JPH0637673B2 - Rigid induction heating furnace - Google Patents

Rigid induction heating furnace

Info

Publication number
JPH0637673B2
JPH0637673B2 JP1246573A JP24657389A JPH0637673B2 JP H0637673 B2 JPH0637673 B2 JP H0637673B2 JP 1246573 A JP1246573 A JP 1246573A JP 24657389 A JP24657389 A JP 24657389A JP H0637673 B2 JPH0637673 B2 JP H0637673B2
Authority
JP
Japan
Prior art keywords
heat
induction heating
temperature
support
steel slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1246573A
Other languages
Japanese (ja)
Other versions
JPH03110380A (en
Inventor
正満 小橋
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP1246573A priority Critical patent/JPH0637673B2/en
Publication of JPH03110380A publication Critical patent/JPH03110380A/en
Publication of JPH0637673B2 publication Critical patent/JPH0637673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鋼片の竪型誘導加熱炉に関し、とくに誘導
加熱時における鋼片下面からの熱放散を効果的に防止し
て、該鋼片の均一加熱を可能ならしめようとするもので
ある。
Description: TECHNICAL FIELD The present invention relates to a vertical induction heating furnace for steel slabs, and more particularly, to effectively prevent heat dissipation from the bottom surface of the steel slab during induction heating. The idea is to evenly heat the pieces.

(従来の技術) たとえば方向性けい素鋼板用スラグなど、高温での加熱
を必要とする鋼片の加熱処理として、最近、鋼片をその
幅方向に直立させた状態で加熱するいわゆる竪型誘導加
熱炉が利用されている。
(Prior Art) As a heat treatment for billets that need to be heated at high temperature, such as slag for grain-oriented silicon steel sheets, recently, so-called vertical induction is used in which the billets are heated in an upright state in the width direction. A heating furnace is used.

かかる竪型誘導加熱炉では、鋼片の炉内への装入、抽出
は一般に、鋼片を載置した昇降ビームの昇降操作によ
り、炉の下方から行われる。
In such a vertical induction heating furnace, the charging and extraction of the steel pieces into the furnace are generally performed from below the furnace by elevating the elevating beam on which the steel pieces are placed.

第3図に、竪型誘導加熱炉の全体を、また第4図には昇
降ビームによる鋼片のサポート構造の詳細を示す。
FIG. 3 shows the entire vertical induction heating furnace, and FIG. 4 shows the details of the support structure for the steel slab by the elevating beam.

図中番号1は鋼片、2は炉壁、3は誘導コイルであり、
4は昇降ビームである。この昇降ビーム4は、耐熱金属
製のサポート金物4-1、水冷パイプ4-2(内部水冷式)お
よび耐火断熱材4-3からなっている。なお鋼片1はサポ
ート金物4-1上に載置され昇降装置(図示省略)により
炉内に下部から装入されるしくみになっている。
In the figure, numeral 1 is a steel piece, 2 is a furnace wall, 3 is an induction coil,
Reference numeral 4 is a lifting beam. The elevating beam 4 is composed of a support metal 4-1, which is made of heat-resistant metal, a water cooling pipe 4-2 (internal water cooling type), and a fireproof heat insulating material 4-3. The steel piece 1 is placed on the support metal 4-1 and is loaded into the furnace from below by an elevating device (not shown).

さて第4図に示したとおり、耐熱金属製のサポート金物
4-1が鋼片長手方向に沿い適当な間隔を開けて配置さ
れ、鋼片1と直接接触してこれを支持している。このサ
ポート金物4-1は、水冷された水冷パイプ4-2により支持
されている。さらにこのパイプ4-2は、サポート金物4-1
の一部を含め、耐火断熱材4-3によりライニングされ、
冷却水への熱移動を極力防止する構造になっている。
Now, as shown in Fig. 4, support hardware made of heat-resistant metal
4-1 are arranged at appropriate intervals along the longitudinal direction of the steel slab and directly contact the steel slab 1 to support it. The support hardware 4-1 is supported by a water-cooled water cooling pipe 4-2. Furthermore, this pipe 4-2 is a support hardware 4-1.
Lined with fireproof insulation 4-3, including a part of
It has a structure that prevents heat transfer to the cooling water as much as possible.

ところでこのようなサポート構造においては、以下に述
べるような問題がある。
However, such a support structure has the following problems.

すなわち誘導加熱炉においては、被加熱物である鋼片自
身が発熱体であることから、周りに低温部があると鋼片
からの熱移動が生じ、鋼片自身の温度が低下することで
ある。
That is, in the induction heating furnace, the steel piece itself, which is the object to be heated, is a heating element, so if there is a low-temperature portion around it, heat transfer from the steel piece occurs, and the temperature of the steel piece itself decreases. .

ここで第5図に基づいて熱の移動を考えると次のとおり
である。鋼片1は、自己発熱によって温度が上昇する
と、これに伴い耐火断熱材4-3への熱移動Q1が生じ、つ
いで断熱材内部への熱拡散Q2、さらには水冷パイプ4-2
を介した冷却水への熱移動Q3が発生し、時間とともに定
常状態となって各部はあるバランスされた温度となる。
ここで注目すべきことは、熱源はあくまで鋼片自身であ
るから、この熱移動量を補償して鋼片自身が発熱しなけ
ればならないことである。
Here, considering the heat transfer based on FIG. 5, it is as follows. When the temperature of the billet 1 rises due to self-heating, heat transfer Q 1 to the refractory heat insulating material 4-3 occurs with it, and then heat diffusion Q 2 into the heat insulating material, and further the water cooling pipe 4-2.
Heat transfer Q 3 to the cooling water occurs via, and becomes stable with the lapse of time, and each part reaches a certain balanced temperature.
What should be noted here is that since the heat source is only the steel piece itself, the steel piece itself must generate heat by compensating for this heat transfer amount.

一方このような熱移動が発生しない鋼片部分たとえば鋼
片上部においては、鋼片の発熱分はそのまま鋼片の温度
上昇につながる。従って鋼片には、その場所によって、
鋼片の温度上昇に無視できないアンバランスが発生し、
鋼片温度が不均一となる。
On the other hand, in the steel slab portion where such heat transfer does not occur, for example, the upper portion of the steel slab, the heat generated by the steel slab directly leads to an increase in the temperature of the steel slab. Therefore, depending on the location,
An imbalance that cannot be ignored occurs in the temperature rise of the billet,
The billet temperature becomes uneven.

これの防止策として、第6図に示すように、鋼片の幅方
向に誘導コイルを分割し、それぞれのコイル5を個別に
制御して幅方向の均一加熱を達成しようとする試みがあ
るが、鋼片下部に上記したような大きな熱移動がある限
り、鋼片に温度分布がつくのは避けられず、単に最下限
温度を確保できるにすぎなかった。
As a measure to prevent this, there is an attempt to divide the induction coil in the width direction of the steel piece and individually control each coil 5 to achieve uniform heating in the width direction as shown in FIG. As long as there is a large amount of heat transfer in the lower part of the billet, it is inevitable that the billet has a temperature distribution, and only the minimum temperature can be secured.

(発明が解決しようとする課題) 従って温度分布の不均一を防止するには、鋼片下部言い
換えれば昇降ビーム上部の温度維持に対しては、鋼片か
らの熱移動に頼らず、別の熱源により熱移動を補償する
ことが必要である。
(Problems to be solved by the invention) Therefore, in order to prevent uneven temperature distribution, in order to maintain the temperature of the lower part of the steel slab, in other words, the upper part of the ascending / descending beam, the heat transfer from the steel slab is not relied on and another heat source It is necessary to compensate for the heat transfer.

なお、昇降ビーム上部においても、鋼片と直接接触して
いる耐熱金属製のサポート金物の周辺部については、こ
のサポート金物に誘導電流が流れるように誘導コイルを
配置しておけば、この金物の自己発熱によって温度が上
昇するので、熱移動の発生を抑制することができるけれ
ども、サポート金物間の耐火断熱材部分にはかような発
熱は期待できないのでとくに熱の移動が著しい。
Even in the upper part of the lifting beam, if the induction coil is arranged so that an induction current flows through the support metal object around the heat resistant metal object, which is in direct contact with the steel slab, Since the temperature rises due to self-heating, generation of heat transfer can be suppressed, but such heat generation cannot be expected in the refractory heat insulating material portion between the support metal parts, so that heat transfer is particularly remarkable.

(課題を解決するための手段) 上述したとおり、鋼片下面からの熱の移動を防止するに
は、昇降装置上部の温度維持のための熱は鋼片からの入
熱にたよるのではなく、自らの発熱に期待する必要があ
る。しかしながら昇降装置を構成するものは大部分が耐
火断熱材であり、これらは誘導電流が流れないため自己
発熱はしない。
(Means for Solving the Problem) As described above, in order to prevent the transfer of heat from the bottom surface of the steel slab, the heat for maintaining the temperature of the upper part of the lifting device does not depend on the heat input from the steel slab. , You need to expect your own fever. However, most of the constituents of the lifting device are refractory heat insulating materials, and these do not generate self-heating because no induced current flows.

そこで発明者らは、上記の問題を解決すべく鋭意研究を
重ねた結果、熱補償するためには、サポート金物相互間
の耐火断熱材の上層面近傍に、誘導電流にて自己発熱す
るものを配置してやれば良く、とくにこの場合に、耐火
断熱材の熱抵抗とうまく組合せてやれば、パイプ冷却水
への熱移動(損失熱)を極力抑え得ると同時に耐火断熱
材の鋼片と面する部分の温度を高く維持して鋼片から耐
火断熱材への熱移動を抑えることができ、鋼片温度の低
下を効果的に防止し得ることる知見を得た。
Therefore, as a result of intensive studies to solve the above problems, the inventors have found that in order to perform heat compensation, a self-heater is generated near the upper surface of the refractory heat insulating material between the supporting hardware by an induced current. It is sufficient to arrange them. Especially, in this case, if properly combined with the heat resistance of the refractory insulation, it is possible to suppress heat transfer (loss heat) to the pipe cooling water as much as possible, and at the same time, the part of the refractory insulation that faces the steel slab. It was found that the temperature of slab can be kept high and the heat transfer from the slab to the refractory insulation can be suppressed, and the decrease of the slab temperature can be effectively prevented.

この発明は、鋼片の長手方向に沿い間隔をおいて配置さ
れ、該鋼片をその幅方向に直立させた状態で直接載置す
る複数本のサポート金物と、このサポート金物をそれぞ
れ支持する内部水冷式のサポートパイプと、このサポー
トパイプの全部とサポート金物の一部を取り囲む耐火断
熱材を備えた下部装入式の加熱炉であって、この加熱炉
は、サポート金物相互間の耐火断熱材の上層面近傍域に
誘導加熱によって発熱する発熱体を有する、ことを特徴
とする竪型誘導加熱炉である。
According to the present invention, a plurality of support metal fittings which are arranged at intervals along the longitudinal direction of the steel slab and directly mount the steel slab in an upright state in the width direction, and an inner portion which respectively supports the support metal fittings A lower charging furnace equipped with a water-cooled support pipe and a refractory insulation surrounding all of the support pipe and a part of the support hardware. The vertical induction heating furnace is characterized in that it has a heating element that generates heat by induction heating in a region near the upper layer surface.

以下、この発明を具体的に説明する。The present invention will be specifically described below.

第1図に、この発明に従う竪型誘導加熱炉の構造を示
し、図中番号6が耐火断熱材4-3の上層部に埋め込んだ
発熱体である。かかる発熱体6としては、加熱されるこ
とにより耐火断熱材の温度を上昇させ、しかも鋼片から
の入熱と相まって到達する温度に耐え得るものであれば
良く、一般的にはサポート金物に使用されている耐熱金
属が有利に適合するが、その他カーボンレンガなど金属
以外の利用も十分可能である。
FIG. 1 shows the structure of a vertical induction heating furnace according to the present invention, in which reference numeral 6 is a heating element embedded in the upper layer portion of the refractory heat insulating material 4-3. The heating element 6 may be any one that can raise the temperature of the refractory heat insulating material by being heated and can withstand the temperature reached in combination with the heat input from the steel slab, and is generally used for a support metal object. The refractory metals used are suitable, but other materials such as carbon bricks can be used.

なお発熱体の大きさは、必要とする耐火・断熱材の温度
に応じて定めればよく、ここに所要温度は実験的、経験
的に容易に求めることができる。
The size of the heating element may be determined according to the required temperature of the fireproof / heat insulating material, and the required temperature can be easily obtained experimentally and empirically here.

(実施例) 第1図に示したところにおいて、発熱体として厚み:30
mmのコバルト系耐熱金属を採用し、目標温度を1300℃と
して鋼片の加熱を行った。
(Example) In the place shown in FIG. 1, as a heating element, thickness: 30
Using a cobalt-based refractory metal of mm, the target temperature was set to 1300 ° C and the billet was heated.

加熱処理後、矢視断面A−A′の温度分布について調べ
た結果を第2図に示す。また同図には発熱体を用いない
従来法に従って加熱処理を行ったときの温度分布につい
ての調査結果も併せて示す。なお鋼片への投入電力量は
同一である。
FIG. 2 shows the results of examining the temperature distribution of the cross section AA ′ as seen from the arrow after the heat treatment. The figure also shows the results of an investigation on the temperature distribution when heat treatment was performed according to the conventional method without using a heating element. The amount of electric power input to the billet is the same.

同図より明らかなように、発熱体を配置した場合は、発
熱体を配置しなかった場合に比べて、耐火断熱材部にお
ける温度低下は著しく軽減されている。
As is clear from the figure, when the heating element is arranged, the temperature drop in the refractory heat insulating material portion is remarkably reduced as compared with the case where the heating element is not arranged.

なお投入電力量の面では鋼片への投入電力量は同じであ
るが、発熱体の発熱量はすなわち耐火断熱材を高温に維
持するのに消費した熱量は当然ながら消費電力の増加に
つながっている。しかしながら鋼片の低温部を解消した
ことによる品質、歩留り面での向上を考えれば、充分の
効果がある。
In terms of the amount of power input, the amount of power input to the steel slab is the same, but the amount of heat generated by the heating element, that is, the amount of heat consumed to maintain the refractory insulation at a high temperature, naturally leads to an increase in power consumption. There is. However, considering the improvement in quality and yield due to elimination of the low temperature part of the billet, there is a sufficient effect.

(発明の効果) かくしてこの発明によれば、鋼片の誘導加熱に際し、鋼
片下面からの熱放散を効果的に防止して鋼片の均一加熱
が実現できる。
(Effect of the Invention) Thus, according to the present invention, it is possible to effectively prevent the heat dissipation from the lower surface of the steel piece during the induction heating of the steel piece and realize the uniform heating of the steel piece.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明に従う鋼片サポート昇降装置の構造
を示す模式図、 第2図は、第1図の矢視断面A−A′の加熱処理後にお
ける温度分布図、 第3図は、竪型誘導加熱炉の全体図、 第4図は、サポート構造の詳細図、 第5図は、従来の竪型誘導加熱炉における鋼片下部から
の熱の移動を示した図、 第6図は、分割式誘導コイルをそなえる竪型誘導加熱炉
の縦断面図である。 1……鋼片、2……炉壁 3……誘導コイル、4……サポートビーム 4-1……サポート金物、4-2……水冷パイプ 4-3……耐火断熱材、5……分割コイル 6……発熱体
FIG. 1 is a schematic diagram showing the structure of a steel slab support elevating / lowering device according to the present invention, FIG. 2 is a temperature distribution diagram after heat treatment of a cross section AA ′ in FIG. 1, and FIG. Overall view of the vertical induction heating furnace, FIG. 4 is a detailed view of the support structure, FIG. 5 is a view showing heat transfer from the bottom of the steel slab in the conventional vertical induction heating furnace, and FIG. FIG. 1 is a vertical sectional view of a vertical induction heating furnace having a split induction coil. 1 ... Steel piece, 2 ... Furnace wall 3 ... Induction coil, 4 ... Support beam 4-1 ... Support hardware, 4-2 ... Water-cooled pipe 4-3 ... Fire-resistant insulation, 5 ... Split Coil 6 ... Heating element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼片の長手方向に沿い間隔をおいて配置さ
れ、該鋼片をその幅方向に直立させた状態で直接載置す
る複数本のサポート金物と、このサポート金物をそれぞ
れ支持する内部水冷式のサポートパイプと、このサポー
トパイプの全部とサポート金物の一部を取り囲む耐火断
熱材を備えた下部装入式の加熱炉であって、 この加熱炉は、サポート金物相互間の耐火断熱材の上層
面近傍域に誘導加熱によって発熱する発熱体を有する、
ことを特徴とする竪型誘導加熱炉。
1. A plurality of support metal fittings, which are arranged at intervals along the longitudinal direction of the steel slab and are directly placed in a state where the steel slab is erected in the width direction thereof, and the support metal fittings are respectively supported. A lower-charge furnace that has an internal water-cooled support pipe and a refractory insulation that surrounds all of this support pipe and a part of the support hardware. Having a heating element that generates heat by induction heating near the upper surface of the material,
A vertical induction heating furnace characterized by that.
JP1246573A 1989-09-25 1989-09-25 Rigid induction heating furnace Expired - Lifetime JPH0637673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246573A JPH0637673B2 (en) 1989-09-25 1989-09-25 Rigid induction heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246573A JPH0637673B2 (en) 1989-09-25 1989-09-25 Rigid induction heating furnace

Publications (2)

Publication Number Publication Date
JPH03110380A JPH03110380A (en) 1991-05-10
JPH0637673B2 true JPH0637673B2 (en) 1994-05-18

Family

ID=17150428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246573A Expired - Lifetime JPH0637673B2 (en) 1989-09-25 1989-09-25 Rigid induction heating furnace

Country Status (1)

Country Link
JP (1) JPH0637673B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559197U (en) * 1992-01-10 1993-08-06 新日本製鐵株式会社 Stand for heating material of vertical induction furnace
CN113025798B (en) * 2021-03-01 2022-01-21 宏圳精密模具(吴江)有限公司 Mould heat treatment equipment

Also Published As

Publication number Publication date
JPH03110380A (en) 1991-05-10

Similar Documents

Publication Publication Date Title
US5781581A (en) Induction heating and melting apparatus with superconductive coil and removable crucible
KR20110135934A (en) High-temperature furnace for annealing sheet metal packets
US4247755A (en) High pressure autoclave
IE60465B1 (en) Technique for the electric melting of glass
JPH0637673B2 (en) Rigid induction heating furnace
US3688007A (en) Metal melting and holding furnace
US2635125A (en) Glass induction furnace
US3817735A (en) Carbon electrical heaters in float glass apparatus and method of using same
JP2583503B2 (en) Heat treatment equipment
US4247736A (en) Induction heater having a cryoresistive induction coil
CN106232265A (en) Casting ladle heater
JP3140108B2 (en) Vertical induction heating furnace
JP3814490B2 (en) Insulation heating device heat insulating plate and induction heating device
JP3126380B2 (en) DC arc furnace
US2745891A (en) Apparatus for melting highly reactive metals
US3421747A (en) Hearth for a heat treating furnace
JP2012141081A (en) Induction heating type aluminum melting/holding furnace
RU2791751C1 (en) Transport chute for liquid metal with electric heating
US2089689A (en) Electric furnace
JPH0456730A (en) Vertical slab induction heating furnace
SU1397683A1 (en) Continuous furnace for heating blanks
US6516868B2 (en) Molten metal holder furnace and casting system incorporating the molten metal holder furnace
JP3718951B2 (en) Reflux tube
US1694964A (en) Heat-treating furnace
JPS58207331A (en) Heating furnace for rolling