され、以降はNを維持す
る電力Q0が供給される。なお、(B)において、原料
粉末3の種類、焼結型1のサイズなどによって、Ta,
Tb,Tcの関係が変わり、間接加熱のように一定の関
係とはならない。
FIG. 4 shows a temperature distribution in the case of electric heating and a relationship between the temperature and the supplied power. (A) shows a temperature distribution on a straight line P passing through the center of the raw material powder 3 in the vertical direction. Point a is the position where the temperature sensor 11 is provided on the outer surface of the sintering mold 1, point b is the surface of the raw material powder 3, and point c is the center of the raw material powder 3. The temperature distribution becomes higher from the point a toward the center and becomes the highest at the point c. (B) shows a, b,
(c) shows the lapse of time of the temperatures Ta, Tb, and Tc of (c).
Indicates the lapse of time of the power supply value at this time. Electric power Q1 is supplied until Ta reaches temperature N, and thereafter electric power Q0 that maintains N is supplied. In (B), depending on the type of the raw material powder 3, the size of the sintering mold 1, and the like, Ta,
The relationship between Tb and Tc changes, and does not become a fixed relationship unlike indirect heating.

【0026】図3、図4で示した間接加熱と通電加熱の
特性を考慮して、両加熱方式を併用する場合の電力供給
の割合の一例を説明する。図5はヒータ6による間接加
熱を示す。図5は図3に示した内容と同様であり、本図
では(C)の定常加熱期間の電極5と加熱体4からの熱
損失を説明する。 P0≒Lw+Lr …(1) P0:定常熱損失 Lw:焼結型1からの熱損失 Lr:加熱体4と電極5からの熱損失
Considering the characteristics of the indirect heating and the energization heating shown in FIGS. 3 and 4, an example of the power supply ratio when both heating methods are used together will be described. FIG. 5 shows indirect heating by the heater 6. FIG. 5 is the same as the content shown in FIG. 3, and in this figure, the heat loss from the electrode 5 and the heating element 4 during the steady heating period of (C) will be described. P0 ≒ Lw + Lr (1) P0: Steady heat loss Lw: Heat loss from sintering mold 1 Lr: Heat loss from heating element 4 and electrode 5

【0027】焼結型1の外面温度TaをMに保持するた
めには電力P0を供給しなければならない。このP0は
定常熱損失と言われ、焼結型1から失われる損失Lw
と、加熱体4と電極5から失われる損失Lrとから構成
される。この損失Lrを計測する。計測方法としては、
例えば、焼結型1を断熱的に遮蔽した状態でTaをMに
維持するように加熱したときの電力P01を求めれば、
このP01が損失Lrを表す。
In order to maintain the outer surface temperature Ta of the sintering mold 1 at M, electric power P0 must be supplied. This P0 is called a steady heat loss, and the loss Lw lost from the sintering mold 1
And the loss Lr lost from the heating element 4 and the electrode 5. This loss Lr is measured. As a measurement method,
For example, when the electric power P01 when the sintering mold 1 is heated so as to maintain Ta at M while being adiabatically shielded is obtained,
This P01 represents the loss Lr.

【0028】図6は間接加熱と通電加熱との供給電力の
比率を説明する図である。加熱は次のように行う。 昇温加熱期間:通電電力(焼結型1,発熱体4,電
極5に供給される電力)を図5において計測した発熱体
4と電極5からの損失Lrの電力とする。間接加熱のヒ
ータ6への電力は、通電電力が供給されている状態で、
Taが所定の昇温加熱期間Tで所定の温度Mになる電力
とする。 定常加熱期間:通電電力は零とし、定常損失電力P
0はすべてヒータ6の間接加熱電力とする。
FIG. 6 is a diagram for explaining the ratio of the power supply between the indirect heating and the energization heating. Heating is performed as follows. Heating / heating period: The power supplied (the power supplied to the sintering mold 1, the heating element 4, and the electrode 5) is the power of the loss Lr from the heating element 4 and the electrode 5 measured in FIG. The power to the heater 6 for the indirect heating is supplied in a state where the power is supplied.
Ta is an electric power at which a predetermined temperature M is reached in a predetermined temperature heating period T. Steady-state heating period: The energized power is set to zero, and the steady-state power loss P
All 0 are the indirect heating power of the heater 6.

【0029】以上の供給電力の配分により、昇温加熱
時、間接加熱は通電加熱と同時に行われるので、間接加
熱単独の場合と同じ電力の場合でも昇温加熱期間Tは短
縮される。また定常加熱期間では間接加熱のみ行われる
ので、Ta>Tb>Tcの関係が保たれ、焼結型1の外
面に取付けられた温度センサ11により温度Taを制御
することにより原料粉末3の表面温度Tb,中心温度T
cをTaより低い温度に確実に制御することができる。
With the above-mentioned distribution of the supplied power, the indirect heating is performed at the same time as the energization heating at the time of the heating heating, so that the heating heating period T is shortened even with the same power as in the case of the indirect heating alone. In addition, since only indirect heating is performed during the steady heating period, the relationship of Ta>Tb> Tc is maintained, and the temperature Ta is controlled by the temperature sensor 11 attached to the outer surface of the sintering mold 1 so that the surface temperature of the raw material powder 3 is controlled. Tb, center temperature T
c can be reliably controlled to a temperature lower than Ta.

【0030】図6(A),(B)は以上のことを示して
おり、昇温加熱期間Tでは(B)の斜線部で示す通電電
力が間接加熱電力に加算されるので、昇温加熱期間Tが
ヒータ6による間接加熱単独の場合と同じであれば、間
接加熱電力は少なくなり、間接加熱電力を同じとすれ
ば、昇温加熱期間Tは短縮される。また定常加熱期間は
間接加熱のみ行われる。なお、通電加熱電力とヒータ6
による間接加熱電力の比率は以降に述べる実施形態にも
適用できる。
FIGS. 6A and 6B show the above. In the heating-up heating period T, the energized power indicated by the hatched portion in FIG. 6B is added to the indirect heating power. If the period T is the same as the case of the indirect heating by the heater 6 alone, the indirect heating power is reduced, and if the indirect heating power is the same, the heating-up heating period T is shortened. During the steady heating period, only indirect heating is performed. It should be noted that the electric heating power and the heater 6
The indirect heating power ratio can be applied to the embodiments described below.

【0031】次に第2実施形態を説明する。図7は第2
実施形態の構成を示す。図7において使用される符号で
図1と同一のものは、同一の機能を有する部材や機器を
表す。第2実施形態は電極5a,5bと発熱体4a,4
bの電流通過断面積を発熱体4a,4bの方が小さくな
るようにして電気抵抗を大きくし、発熱するようにした
ものであり、他は第1実施形態と同じである。電極5
a,5bと発熱体4a,4bをグラファイトで構成し、
電極5a,5bの形状を発熱体4a,4bより大きくし
て電気抵抗を少くし、発熱体4a,4bの形状を小さく
して電気抵抗を大きくし発熱が大きくなるようにする。
なお電極5a,5bと発熱体4a,4bの材質は同一と
してもよいが、発熱体4a,4bの材質を電極5a,5
bよりも抵抗値の大きなものとすると発熱体4a,4b
の発熱量を多くすることができる。
Next, a second embodiment will be described. FIG. 7 shows the second
1 shows a configuration of an embodiment. 7 that are the same as those in FIG. 1 represent members or devices having the same function. In the second embodiment, the electrodes 5a, 5b and the heating elements 4a, 4
The current passing cross-sectional area b is made smaller for the heating elements 4a and 4b so as to increase the electric resistance and generate heat, and the other parts are the same as those of the first embodiment. Electrode 5
a, 5b and the heating elements 4a, 4b are made of graphite,
The shape of the electrodes 5a and 5b is made larger than that of the heating elements 4a and 4b to reduce the electric resistance, and the shape of the heating elements 4a and 4b is made small to increase the electric resistance and increase the heat generation.
The materials of the electrodes 5a, 5b and the heating elements 4a, 4b may be the same, but the materials of the heating elements 4a, 4b are changed to the electrodes 5a, 5b.
Assuming that the resistance value is larger than b, the heating elements 4a and 4b
The amount of heat generated can be increased.

【0032】図8は第3実施形態を示す。本実施形態は
図7に示す第2実施形態の変形例である。第2実施形態
は電極5a,5bの直径を発熱体4a,4bの直径より
大きくし、発熱体4a,4bとの接合部で絞って発熱体
4a,4bの直径と同じくしたが、本実施形態は電極5
a,5bは絞らず、加熱体4a,4bの電極5a,5b
との接合部を拡張したものである。このようにすると電
極5a,5bの直径が同一であれば図1に示す第1実施
形態の装置と互換性を持たせることができる。また電極
5a,5bと加熱体4a,4bとの接触面積が大きくな
るのでこの部分の接触抵抗が減少し無駄な発熱を減少
し、かつ接触面の経時劣化を抑える効果がある。
FIG. 8 shows a third embodiment. This embodiment is a modification of the second embodiment shown in FIG. In the second embodiment, the diameters of the electrodes 5a and 5b are made larger than the diameters of the heating elements 4a and 4b, and the diameters of the electrodes 5a and 5b are the same as the diameters of the heating elements 4a and 4b. Is electrode 5
The electrodes 5a and 5b of the heating elements 4a and 4b are not squeezed.
This is an extension of the junction with the above. In this way, if the diameters of the electrodes 5a and 5b are the same, compatibility with the device of the first embodiment shown in FIG. 1 can be provided. Further, since the contact area between the electrodes 5a, 5b and the heating elements 4a, 4b is increased, the contact resistance at this portion is reduced, so that unnecessary heat generation is reduced and the contact surface is prevented from deteriorating with time.

【0033】次に第4実施形態を説明する。図9は第4
実施形態の構成を示す。図9において使用される符号で
図1と同一のものは、同一の機能を有する部材や機器を
表す。第4実施形態は焼結型1への通電を、発熱体4の
経由に加え、電極5a,5bからも直接行なうようにし
たもので、他は第1実施形態と同じである。焼結型1と
発熱体4a,4bの抵抗値を適切な値に設定して発熱量
を設定する。発熱体4a,4bの電気抵抗値を大きくし
て発熱量を大きくし、第1実施形態のように発熱体4
a,4bを経由して焼結型1へ通電すると、焼結型1へ
の電流が少くなりこの発熱量が少くなるが、バイパスを
設け、電極5a,5bから電流の一部を流すことにより
焼結型1の発熱量を適切な値とすることができる。
Next, a fourth embodiment will be described. FIG. 9 shows the fourth
1 shows a configuration of an embodiment. 9 that are the same as those in FIG. 1 indicate members and devices having the same function. The fourth embodiment is different from the first embodiment in that the power supply to the sintering mold 1 is performed directly from the electrodes 5a and 5b in addition to passing through the heating element 4. The calorific value is set by setting the resistance values of the sintering mold 1 and the heating elements 4a and 4b to appropriate values. The heat generation amount is increased by increasing the electric resistance value of the heating elements 4a and 4b, and the heating elements 4a and 4b are increased as in the first embodiment.
When a current is applied to the sintering mold 1 via the a and 4b, the current to the sintering mold 1 is reduced and the calorific value is reduced. However, by providing a bypass and allowing a part of the current to flow from the electrodes 5a and 5b, The calorific value of the sintering mold 1 can be set to an appropriate value.

【0034】上述した実施形態では、抵抗ヒータ6a,
6bを設けたが、焼結体が大型でなかったり、焼結時間
の短縮が要求されないような場合や正確な温度制御が要
求されない場合は、設けなくてもよい。発熱体4a,4
bと焼結型1の発熱、また原料粉末が導電性物質の場合
は自身の抵抗発熱により焼結可能である。
In the embodiment described above, the resistance heaters 6a,
Although 6b is provided, it may not be provided when the sintered body is not large-sized, when the reduction of the sintering time is not required, or when accurate temperature control is not required. Heating elements 4a, 4
b and the heat generated by the sintering mold 1, and when the raw material powder is a conductive substance, can be sintered by its own resistance heat generation.

【0035】[0035]

【発明の効果】以上述べたように、本発明によれば、焼
結型と発熱体に通電して加熱する通電加熱方式により、
セラミックスまたは導電性物質のいずれでも焼結するこ
とができる。導電性物質の場合はこれに通電することに
より発熱能力が増大する。さらにヒータによる間接加熱
方式を併用することにより、通電加熱方式による装置大
型化の障害となっていた、温度制御精度を間接加熱方式
と同程度に確保でき、装置の大型化が可能になる。ま
た、通電加熱方式の併用により原料粉末の加熱効率が向
上し、通電加熱方式の装置大型化の課題であった加熱時
間の増加を抑制することが可能となり、結果として供給
エネルギも抑制できる。
As described above, according to the present invention, the sintering mold and the heating element are energized and heated by energizing.
Either ceramics or conductive materials can be sintered. In the case of a conductive substance, the heat generation capacity is increased by energizing the conductive substance. Further, by using the indirect heating method using a heater together, the temperature control accuracy, which has been an obstacle to the increase in the size of the device due to the energized heating method, can be secured to the same degree as that of the indirect heating method, and the device can be made larger. Further, the heating efficiency of the raw material powder is improved by the combined use of the electric heating method, and it is possible to suppress the increase in the heating time, which is a problem of enlarging the apparatus of the electric heating method, and as a result, the supply energy can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の構成を示す図である。FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.

【図2】図1のX−X断面図である。FIG. 2 is a sectional view taken along line XX of FIG.

【図3】ヒータによる間接加熱を示し、(A)は温度分
布、(B)は温度変化曲線、(C)は供給電力を示す。
3A and 3B show indirect heating by a heater, wherein FIG. 3A shows a temperature distribution, FIG. 3B shows a temperature change curve, and FIG.

【図4】通電加熱を示し、(A)は温度分布、(B)は
温度変化曲線、(C)は供給電力を示す。
FIG. 4 shows energization heating, (A) shows a temperature distribution, (B) shows a temperature change curve, and (C) shows a supply power.

【図5】ヒータによる間接加熱を示し、(A)は温度分
布、(B)は温度変化曲線、(C)は供給電力を示す。
5A and 5B show indirect heating by a heater, wherein FIG. 5A shows a temperature distribution, FIG. 5B shows a temperature change curve, and FIG.

【図6】間接加熱と通電加熱の併用方式の一例を示す。FIG. 6 shows an example of a combined method of indirect heating and electric heating.

【図7】本発明の第2実施形態の構成を示す図である。FIG. 7 is a diagram showing a configuration of a second embodiment of the present invention.

【図8】本発明の第3実施形態の構成を示す図である。FIG. 8 is a diagram showing a configuration of a third embodiment of the present invention.

【図9】本発明の第4実施形態の構成を示す図である。FIG. 9 is a diagram showing a configuration of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 焼結型 2 焼結空間 3 原料粉末 4 発熱体 5 電極 6 抵抗ヒータ 7 断熱囲壁 8 電源 9 サイリスタ 10 トランス 11 温度センサ 12 制御部 DESCRIPTION OF SYMBOLS 1 Sintering type 2 Sintering space 3 Raw material powder 4 Heating element 5 Electrode 6 Resistance heater 7 Heat insulation wall 8 Power supply 9 Thyristor 10 Transformer 11 Temperature sensor 12 Control part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 望月 智俊 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社横浜エンジニアリ ングセンター内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tomotoshi Mochizuki 1 Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Ishikawashima Harima Heavy Industries, Ltd. Yokohama Engineering Center

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 焼結型の焼結空間に充填された原料粉末
を一対のパンチよりなる電極で加圧し通電して焼結する
焼結装置であって、前記電極と原料粉末の間には通電に
より発熱する発熱体が設けられており、前記焼結型は通
電により発熱する導電体で構成されていることを特徴と
する焼結装置。
1. A sintering apparatus for sintering a raw material powder filled in a sintering space by pressurizing a raw material powder with an electrode composed of a pair of punches and sintering the raw material powder. A sintering apparatus comprising: a heating element that generates heat when energized; and the sintering mold is formed of a conductor that generates heat when energized.
【請求項2】 前記発熱体の発熱量は前記電極の発熱量
より大きいことを特徴とする請求項1記載の焼結装置。
2. The sintering apparatus according to claim 1, wherein the heating value of the heating element is larger than the heating value of the electrode.
【請求項3】 前記焼結型は前記発熱体を経由して電極
より通電されることを特徴とする請求項1記載の焼結装
置。
3. The sintering apparatus according to claim 1, wherein the sintering die is energized from an electrode via the heating element.
【請求項4】 前記焼結型は前記発熱体を経由して電極
より通電され、さらに電極からも直接に通電されている
ことを特徴とする請求項1記載の焼結装置。
4. The sintering apparatus according to claim 1, wherein the sintering mold is energized by an electrode via the heating element, and is also energized directly by the electrode.
【請求項5】 前記焼結型の周囲にはヒータが設けられ
ていることを特徴とする請求項1ないし4のいずれかに
記載の焼結装置。
5. The sintering apparatus according to claim 1, wherein a heater is provided around the sintering mold.
【請求項6】 前記ヒータに投入されるエネルギ量を前
記通電により加熱される電極、発熱体および焼結型に投
入されるエネルギ量よりも大きくし、焼結型の温度より
原料粉末の温度が低くなるように加熱することを特徴と
する請求項5に記載の焼結装置。
6. The amount of energy input to the heater is made larger than the amount of energy input to the electrode, the heating element and the sintering mold heated by the energization, and the temperature of the raw material powder is higher than the temperature of the sintering mold. The sintering apparatus according to claim 5, wherein the heating is performed so as to lower the temperature.
JP14746097A 1997-06-05 1997-06-05 Sintering equipment Expired - Fee Related JP3781072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14746097A JP3781072B2 (en) 1997-06-05 1997-06-05 Sintering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14746097A JP3781072B2 (en) 1997-06-05 1997-06-05 Sintering equipment

Publications (2)

Publication Number Publication Date
JPH10330804A true JPH10330804A (en) 1998-12-15
JP3781072B2 JP3781072B2 (en) 2006-05-31

Family

ID=15430877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14746097A Expired - Fee Related JP3781072B2 (en) 1997-06-05 1997-06-05 Sintering equipment

Country Status (1)

Country Link
JP (1) JP3781072B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101003559B1 (en) * 2007-04-10 2010-12-30 한국생산기술연구원 Hybrid hot press apparatus
JP2011226761A (en) * 2009-11-25 2011-11-10 Ibiden Co Ltd Method for manufacturing of ceramic sintered compact and method for manufacturing of honeycomb structure
CN102765946A (en) * 2012-07-05 2012-11-07 中国科学院宁波材料技术与工程研究所 Current assisted method for quickly preparing powder
CN104289710A (en) * 2014-09-30 2015-01-21 许用华 Graphite sintering box with exhausting and sealing functions
KR102024680B1 (en) * 2018-12-21 2019-09-24 서울대학교산학협력단 Sintering apparatus for selectively applyung electric current
WO2023024132A1 (en) * 2021-08-23 2023-03-02 株洲瑞德尔冶金设备制造有限公司 Novel furnace door heating apparatus and horizontal sintering furnace thereof
WO2023106008A1 (en) * 2021-12-07 2023-06-15 ミネベアミツミ株式会社 Method for producing rare earth iron sintered magnet, apparatus for producing rare earth iron sintered magnet, and rare earth iron sintered magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174320A1 (en) * 2014-05-12 2015-11-19 株式会社Ihi Graphitization furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873707A (en) * 1981-09-03 1983-05-04 ル−カス・インダストリ−ズ・パブリツク・リミテツド・カンパニ− Disk brake friction element, manufacture and manufacturing apparatus
JPH0492512U (en) * 1990-12-28 1992-08-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873707A (en) * 1981-09-03 1983-05-04 ル−カス・インダストリ−ズ・パブリツク・リミテツド・カンパニ− Disk brake friction element, manufacture and manufacturing apparatus
JPH0492512U (en) * 1990-12-28 1992-08-12

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101003559B1 (en) * 2007-04-10 2010-12-30 한국생산기술연구원 Hybrid hot press apparatus
JP2011226761A (en) * 2009-11-25 2011-11-10 Ibiden Co Ltd Method for manufacturing of ceramic sintered compact and method for manufacturing of honeycomb structure
CN102765946A (en) * 2012-07-05 2012-11-07 中国科学院宁波材料技术与工程研究所 Current assisted method for quickly preparing powder
CN104289710A (en) * 2014-09-30 2015-01-21 许用华 Graphite sintering box with exhausting and sealing functions
KR102024680B1 (en) * 2018-12-21 2019-09-24 서울대학교산학협력단 Sintering apparatus for selectively applyung electric current
WO2020130336A1 (en) * 2018-12-21 2020-06-25 서울대학교 산학협력단 Sintering apparatus for selective energization
JP2022519008A (en) * 2018-12-21 2022-03-18 ソウル大学校産学協力団 Selective energization sintering equipment
WO2023024132A1 (en) * 2021-08-23 2023-03-02 株洲瑞德尔冶金设备制造有限公司 Novel furnace door heating apparatus and horizontal sintering furnace thereof
WO2023106008A1 (en) * 2021-12-07 2023-06-15 ミネベアミツミ株式会社 Method for producing rare earth iron sintered magnet, apparatus for producing rare earth iron sintered magnet, and rare earth iron sintered magnet

Also Published As

Publication number Publication date
JP3781072B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
US4256945A (en) Alternating current electrically resistive heating element having intrinsic temperature control
DE3229380C3 (en) Radiant heater for electric cookers with glass ceramic cover plates
EP3237178B1 (en) Deposition print head
JP3305501B2 (en) Temperature control method
US4695713A (en) Autoregulating, electrically shielded heater
US7019269B2 (en) Heater
CA1214815A (en) Autoregulating electrically shielded heater
DE4022846A1 (en) METHOD AND DEVICE FOR CONTROLLING AND LIMITING THE PERFORMANCE OF A HEATING AREA MADE OF GLASS CERAMIC OR A COMPARABLE MATERIAL
EP0075010A1 (en) Shielded heating element having intrinsic temperature control.
JPH0367315B2 (en)
US20060156782A1 (en) Continuous extrusion apparatus
JPH10330804A (en) Sintering device
US3161756A (en) Electrically heated billet-containers for metal-extrusion presses
US11153936B2 (en) Ceramic heating resistor, electrical heating element, and device for heating a fluid
JP2007023365A (en) Method for producing electrode for discharge surface treatment, and production device therefor
JP3112137B2 (en) High frequency electromagnetic induction heater
EP1425173B1 (en) Hot stamping cylinder
US5939012A (en) Method and apparatus for manufacture of carbonaceous articles
DE2914304C2 (en)
US3569602A (en) Temperature programming apparatus with a heating sensing arrangement
GB2099670A (en) Furnace elements and furnaces
JP4163394B2 (en) Pressurized current sintering apparatus and punch temperature control method thereof
EP0073190B1 (en) Electrically resistive heating element having temperature control
JP3935696B2 (en) Cartridge heater
JP2000063907A (en) Electric heating type pressure-sintering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees