JPS58207331A - Heating furnace for rolling - Google Patents

Heating furnace for rolling

Info

Publication number
JPS58207331A
JPS58207331A JP8974182A JP8974182A JPS58207331A JP S58207331 A JPS58207331 A JP S58207331A JP 8974182 A JP8974182 A JP 8974182A JP 8974182 A JP8974182 A JP 8974182A JP S58207331 A JPS58207331 A JP S58207331A
Authority
JP
Japan
Prior art keywords
furnace
slab
temperature
rolling
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8974182A
Other languages
Japanese (ja)
Other versions
JPS6050846B2 (en
Inventor
Masaaki Kurose
黒瀬 雅章
Akio Kodoi
小土井 章夫
Kazunori Yako
八子 一了
Tsutomu Izumi
出水 勉
Toshinori Matsuo
松尾 敏憲
Shunichi Sugiyama
峻一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8974182A priority Critical patent/JPS6050846B2/en
Publication of JPS58207331A publication Critical patent/JPS58207331A/en
Publication of JPS6050846B2 publication Critical patent/JPS6050846B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets

Abstract

PURPOSE:To make the temp. of a steel material in the transverse direction of a heating furnace for rolling uniform without decreasing productivity, by providing partition walls which suspend down to the prescribed height above the steel material and are longitudinal in the transfer direction of the steel material near both side walls of said furnace. CONSTITUTION:Partition plates 7 are provided respectively near side walls 1a in the furnace chamber 6 of a heating furnace 1 for rolling. The longitudinal direction of the plates 7 is made identical with the conveying direction of a slab 3 and the top end parts of the plates 7 are stuck to the ceiling part 1b of the wall 1. The bottom end parts thereof are suspended down to the prescribed height from the surface of the slab 3. The plates 7 are provided in the position within about 1.2m from the wall 1a. Burners 4b provided in the small furnace chamber segmented in both end parts of the slab 3 are usually held extinguished in order to maintain the low furnace temp. in said segments or a small amt. of fuel to the extent of maintaining the temp. is charged thereto. The deviation in the temp. of the slab 3 in the transverse direction thereof is thus decreased to about 15 deg.C.

Description

【発明の詳細な説明】 本発明は、飼えばスラブブルーム等の鋼材を、圧延に必
要な所定の温度まで加熱する圧延加熱炉の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a rolling heating furnace that heats steel materials such as slab blooms to a predetermined temperature required for rolling.

昨今、低温下でも靭性の高いパイプ材の需要か高まりつ
つあり、このためにコンドロールド・ローリング材の需
要が増加しつつある。このコンドロールド・ローリング
材の圧延にあたっては、チタン・・、ニオブ等?添加す
る通常の成分系では、加熱炉抽出時のスラブ温度は90
0〜1,100°Cと低温であり、かつスラブ内温度の
粒大値と最小瞳の温度偏差は、20〜40°C以下に熱
熱化(均熱化)する必要がある。しかも前記成分系のス
ラブでは圧延開始時における組織か微細である必要があ
るため、前記の添加材が加熱時固溶してはならない制約
があるので、目標抽出温度より超える分、すなわちオー
バシュー)11u通常0〜20°C以下に抑える必要が
ある。第1図に示すような通常使用されているウオーキ
ングビーム炉、プッシャー炉等の圧延加熱炉で生ずるス
ラブ内温度偏差としては、以下の三要素がある、(なお
第1図においてスラブ6は長手方向を示す)。
Recently, the demand for pipe materials with high toughness even at low temperatures has been increasing, and for this reason, the demand for chondral rolling materials is increasing. When rolling this chondral rolling material, titanium, niobium, etc. are used. With the usual component system to be added, the slab temperature at the time of heating furnace extraction is 90
The temperature is as low as 0 to 1,100°C, and the temperature deviation between the grain size value and the minimum pupil temperature in the slab needs to be thermalized (uniformed) to 20 to 40°C or less. Moreover, since the slab of the above-mentioned composition system needs to have a fine structure at the start of rolling, there is a restriction that the above-mentioned additives must not form a solid solution during heating. 11u It is usually necessary to keep the temperature below 0 to 20°C. As shown in Fig. 1, the temperature deviation within the slab that occurs in commonly used rolling heating furnaces such as walking beam furnaces and pusher furnaces has the following three elements (in Fig. 1, the slab 6 is ).

(1)、スラブ6の厚み方向のスラブ内温度偏差(例え
はB−F間の温度避で通常B>C>F )(2)、スラ
ブ6を支持するスキット2と接触する部分のスラブ温度
が、他の位置のスラブ温度に比して低いいわゆるスキッ
ドマーク(例えばC−D間又けX断面とX断面の平fE
J温辺差でC>D)(3)、炉幅方向炉温分布、炉1i
j!l’4W1aを含む炉型とスラブとの形状関係から
生ずる炉幅方向スラブ同温度偏差(例えばA−B藺また
けE−F間の温g差でA>BまたけE>F) 上記スラブ内の温度偏差は、生産性を所定値確保した在
炉時間で炉幅方向の均一加熱をおこなう通常の加熱では
、前記(1)においては約15〜20°C1削記(2)
θζおいては約20〜50°C1前記(3)においては
約50〜40°Cである。
(1), Temperature deviation within the slab 6 in the thickness direction (for example, temperature deviation between B and F, usually B>C>F) (2), Slab temperature at the part that contacts the skit 2 that supports the slab 6 However, the so-called skid marks (for example, the flat fE of the X section and the
J temperature difference C>D) (3), furnace width direction furnace temperature distribution, furnace 1i
j! Slab temperature deviation in the furnace width direction caused by the shape relationship between the slab and the furnace mold including l'4W1a (for example, temperature g difference between A-B straddle E-F, A>B straddle E>F) The temperature deviation in (2) is approximately 15 to 20°C in the above (1) in normal heating that uniformly heats in the width direction of the furnace during the furnace time that ensures a predetermined productivity.
In θζ, it is about 20 to 50°C, and in (3) above, it is about 50 to 40°C.

すなわちスラブ内最高温度点とスラブ内最低温度点の差
は約50°Cになる。本発明はこのうち前記(3)で示
される温度偏差に関するものであり、前記(1)及び(
2)で生ずる温度偏差がやむを得ないと仮定した場合、
前記(3)による温度偏差を10°C程度以下にする必
要刀)ある。
That is, the difference between the highest temperature point within the slab and the lowest temperature point within the slab is approximately 50°C. Among these, the present invention relates to the temperature deviation shown in (3) above, and the present invention relates to the temperature deviation shown in (1) and (3) above.
Assuming that the temperature deviation that occurs in 2) is unavoidable,
It is necessary to reduce the temperature deviation according to (3) above to about 10°C or less.

例えば第2図に示す様な従来の軸流バーナ4全設けた圧
延加熱炉によりスラブ3を加熱した場合、炉幅方向に対
する炉温は第6図に示すようになる。
For example, when the slab 3 is heated in a conventional rolling heating furnace equipped with all axial flow burners 4 as shown in FIG. 2, the furnace temperature in the width direction of the furnace is as shown in FIG. 6.

ところでスラブ6の長手方向の瑞部付辺、すなわち炉側
壁1a付近は、炉形との形状関係から加熱されやすく、
このため炉幅方向のスラブ内・温度偏走は第4図に示す
ようになる。第4図は炉幅方向スラブ内温度偏差が、線
(イ)又は(ロ)((イ)はスラブ表面温度、(ロ)は
スラブ厚み方向中心−反)で示されるようだ、約30°
Cあることを示し、スラブ長手方間端部では、目、漂平
均抽出温度(ハ)に対するオーバシュート量が約65°
Cあり、上記コンドロールド・ローリング材の要求を満
足できない。この場合、従来は、要求に超えた部分につ
いてはスラブ全切り捨てる等の処置が採られていたため
、歩留低下を招いていた。一方スラブ6の長手方向の温
度偏差は、圧延時における板材の幅広がり量にも影響を
与えるため、温度偏差が大鳶くなると、圧延終了時にお
ける板幅にバラツキが生じ、そのために切捨ロスか増大
したり、不良材としてスクラップになるなど、大幅な歩
留低下を招いた。
By the way, the longitudinal side of the slab 6, that is, the vicinity of the furnace side wall 1a, is easily heated due to its shape with the furnace shape.
Therefore, the temperature deviation within the slab in the furnace width direction becomes as shown in FIG. In Figure 4, the temperature deviation inside the slab in the furnace width direction seems to be shown by the line (A) or (B) ((A) is the slab surface temperature, (B) is the center of the slab in the thickness direction - opposite), about 30 degrees.
At the longitudinal ends of the slab, the amount of overshoot relative to the average extraction temperature (c) is approximately 65°.
C, which does not meet the requirements of the Chondral rolling material mentioned above. In this case, conventional measures have been taken such as cutting off the entire slab for the portion that exceeds the requirements, resulting in a decrease in yield. On the other hand, the temperature deviation in the longitudinal direction of the slab 6 also affects the amount of width expansion of the plate material during rolling, so if the temperature deviation becomes large, the width of the plate at the end of rolling will vary, resulting in truncation loss. This resulted in a significant decrease in yield, as the material increased and was scrapped as defective material.

このような開鎖に対処して、従来は、第51Δに示すよ
うに、炉側壁1a付辺の炉温を下げるために、炉Ji1
aのI51!1面の軸流バーナ4aを消火したり、ある
いは炉温を低めに設定して在炉時間を長くしたりするa
hvより、炉幅方向のスラブ内温度偏差を小さくする方
法か採られていた。しかしながら、四番の方法によtト
ば、炉側を1a付辺の炉温は下がり、スラブ内温度偏葺
は実利の結果的20°C6て改善されたが、前記目標1
0°C以下の達成は困難であった。また後者の方法にお
いても、第6図に示すように在炉時間を長くすれば炉幅
方向スラブ内温度偏差(TE−T8)は小さくなったが
(ただし炉長方向、炉幅方向とも炉温1020°Cで一
定、スラブ抽出温度は950°Cであることを前提とし
た)、この方向は生産能率が大1帰にダウンし、また長
時間の加熱になるため、生産性のi述保できる範囲に)
が限定され、燃料原単位的にも悪) くなるので省エネルギーの目的にも反する等の欠点があ
った。さらにまた加熱におけるスラブ内温度偏差と、添
加するチタン、ニオブ等の合金量との関係は相関性が強
くあり、加熱におけるスラブ内温度偏差を小さくできな
い場合は、それだけ1.芦別するチタン、ニオブ等の合
金量が多くなり、生産コストがアップした。従来の方法
では、炉幅方向のスラブ内温度偏差が小さくできないの
で、添加するチタン、ニオブ等の合金量を増やすことで
対処されていたが、そのために生産コスト増になってい
た。
To deal with such an open chain, conventionally, as shown in No. 51Δ, in order to lower the furnace temperature around the furnace side wall 1a, the furnace Ji1
Extinguish the axial flow burner 4a on the I51!1 side of a, or set the furnace temperature lower to extend the furnace time a.
hv, a method was adopted to reduce the temperature deviation within the slab in the furnace width direction. However, by using the fourth method, the furnace temperature on the furnace side 1a decreased, and the temperature unevenness inside the slab was improved by 20°C6 as a practical result, but the target 1a
Achieving temperatures below 0°C was difficult. Also, in the latter method, as shown in Fig. 6, the temperature deviation in the slab in the furnace width direction (TE-T8) became smaller if the furnace time was increased (however, the furnace temperature in both the furnace length direction and furnace width direction decreased). (Assuming that the temperature is constant at 1020°C and the slab extraction temperature is 950°C), this direction greatly reduces production efficiency and requires long heating times, so it is difficult to guarantee productivity. (to the extent possible)
However, there were disadvantages such as the fact that the energy consumption was limited and the fuel consumption was also poor (in terms of fuel consumption), which was contrary to the purpose of energy conservation. Furthermore, there is a strong correlation between the temperature deviation within the slab during heating and the amount of alloys such as titanium and niobium added. The amount of alloys such as titanium and niobium that need to be processed has increased, increasing production costs. In conventional methods, it is not possible to reduce the temperature deviation within the slab in the width direction of the furnace, so this was dealt with by increasing the amount of alloys such as titanium and niobium added, but this increased production costs.

本発明は上記欠点を酔決するためになされたもので、生
産性を低下させることなく、炉幅方向(鋼材長手方向)
のスラブ・ブルーム等の鋼材の温度を均一に加熱する圧
延加熱炉を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned drawbacks, and it is possible to reduce
The objective is to obtain a rolling heating furnace that uniformly heats steel materials such as slabs and blooms.

本発明は、上記目的?達成するためになされたもので、
圧延加熱炉の天井部より鋼材の上方の所定の1傷さまで
垂下し、かつ前記鋼材の移送方向を長手方向とした仕切
板を、前記圧延加熱炉の両側壁近傍に設けたことを特徴
とする圧延加熱炉を提供するものである。
Is the present invention intended for the above purpose? It was done to achieve
A partition plate is provided near both side walls of the rolling heating furnace, the partition plate hanging down from the ceiling of the rolling heating furnace to a predetermined height above the steel material, and whose longitudinal direction is the direction in which the steel material is transferred. The present invention provides a rolling heating furnace.

゛ 第7図は本発明の実施例を示し、炉壁1により戸至
6が包囲されている圧延加熱炉の、スラブ60浬行方向
に対する垂直断面図である。圧延加熱炉1は炉室6の炉
側壁1aIt辺Gで仕切壁7を設けてあり、仕切壁7の
長手方法をスラブ6の搬送方向と同一方向にするととも
に、仕切板7の上端部を炉壁1の天井部16に1! 4
L 、上端部をスラブ6の表面から所ボの編さま11で
垂下するようηζしである。なお仕切壁7は炉171a
から約1.2m内の位置に設けられている。
7 shows an embodiment of the present invention, and is a vertical sectional view of a rolling heating furnace in which the door 6 is surrounded by the furnace wall 1, with respect to the direction in which the slab 60 is drawn. The rolling heating furnace 1 is provided with a partition wall 7 on the side G of the furnace side wall 1aIt of the furnace chamber 6. The longitudinal direction of the partition wall 7 is set in the same direction as the conveying direction of the slab 6, and the upper end of the partition plate 7 is connected to the furnace side wall 1aIt. 1 on the ceiling 16 of wall 1! 4
L, the upper end is ηζ so that it hangs down from the surface of the slab 6 with a weave 11 in places. Note that the partition wall 7 is the furnace 171a.
It is located within approximately 1.2 m from the

従って、加熱炉1け炉室6が実質的に仕切壁7によって
3個の炉室に分割されている。スラブ3の両側部は、そ
れぞれ比較的小さな炉室で区画されろが、その区画内に
あるバーナ4bは、炉中央部の区画における炉温に対し
て、この区画の炉温を低くするために、通常は消火ない
し保熱種度の少量の燃料投入にするのが望ましい。仕切
壁7の彰によりスラブ6の両側部の区画の炉温か、炉中
央部の区画の炉温に比して低くなり、また、炉中央部炉
壁天井からのスラブ両側部への燕輻射が小さくなる。こ
れによりスラブ両側部の温度上昇が抑えられ、スラブ6
の長手方向の温度が均一化される。
Therefore, the single-heating furnace chamber 6 is substantially divided into three furnace chambers by the partition wall 7. Both sides of the slab 3 are each divided into relatively small furnace chambers, and the burners 4b in each of these compartments are used to lower the furnace temperature in this compartment compared to the furnace temperature in the central compartment. , it is usually desirable to input a small amount of fuel to extinguish or retain heat. Due to the radiation of the partition wall 7, the furnace temperature in the sections on both sides of the slab 6 becomes lower than that in the center section, and the swallow radiation from the ceiling of the furnace wall in the center of the furnace to both sides of the slab is becomes smaller. This suppresses the temperature rise on both sides of the slab, and
The temperature in the longitudinal direction is equalized.

上記(4成に基づいて本発明を実施したところ、抽出温
度950°C1炉温約1020°C1加熱時間約230
分、の加熱条件下では、炉室6め中央部と炉壁1aの炉
温との差を約70°Cにしたとき、スラブ6の長手方向
の温度偏差は最小になり、約) 10°Cであった。なお仕切壁7の高さく下部帯6でお
いては仕切壁7の下端とスラブ6の上面との距離、下部
帯においては仕切壁7の上部とスラブ3の下面との距離
)が変われば、仕切壁7によりもたらされる効果は変わ
る。従って、スラブ3の長手方向の温度偏差を出来るだ
け小さくするためには、仕切壁7の高さ全常に適正な値
に設定できるように可変可能に構成することが望ましい
When the present invention was carried out based on the above (four compositions), the extraction temperature was 950°C, the furnace temperature was approximately 1020°C, and the heating time was approximately 230°C.
Under heating conditions of 10 minutes, when the difference in temperature between the central part of the furnace chamber 6 and the furnace wall 1a is approximately 70°C, the temperature deviation in the longitudinal direction of the slab 6 becomes minimum, which is approximately 10°. It was C. Note that if the distance between the lower end of the partition wall 7 and the top surface of the slab 6 in the lower zone 6 of the partition wall 7 and the distance between the top of the partition wall 7 and the bottom surface of the slab 3 in the lower zone change, The effect provided by the partition wall 7 varies. Therefore, in order to reduce the temperature deviation in the longitudinal direction of the slab 3 as much as possible, it is desirable that the height of the partition wall 7 is variable so that it can always be set to an appropriate value.

本発明に係る圧延加熱炉(第7図)の炉幅方向と炉温と
の関係は第8図に示され、またスラブ長手方向とスラブ
表面温度との関係は第9図で示され(ホ)は目標平均抽
出温度をあられす。
The relationship between the furnace width direction and the furnace temperature of the rolling heating furnace (FIG. 7) according to the present invention is shown in FIG. 8, and the relationship between the slab longitudinal direction and the slab surface temperature is shown in FIG. ) is the target average extraction temperature.

なお加熱炉に設けられたバーナ4け軸流バーナまたはこ
れにかえてルーフバーナーでもよい。またサイドバーナ
ーの場合は、サイドバーナーの火炎があたる部位のみ仕
切壁に大全あけてもよい。
Note that a four-piece axial flow burner provided in the heating furnace or a roof burner may be used instead. In the case of a side burner, the partition wall may be completely opened only in the area that is exposed to the flame of the side burner.

第10図は本発明の他の実弛例で、炉室6の上部を仕切
る可動仕切壁7aを炉外に設置した捲揚伯構に連繋した
チェーン8によって昇降自任に懸吊支持した加熱でを示
す。
FIG. 10 shows another practical example of the present invention, in which a movable partition wall 7a that partitions the upper part of the furnace chamber 6 is suspended and supported by a chain 8 connected to a winding mechanism installed outside the furnace. shows.

可動仕切壁7aは、フック9を介してチェーン8によっ
て炉室6内に懸吊しである。チェーン8けスプロケット
10bに捲掛てあり、スプロケット10bの回転軸11
け、モータスプロケット12を介してモータ16と連繋
させである。したがって、モータ13の駆動によりスプ
ロケット10bを回転し、チェーン8を繰り出したり巻
き込んだりすることにより、可動仕切壁7aを昇降させ
ることができる。尚、仕切壁7aの摺動部からの炉内雰
囲気ガスのもれ全防止ないし少なくするため、及び可動
仕切壁7aの昇降方向を案内するためガイド14を設け
ている。
The movable partition wall 7a is suspended in the furnace chamber 6 by a chain 8 via a hook 9. The chain is wrapped around an 8-piece sprocket 10b, and the rotating shaft 11 of the sprocket 10b
It is connected to a motor 16 via a motor sprocket 12. Therefore, by driving the motor 13 to rotate the sprocket 10b and letting out or winding the chain 8, the movable partition wall 7a can be raised and lowered. A guide 14 is provided to completely prevent or reduce leakage of the furnace atmosphere gas from the sliding portion of the partition wall 7a, and to guide the movable partition wall 7a in the vertical direction.

仕切壁7aの高さけ、例えばスプロケツ) 10bの回
転角を検出して求める方法により検出可能でありその値
は炉幅方向の炉温分布、炉内あるいは抽出時のスラブ長
手方向の温度分布を見ながらスラブ内温度偏差が小感く
なる様に調整される。炉gl壁″)aとスラブ6の端部
の距離が変われば、仕切壁7aの効果は変わるが、はぼ
(仕切壁7aと炉側壁1aとの距離)〉(スラブ)の端
部と炉側壁1aとの距離)となる様に仕切々7aを設け
れば、その効果はあ1り変わらず、均一加熱が可能であ
る。なお仕切壁の効果をより大きくするために、炉幅方
向に仕切壁を複数個設はスラブの長さに応じて垂直方向
あるいは炉幅方向に動かし摺動させる等の方法も、より
均一な加熱をめざすための本発明の他の実施例として可
能である。
It can be detected by detecting the rotation angle of the partition wall 7a (for example, the sprocket) 10b, and its value is determined by checking the furnace temperature distribution in the furnace width direction and the temperature distribution in the furnace or in the longitudinal direction of the slab at the time of extraction. However, the temperature deviation inside the slab is adjusted to be small. If the distance between the furnace gl wall'') a and the end of the slab 6 changes, the effect of the partition wall 7a will change; If the partition 7a is provided so that the distance from the side wall 1a), the effect remains the same and uniform heating is possible.In order to further increase the effect of the partition wall, it is possible to As another embodiment of the present invention, a method of providing a plurality of partition walls and sliding them vertically or in the oven width direction depending on the length of the slab is also possible in order to achieve more uniform heating.

また、仕切壁は必ずしも炉全長Oてわたって設ける必要
はなく、効果の大きい均郭帯あるいは均熱帯と加熱帯に
設置するのみでもかまわない。仕切壁の厚みについては
特に限定しないが薄い方がよい。
Further, the partition wall does not necessarily need to be provided over the entire length of the furnace, and may be installed only in the leveling zone or the soaking zone and heating zone where it is highly effective. The thickness of the partition wall is not particularly limited, but the thinner the better.

また、本実施例では炉上部への仕切壁を設ける場合を述
べたが、炉下部に設けることも可能である。仕切壁は主
たる目的がスラブ両端部付近の炉温上下げること、炉中
央部からスラブ両端部への熱輻射全妨げることであるか
ら、その開成として断熱材等で構築するたけでなく、網
目状金高、セラミック類でFl mすることもできる。
Further, in this embodiment, the case where the partition wall is provided in the upper part of the furnace has been described, but it is also possible to provide it in the lower part of the furnace. The main purpose of the partition wall is to raise and lower the furnace temperature near both ends of the slab and to completely block heat radiation from the center of the furnace to both ends of the slab. It is also possible to perform Flm with gold and ceramics.

以上の説明から明らかなよう・に不発明によれば、炉内
を区画する仕gJ壁全設けたことにより、生厘性を低下
することなく、スラブブルーム等の鋼材の長手方向の温
度を均一にして加熱することが可能となり、またむだに
加熱する部分を少なくするのでその分線エネルギーに寄
与し、実施による効果大である。
As is clear from the above explanation, according to the invention, the temperature in the longitudinal direction of steel materials such as slab blooms can be uniformized without reducing productivity by providing all partition walls that partition the inside of the furnace. This makes it possible to heat the area in a fraction of the time, and since it reduces the portion that is heated in vain, it contributes to the ray energy, which is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第5図は従来の加熱炉の一例の断面
図、第3図、第4図及び第6図は従来の加熱炉の炉幅方
向の温度、スラブの長手方向の温度及び加熱時間と温度
偏差の関係を示す線図、第7図は本発明実施例の断面図
、第8図及び第9図は本発明実施例による炉幅方向の温
度とスラブの長手方向の温度を示す汲図、第10図は本
発明の他の英通例の断面図である。 1a・・・側壁、1b・・・炉天井部、6・・・スラブ
、7.7a・・・仕切板◇ 代理人 弁理士  木 村 三 朗 第5図 3 第6図 1σ藝I!1′闇   梵 第7図 第 8 図 第 9 T h″77′8す雀田 第10図 手続補正書(自発) 特許庁長′8゛殿        昭和57年6 月3
81゜ 2、発明の名称 圧延加熱炉 補正をする者 事件との関(、、;;  特 許  出願人名 称 (
412+ 3本鋼管株式会社代理人 補正の対象 補IFの内容 に=)・ 1)本明細書中の誤記部分を下記の通り補正する。 頁  行 、      誤          正、
2.1〜4ミしかも前記成分系の :  しかも、ニス
ラブでは圧延開始 1時における組織が微 ・細である必要がある ため、前記の添加材 が加熱時同容しては ならない制約がある ので、 3 .10−11’ 10℃5fDu下に’t  10
〜15℃程度゛る必要がある。    以下に抑える必
要46〜4 上記コンドロールド このため前記要求・
ローリング材の要 を 5112   チタン、ニオブ等 □ 合 金 量の合
金倉     ゛ 6° 7・ lE1カ。、。+si*オ。 −震  〜、1−1艷カーす二/)−−−−−−、’、
−−−−−−−−   。 6;  9  前記圧延加熱炉  ) 圧延加熱炉7’
  20. 10cであった。   15℃であった。 12)本明細書中、第9頁16行目から第10頁9行目
の「炉側壁1aとスラブ6の〜のみでもかまわない。」
の部分を削除する。 6)本明細書の特許請求の範囲を別紙の通り補正する。 4)第9図を別紙の通シ補正する。 :1:: 別紙 「 特許請求の範囲 鋼材の上方の所定の高さ箇で垂下[2かつ前記鋼材の移
送方向を長手方向とした仕切板を、圧延加熱炉の両側壁
近傍に設けたことを特徴とする圧延加熱炉。」 補正図面
Figures 1, 2, and 5 are cross-sectional views of an example of a conventional heating furnace, and Figures 3, 4, and 6 show the temperature in the width direction of the conventional heating furnace, and the temperature in the longitudinal direction of the slab. A diagram showing the relationship between temperature, heating time, and temperature deviation, FIG. 7 is a cross-sectional view of the embodiment of the present invention, and FIGS. 8 and 9 are diagrams showing the temperature in the oven width direction and the longitudinal direction of the slab according to the embodiment of the present invention. FIG. 10, a diagram showing the temperature, is a cross-sectional view of another conventional example of the present invention. 1a...Side wall, 1b...Furnace ceiling, 6...Slab, 7.7a...Partition plate ◇ Agent Patent attorney Sanro Kimura Fig. 5 Fig. 6 Fig. 6 1σ藝I! 1'Dark Bon Figure 7 Figure 8 Figure 9 T h''77'8 Suzakuta Figure 10 Procedural Amendment (Voluntary) Director of the Japan Patent Office '8゛ June 3, 1982
81゜2, Relation to the case of the person amending the name of the invention for rolling heating furnace (,,;; Patent applicant name (
412+ 3 Main Steel Pipe Co., Ltd. Contents of supplementary IF subject to agent amendment =)・1) Erroneous parts in this specification will be corrected as follows. Page lines, errors, corrections,
2.1 to 4 mm and the above component system: In addition, in the varnish slab, the structure at the beginning of rolling must be fine and fine, so there is a restriction that the above additives must not be mixed together during heating. , 3. 10-11' under 10℃5fDu't 10
The temperature needs to be about ~15°C. It is necessary to keep the above-mentioned condolence below 46-4.
5112 Titanium, niobium, etc. □ Alloy Quantity of alloy storage is ゛6° 7・lE1ka. ,. +si*o. - Earthquake ~, 1-1 ship car 2/)------,',
−−−−−−−−. 6; 9 Rolling heating furnace) Rolling heating furnace 7'
20. It was 10c. The temperature was 15°C. 12) In this specification, from page 9, line 16 to page 10, line 9, "It is acceptable to use only the furnace side wall 1a and the slab 6."
Delete that part. 6) The claims of this specification are amended as shown in the attached sheet. 4) Correct Figure 9 in the separate sheet. :1:: Attachment "Claims Claims: A partition plate that hangs down at a predetermined height above the steel material [2 and whose longitudinal direction is the direction in which the steel material is transported] is provided near both side walls of the rolling heating furnace." Features of rolling heating furnace.” Revised drawing

Claims (1)

【特許請求の範囲】[Claims] 圧延加熱炉の天井部より鋼材の上方の所定の高さまで垂
下しかつ前記鋼材の移送方向を長手方向とした仕切板を
、前記圧延加熱炉の両側壁近傍に設けたこと全特徴とす
る圧延加熱炉。
A rolling heating device characterized in that a partition plate is provided near both side walls of the rolling heating furnace, the partition plate hanging down to a predetermined height above the steel material from the ceiling of the rolling heating furnace and having its longitudinal direction in the direction of conveyance of the steel material. Furnace.
JP8974182A 1982-05-28 1982-05-28 Rolling heating furnace Expired JPS6050846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8974182A JPS6050846B2 (en) 1982-05-28 1982-05-28 Rolling heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8974182A JPS6050846B2 (en) 1982-05-28 1982-05-28 Rolling heating furnace

Publications (2)

Publication Number Publication Date
JPS58207331A true JPS58207331A (en) 1983-12-02
JPS6050846B2 JPS6050846B2 (en) 1985-11-11

Family

ID=13979181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8974182A Expired JPS6050846B2 (en) 1982-05-28 1982-05-28 Rolling heating furnace

Country Status (1)

Country Link
JP (1) JPS6050846B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114515A (en) * 1983-11-25 1985-06-21 Kawasaki Steel Corp Heating furnace for billet
JPS6156229A (en) * 1984-08-27 1986-03-20 Kawasaki Steel Corp Steel material furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524432U (en) * 1991-09-17 1993-03-30 株式会社豊田自動織機製作所 Suspension seat with reclining

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114515A (en) * 1983-11-25 1985-06-21 Kawasaki Steel Corp Heating furnace for billet
JPS6158525B2 (en) * 1983-11-25 1986-12-12 Kawasaki Steel Co
JPS6156229A (en) * 1984-08-27 1986-03-20 Kawasaki Steel Corp Steel material furnace
JPH0526843B2 (en) * 1984-08-27 1993-04-19 Kawasaki Steel Co

Also Published As

Publication number Publication date
JPS6050846B2 (en) 1985-11-11

Similar Documents

Publication Publication Date Title
US2263848A (en) Glass furnace
US2298149A (en) Continuous heating furnace
JPS58207331A (en) Heating furnace for rolling
US2091980A (en) Heating element for annealing furnaces
US2386565A (en) Open hearth furnace
US3342468A (en) Apparatus for removing cold skid marks from objects
US2339337A (en) Furnace launder construction
US2133673A (en) Continuous heating furnace
US2010055A (en) Furnace wall construction
US1448162A (en) Furnace
US2638333A (en) Continuous furnace
US2023174A (en) Furnace construction
US2098586A (en) Reverberatory furnace
US1448160A (en) Furnace
US2879051A (en) Burn-in attachment for maintaining rotary furnace hearths
US1563038A (en) Method of maintaining open-hearth-furnace walls
US2689119A (en) Continuous heating furnace
US2093212A (en) Muffle construction
US3378248A (en) Coil support apparatus
JPS61272315A (en) Radiant tube of heating furnace
US1694964A (en) Heat-treating furnace
US1448163A (en) Furnace
SU537958A1 (en) Glass furnace bath
US2976854A (en) Fluid cooled furnace structure
US589769A (en) Port end for metallurgical furnaces