JPH0526843B2 - - Google Patents
Info
- Publication number
- JPH0526843B2 JPH0526843B2 JP59177832A JP17783284A JPH0526843B2 JP H0526843 B2 JPH0526843 B2 JP H0526843B2 JP 59177832 A JP59177832 A JP 59177832A JP 17783284 A JP17783284 A JP 17783284A JP H0526843 B2 JPH0526843 B2 JP H0526843B2
- Authority
- JP
- Japan
- Prior art keywords
- pass line
- width direction
- steel
- furnace
- steel material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 67
- 239000010959 steel Substances 0.000 claims description 67
- 239000000463 material Substances 0.000 claims description 46
- 238000010438 heat treatment Methods 0.000 claims description 44
- 239000002826 coolant Substances 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 239000011449 brick Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Description
本発明は、パスラインに沿つて移動する鋼材を
加熱するための鋼材加熱炉の改良に関する。
The present invention relates to an improvement in a steel heating furnace for heating steel moving along a pass line.
従来、鋼材を加熱炉で加熱する場合には、例え
ば、第6図に示されるように、鋼材加熱炉10内
に鋼材20を、その長手方向が加熱炉幅方向に位
置するようにパスラインに沿つて移動させつつ加
熱するようにしている。第6図の符号18はスキ
ツド、19はバーナをそれぞれ示す。
前記鋼材加熱炉10において、鋼材20の中央
部20Aは、主として炉天井12及び炉底14か
らの輻射熱によつて加熱されるのに対し、鋼材2
0のライン幅方向端部20Bは、これらに加えて
更に炉壁16からの輻射熱によつて加熱(三面加
熱)されるために、加熱され易くなつている。
従つて、第7図に示されるように、鋼材20の
端部20Bが過剰加熱となることがあり、該端部
20Bが過剰加熱された鋼材20を圧延した場合
には、該端部20Bの変形抵抗が他の部分と比較
して小さいため、過圧下されて板厚不足、幅不足
等になり易いという問題点があつた。第7図にお
いて、TAは中央部20Aの温度、TEは端部20
Bの温度、TSはスキツド18部での温度を示す。
特に、前記長手方向端部20Bは、圧延でのミ
ル噛み込み端にあたり、AGC(自動板厚制御)の
効果が発揮できない領域であるために、大きな問
題点となつている。
更に、鋼材の材質制約上スラブ温度のオーバー
シユートが許されない場合は、炉温度規制が加わ
り、在炉時間の大幅な延長となるという問題点が
生じる。
即ち、第8図に示されるように、鋼材20のパ
スライン幅方向端部20Bに対する最冷点部(ス
キツド部)の温度の偏差が鋼材加熱炉10におけ
る挿入側から、抽出側に移るに従つて漸減し、従
つて、これらの温度偏差を許容温度偏差内に収め
るためには、鋼材20の在炉時間を大きくすれば
よいことになる。
ところが、実操業において、炉能力を最大限に
引出すためには、上記のような在炉時間の大幅な
延長は非現実的なものとなる。
Conventionally, when heating steel materials in a heating furnace, for example, as shown in FIG. It is heated while moving along the line. Reference numeral 18 in FIG. 6 indicates a skid, and 19 indicates a burner. In the steel material heating furnace 10, the central portion 20A of the steel material 20 is heated mainly by radiant heat from the furnace ceiling 12 and the furnace bottom 14;
In addition to these, the line width direction end portion 20B of 0 is heated by radiant heat from the furnace wall 16 (three-sided heating), so that it is easily heated. Therefore, as shown in FIG. 7, the end portion 20B of the steel material 20 may become overheated, and when the steel material 20 with the end portion 20B overheated is rolled, the end portion 20B of the steel material 20 may become overheated. Since the deformation resistance is small compared to other parts, there was a problem that it was easy to be over-pressed, resulting in insufficient board thickness, insufficient width, etc. In Figure 7, T A is the temperature at the center 20A, and T E is the temperature at the end 20A.
The temperature at B, T S indicates the temperature at 18 parts of skid. In particular, the longitudinal end portion 20B corresponds to the mill biting end during rolling and is an area in which the effect of AGC (automatic plate thickness control) cannot be exerted, which poses a major problem. Furthermore, if overshooting of the slab temperature is not allowed due to material constraints of the steel material, furnace temperature regulation will be added, causing the problem that the furnace time will be significantly extended. That is, as shown in FIG. 8, as the temperature deviation of the coldest point (skid part) of the steel material 20 with respect to the pass line width direction end 20B moves from the insertion side to the extraction side in the steel material heating furnace 10, Therefore, in order to keep these temperature deviations within the allowable temperature deviation, it is sufficient to increase the time in the furnace of the steel material 20. However, in actual operation, in order to maximize the furnace capacity, it is unrealistic to significantly extend the furnace time as described above.
この発明は、上記従来の問題点に鑑みてなされ
たものであつて、鋼材の在炉時間を延長すること
なく、該鋼材のパスライン幅方向中央部に対する
端部の過加熱を抑制して均一な加熱を得ることが
できるようにした鋼材加熱炉を提供することを目
的とする。
This invention was made in view of the above-mentioned conventional problems, and suppresses overheating of the end portion of the steel material relative to the center portion in the width direction of the pass line, without extending the furnace time of the steel material, and uniformly heats the steel material. It is an object of the present invention to provide a steel heating furnace that can obtain high heating.
この発明は、パスラインに沿つて移動する鋼材
をパスライン幅方向から加熱する鋼材加熱炉にお
いて、炉内のパスライン幅方向の側壁の少なくと
も一部に沿つて、該パスライン移動方向に長く、
且つ、鋼材のパスライン幅方向の端部に対向して
内部に冷却媒体用流体を通すダクトを設けること
により上記目的を達成するものである。
又、この発明は、パスラインに沿つて移動する
鋼材をパスライン幅方向から加熱する鋼材加熱炉
において、炉内のパスライン幅方向の側壁の少な
くとも一部に沿つて、該パスライン移動方向に長
く、且つ、鋼材のパスライン幅方向の端部に対向
して配置されて内部に冷却媒体用流体を通すダク
トと、少なくとも前記鋼材のパスライン幅方向両
側部の温度を測定する温度計と、この温度計の検
出温度信号に基づき前記冷却媒体用流体の熱容量
を調製する手段を制御する制御装置と、を設ける
ことにより上記目的を達成するものである。
This invention provides a steel heating furnace that heats steel moving along a pass line from the width direction of the pass line.
In addition, the above object is achieved by providing a duct for passing the cooling medium fluid therein, facing the end of the steel material in the width direction of the pass line. Further, the present invention provides a steel heating furnace that heats steel moving along a pass line from the width direction of the pass line. a long duct that is disposed opposite to the end of the steel material in the width direction of the pass line and through which a cooling medium fluid passes; and a thermometer that measures the temperature of at least both sides of the steel material in the width direction of the pass line; The above object is achieved by providing a control device that controls means for adjusting the heat capacity of the cooling medium fluid based on the temperature signal detected by the thermometer.
この発明において、鋼材のパスライン幅方向端
部の温度は、鋼材の幅方向端部に対向して設けら
れ、内部に冷却媒体用流体を通すダクトによつて
制御され、これによつて過熱が抑制されて、鋼材
のパスライン幅方向の均一な加熱が得られる。
In this invention, the temperature at the end of the pass line in the width direction of the steel material is controlled by a duct provided opposite to the end of the steel material in the width direction and through which cooling medium fluid is passed, thereby preventing overheating. As a result, uniform heating of the steel material in the width direction of the pass line can be achieved.
以下本発明の実施例を図面を参照して説明す
る。
この実施例は、第1図に示されるように、パス
ラインに沿つて移動する鋼材20を加熱するため
の鋼材加熱炉10において、炉内のパスライン幅
方向の側壁の全炉長に沿つて、該パスライン移動
方向に長く、且つ、鋼材20のパスライン幅方向
の端部20Bに対向して鋼材端部温度調整手段と
してのダクト22と、前記鋼材20のパスライン
幅方向の端部20B及び中央部20Aの上方位置
における炉天井12に鋼材20の温度を測定する
温度計24A,24Bと、これら温度計24A,
24Bの検出温度信号に基づき前記ダクト22を
制御する制御装置26と、を設けたものである。
前記ダクト22は、耐火レンガ、セラミツクス
又は金属製であつて、炉壁16に、炉長方向に長
く取付けられた、その中空部分に配管28から空
気を通し、流通空気流量及びその温度を調整する
ことによつて、ダクトの表面温度を炉天井12あ
るいは炉底14よりも下げて、鋼材20のパスラ
イン幅方向の端部20Bの温度調整を行うもので
ある。
図の符号30は配管28に取付けられ、前記制
御装置26によつて開度が調整される流量制御弁
を示す。
前記ダクト22の表面温度は、鋼材20のスラ
ブサイズ、ヒートパターン、炉壁16からパスラ
イン幅方向の端部20Bまでの距離等の要因によ
つて予め設定され、且つ、前記温度計24A,2
4Bによる、鋼材20の中央部及びパスライン幅
方向端部20Bの表面温度の実測値に基づき制御
装置26を介して制御される。
又、前記ダクト22は、上下方向に2分割さ
れ、それぞれの分割されたダクトには、空気の給
気口22Aと、排気口(図示省略)とが形成され
ている。
前記給気口22Aには配管28が接続されてい
る。又、前記排気口から流出する高温空気は、予
熱空気の一部として、加熱炉10の燃焼空気に利
用する。第1図の符号31は空気源を示す。
本発明者の実験によれば、有効炉長45mの鋼材
加熱炉10に、ダクト22を適用し場合の結果は
次のようになつた。
まず、被加熱物たる鋼材20は、材質要素から
加熱温度が910℃±25℃に、オーバーシユート無
しでスラブ内全てを制御することが要求される。
鋼材加熱炉10の炉型は、第2図に示されるよ
うに、換熱帯10Aから第1加熱体10B乃至第
4加熱帯10Eから構成されている。
上記のような炉型の鋼材加熱炉10において、
第3図に示されるような、ヒートパターンで
90ton/hrで熱した場合、ダクト22の有無及び
配置によつて鋼材20のパスライン幅方向温度分
布は第4図に示されるようになつた。
即ち、ダクト22を使用しない場合(No.1)
は、端部20Bの温度が942℃、スキツド部が887
℃となり、要求仕様の885℃乃至935℃を外れ、端
部20Bを切捨てざるを得ない。
これに対して、従来は、第4加熱帯10Eの温
度を940℃に下げて、加熱能力を70ton/hrに落と
さなければならなかつた。
本実施例によれば、空気流量を調整して、ダク
ト22の表面温度を920℃に調整した場合は、ス
キツド部は887℃のままで、鋼材端部20Bは920
℃となり、上記要求仕様を満足することができ
た。
又、ダクト22の温度を900℃とした場合は、
912℃となり、この場合も上記要求仕様を満足す
ることができた。
更に、上記のように、ダクト22によつて、鋼
材端部20Bの温度調整を行うことができるの
で、第1加熱帯10B及び第2加熱帯10Cの炉
温設定を1000℃とするヒートパターンを選択する
ことができ、これによつて、鋼材加熱炉10によ
る加熱能力を120ton/hrと大幅に増加することが
できた。
上記の場合、端部温度を調整した空気、即ち、
ダクト22の排気口からの空気は、燃焼空気とし
て熱回収したために、熱料原単位的には損失を小
さくすることができた。
なお、上記実施例は、鋼材の連続加熱炉につい
てのものであるが、本発明はこれに限定されるも
のでなく、バツチ炉、熱処理炉等の他の加熱炉に
も広く適用され得るものである。
更に、上記実施例は、ダクトに通す冷却媒体と
して空気を用いているが、これは、冷却水等の他
の冷却能力を有する流体であつてもよい。
次に、第5図に示される、本発明の第2実施例
につき説明する。
この第2実施例は、鋼材20をパスラインの幅
方向に並列に2本挿入する加熱炉についてのもの
である。
この場合は、鋼材20の炉中央側の端部の温度
制御をするためのダクト32を、並列した鋼材の
パスライン中央側端部の間に設定する。
図の符号34はダクト32を支持するためのポ
ストを示す。
他の構成は前記第1実施例と同一であるので、
同一部分に同一符号を附することにより説明を省
略するものとする。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, this embodiment is a steel material heating furnace 10 for heating a steel material 20 moving along a pass line, along the entire length of the side wall in the width direction of the pass line in the furnace. , a duct 22 that is long in the pass line moving direction and is opposed to the end 20B of the steel material 20 in the pass line width direction and serves as a steel material end temperature adjusting means; and an end 20B of the steel material 20 in the pass line width direction. and thermometers 24A, 24B for measuring the temperature of the steel material 20 on the furnace ceiling 12 at a position above the central portion 20A;
A control device 26 for controlling the duct 22 based on the detected temperature signal of 24B is provided. The duct 22 is made of refractory bricks, ceramics, or metal, and is attached to the furnace wall 16 to extend in the furnace length direction. Air is passed through the pipe 28 through the hollow part of the duct 22, and the flow rate and temperature of the circulating air are adjusted. In this way, the temperature of the end portion 20B of the steel material 20 in the width direction of the pass line is adjusted by lowering the surface temperature of the duct lower than that of the furnace ceiling 12 or the furnace bottom 14. Reference numeral 30 in the figure indicates a flow control valve that is attached to the pipe 28 and whose opening degree is adjusted by the control device 26. The surface temperature of the duct 22 is preset based on factors such as the slab size of the steel material 20, the heat pattern, and the distance from the furnace wall 16 to the end 20B in the width direction of the pass line.
It is controlled via the control device 26 based on the actual measured value of the surface temperature of the central portion of the steel material 20 and the end portion 20B in the width direction of the pass line. Further, the duct 22 is vertically divided into two parts, and each divided duct is formed with an air supply port 22A and an air exhaust port (not shown). A pipe 28 is connected to the air supply port 22A. Further, the high temperature air flowing out from the exhaust port is used as combustion air in the heating furnace 10 as part of the preheated air. Reference numeral 31 in FIG. 1 indicates an air source. According to the experiments conducted by the present inventor, the following results were obtained when the duct 22 was applied to the steel heating furnace 10 with an effective furnace length of 45 m. First, the steel material 20, which is the object to be heated, is required to have a heating temperature of 910° C.±25° C., controlling the entire interior of the slab without overshooting, due to material factors. As shown in FIG. 2, the furnace type of the steel heating furnace 10 is composed of a ventilation zone 10A, a first heating body 10B to a fourth heating zone 10E. In the furnace-type steel heating furnace 10 as described above,
With a heat pattern as shown in Figure 3.
When heated at 90 tons/hr, the temperature distribution in the width direction of the pass line of the steel material 20 was as shown in FIG. 4, depending on the presence or absence and arrangement of the duct 22. That is, when the duct 22 is not used (No. 1)
The temperature of the end part 20B is 942℃, and the temperature of the skid part is 887℃.
℃, which exceeds the required specifications of 885 to 935 degrees Celsius, and the end portion 20B must be cut off. In contrast, conventionally, the temperature of the fourth heating zone 10E had to be lowered to 940° C., and the heating capacity had to be reduced to 70 tons/hr. According to this embodiment, when the surface temperature of the duct 22 is adjusted to 920°C by adjusting the air flow rate, the skid portion remains at 887°C, and the steel end portion 20B remains at 920°C.
℃, and was able to satisfy the above required specifications. Also, if the temperature of the duct 22 is 900℃,
The temperature was 912°C, which again satisfied the above required specifications. Furthermore, as mentioned above, since the temperature of the steel end portion 20B can be adjusted by the duct 22, a heat pattern in which the furnace temperature of the first heating zone 10B and the second heating zone 10C is set to 1000° C. As a result, the heating capacity of the steel heating furnace 10 could be significantly increased to 120 tons/hr. In the above case, air with adjusted end temperature, i.e.
Since the air from the exhaust port of the duct 22 was heat-recovered as combustion air, the loss could be reduced in terms of heating unit consumption. Although the above embodiments are related to continuous heating furnaces for steel materials, the present invention is not limited to this, and can be widely applied to other heating furnaces such as batch furnaces and heat treatment furnaces. be. Furthermore, although the above embodiments use air as the cooling medium passed through the duct, this may be any other fluid having cooling capacity, such as cooling water. Next, a second embodiment of the present invention shown in FIG. 5 will be described. This second embodiment concerns a heating furnace in which two steel materials 20 are inserted in parallel in the width direction of the pass line. In this case, a duct 32 for controlling the temperature of the end of the steel material 20 on the furnace center side is set between the end portions of the parallel steel materials on the center side of the pass line. Reference numeral 34 in the figure indicates a post for supporting the duct 32. Since the other configurations are the same as the first embodiment,
By assigning the same reference numerals to the same parts, the explanation will be omitted.
本発明は、上記のように構成したので、鋼材の
在炉時間の延長を伴うことなく、鋼材のパスライ
ン幅方向中央部に対する両端部の温度偏差を抑制
して、均一な加熱を行うことができるという優れ
た効果を有する。
Since the present invention is configured as described above, it is possible to uniformly heat the steel material by suppressing the temperature deviation at both ends of the steel material with respect to the center portion in the width direction of the pass line, without prolonging the furnace time of the steel material. It has the excellent effect of being able to
第1図は本発明に係る鋼材加熱炉の第1実施例
を示す、一部ブロツク図を含む断面図、第2図は
同実施例に係る加熱炉の炉型を示す線図、第3図
は同実施例に係る鋼材加熱炉内におけるヒートパ
ターンを示す線図、第4図は同加熱炉による実験
結果を示す鋼材の温度分布図、第5図は本発明の
第2実施例を示す、第1図と同様の一部ブロツク
図を含む断面図、第6図は従来の鋼材加熱炉の構
造を示す断面図、第7図は同従来の鋼材加熱炉に
おける被加熱材の温度分布を示す線図、第8図は
従来の鋼材加熱炉の炉型、ヒートパターン及びス
ラブ温度分布を示す線図である。
10……鋼材加熱炉、16……炉壁、20……
鋼材、20A……中央部、20B……パスライン
幅方向の端部、22,32……ダクト、24A,
24B……温度計、26……制御装置、30……
流動制御弁。
FIG. 1 is a sectional view including a partial block diagram showing a first embodiment of a steel heating furnace according to the present invention, FIG. 2 is a line diagram showing the furnace type of the heating furnace according to the same embodiment, and FIG. 4 is a diagram showing the heat pattern in the steel heating furnace according to the same example, FIG. 4 is a temperature distribution diagram of the steel material showing the experimental results using the same heating furnace, and FIG. 5 is a diagram showing the second example of the present invention. Fig. 6 is a cross-sectional view showing the structure of a conventional steel heating furnace, and Fig. 7 shows the temperature distribution of the heated material in the conventional steel heating furnace. FIG. 8 is a diagram showing the furnace type, heat pattern, and slab temperature distribution of a conventional steel heating furnace. 10... Steel heating furnace, 16... Furnace wall, 20...
Steel material, 20A...Central part, 20B... End in pass line width direction, 22, 32... Duct, 24A,
24B...Thermometer, 26...Control device, 30...
Flow control valve.
Claims (1)
ン幅方向から加熱する鋼材加熱炉において、炉内
のパスライン幅方向の側壁の少なくとも一部に沿
つて、該パスライン移動方向に長く、且つ、鋼材
のパスライン幅方向の端部に対向して内部に冷却
媒体用流体を通すダクトを設けたことを特徴とす
る鋼材加熱炉。 2 パスラインに沿つて移動する鋼材をパスライ
ン幅方向から加熱する鋼材加熱炉において、炉内
のパスライン幅方向の側壁の少なくとも一部に沿
つて、該パスライン移動方向に長く、且つ、鋼材
のパスライン幅方向の端部に対向して配置されて
内部に冷却媒体用流体を通すダクトと、少なくと
も前記鋼材のパスライン幅方向両端部の温度を測
定する温度計と、この温度計の検出温度信号に基
づき前記冷却媒体用流体の熱容量を調整する手段
を制御する制御装置と、を設けたことを特徴とす
る鋼材加熱炉。[Scope of Claims] 1. In a steel heating furnace that heats steel moving along a pass line from the pass line width direction, the pass line is heated along at least a part of the side wall in the pass line width direction in the furnace. What is claimed is: 1. A steel heating furnace characterized by having a duct that is long and that is opposed to the end of the steel material in the width direction of the pass line and that allows a cooling medium fluid to pass through the inside of the duct. 2. In a steel heating furnace that heats a steel material moving along a pass line from the pass line width direction, a steel material that is long in the pass line movement direction and along at least a part of the side wall in the pass line width direction in the furnace is heated. a duct disposed opposite to the ends of the pass line in the width direction and passing a cooling medium fluid therein; a thermometer for measuring the temperature of at least both ends of the pass line of the steel material in the width direction; and detection of the thermometer. A steel heating furnace comprising: a control device for controlling means for adjusting the heat capacity of the cooling medium fluid based on a temperature signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17783284A JPS6156229A (en) | 1984-08-27 | 1984-08-27 | Steel material furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17783284A JPS6156229A (en) | 1984-08-27 | 1984-08-27 | Steel material furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6156229A JPS6156229A (en) | 1986-03-20 |
JPH0526843B2 true JPH0526843B2 (en) | 1993-04-19 |
Family
ID=16037889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17783284A Granted JPS6156229A (en) | 1984-08-27 | 1984-08-27 | Steel material furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6156229A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815645B2 (en) * | 1978-09-27 | 1983-03-26 | 株式会社ユニツク | Cylinder expansion device |
JPS58207331A (en) * | 1982-05-28 | 1983-12-02 | Nippon Kokan Kk <Nkk> | Heating furnace for rolling |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815645U (en) * | 1981-07-24 | 1983-01-31 | 愛知製鋼株式会社 | Continuous heating furnace for long steel materials |
-
1984
- 1984-08-27 JP JP17783284A patent/JPS6156229A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815645B2 (en) * | 1978-09-27 | 1983-03-26 | 株式会社ユニツク | Cylinder expansion device |
JPS58207331A (en) * | 1982-05-28 | 1983-12-02 | Nippon Kokan Kk <Nkk> | Heating furnace for rolling |
Also Published As
Publication number | Publication date |
---|---|
JPS6156229A (en) | 1986-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0526843B2 (en) | ||
GB2127857A (en) | Process for producing a grain-oriented electromagnetic steel strip or/sheet | |
US5609785A (en) | Method and apparatus for improving the performance of a heating furnace for metal slabs | |
US3386720A (en) | Metal-coating furnace | |
JPS6254024A (en) | Method for controlling automatic combustion in heating furnace | |
JPH03153824A (en) | Billet heating furnace | |
US3142884A (en) | Method and apparatus for controlling the cooling zone of a tunnel kiln | |
US3222042A (en) | Annealing furnace | |
JPS6034014Y2 (en) | Furnace zone partition wall | |
US5242155A (en) | Melter/holder control system | |
JPH09272919A (en) | Continuous heating method and apparatus therefor | |
JP2577358B2 (en) | Heating control method | |
JPS61257430A (en) | Method and installation for continuous heating of steel strip | |
SU1394016A1 (en) | Heating furnace hearth | |
JPS6335332B2 (en) | ||
JPH085253A (en) | Continuous furnace | |
SU866389A1 (en) | Knuckle of continuous furnace rectilinear arch | |
JPH0410553Y2 (en) | ||
JPS63307217A (en) | Method for controlling temperature of stepped shaft in heating furnace | |
SU1688087A1 (en) | Heating furnace | |
Hopkins et al. | Eliminating Preheat and Cooling Cracks in Fast Firing Sanitaryware | |
JPH0633946B2 (en) | Continuous heat treatment furnace | |
JPH0135274B2 (en) | ||
RU1789045C (en) | Method of heating control of blanks in multizone internally fired furnace | |
Bhardwaj | Calibration of reheating furnace model parameters of HSM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |