JPH03110380A - Vertical induction heating furnace - Google Patents

Vertical induction heating furnace

Info

Publication number
JPH03110380A
JPH03110380A JP1246573A JP24657389A JPH03110380A JP H03110380 A JPH03110380 A JP H03110380A JP 1246573 A JP1246573 A JP 1246573A JP 24657389 A JP24657389 A JP 24657389A JP H03110380 A JPH03110380 A JP H03110380A
Authority
JP
Japan
Prior art keywords
heat
induction heating
piece
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1246573A
Other languages
Japanese (ja)
Other versions
JPH0637673B2 (en
Inventor
Masamitsu Kobashi
小橋 正満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1246573A priority Critical patent/JPH0637673B2/en
Publication of JPH03110380A publication Critical patent/JPH03110380A/en
Publication of JPH0637673B2 publication Critical patent/JPH0637673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To prevent heat dissipation from the lower surface of a steel piece of a support beam and to uniformly heat the piece by disposing heat generators for generating heat by induction heating near the upper layer surface of a refractory heat insulator between the piece placing surface of the beam and the beam lower in height than the placing surface. CONSTITUTION:In a lower part charge type vertical induction heating furnace in which a steel piece 1 is erected laterally to heat in a state that the piece 1 is placed on an elevation beam 4, a heat generator 6 for generating heat by induction heating is disposed in the vicinity of the upper layer surface of a refractory heat insulator 4-3 between a steel piece placing surface of a support beam 4 in direct contact with the piece 1 and the beam lower in level than the placing surface of the beam. A heat generating substance 6 withstands against such temperature as being exhibited by the temperature rise of the refractory heat insulator through heating and heat supply from the steel piece. Refractory metal used for a support metal 4-1 is suitable therefor, and a material except the metal such as carbon brick can be sufficiently used. The size of the generator may be determined according to the required withstand temperature of the refractory heat insulator.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鋼片の竪型誘導加熱炉に関し、とくに誘導
加熱時における鋼片下面からの熱放散を効果的に防止し
て、該鋼片の均一加熱を可能ならしめようとするもので
ある。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a vertical induction heating furnace for steel billets, and in particular, the present invention relates to a vertical induction heating furnace for steel billets, and in particular, to effectively prevent heat dissipation from the bottom surface of the billet during induction heating. This is intended to enable uniform heating of the pieces.

(従来の技術) たとえば方向性けい素鋼板用スラブなど、高温での加熱
を必要とする鋼片の加熱処理として、最近、鋼片をその
幅方向に直立させた状態で加熱するいわゆる竪型誘導加
熱炉が利用されている。
(Prior art) For example, as a heat treatment for steel slabs that require heating at high temperatures, such as slabs for grain-oriented silicon steel sheets, so-called vertical induction heating has been recently developed in which the steel slab is heated while standing upright in its width direction. A heating furnace is used.

かかる竪型誘導加熱炉では、鋼片の炉内への装入、抽出
は一般に、鋼片を載置した昇降ビームの昇降操作により
、炉の下方から行われる。
In such a vertical induction heating furnace, charging and extraction of steel billets into the furnace is generally performed from below the furnace by lifting and lowering a lifting beam on which the steel billets are placed.

第3図に、竪型誘導加熱炉の全体を、また第4図にはサ
ポート構造の詳細を示す。
FIG. 3 shows the entire vertical induction heating furnace, and FIG. 4 shows details of the support structure.

図中番号1は鋼片、2は炉壁、3は誘導コイルであり、
4がサポートビームである。このサポートビーム4は、
サポート金物4−1、水冷パイプ4−2および耐火断熱
材4−3からなっている。なお鋼片1はサポート金物4
−1上に載置され昇降装置(図示省略)により炉内に下
部から装入されるしくみになっている。
In the figure, number 1 is a steel piece, 2 is a furnace wall, and 3 is an induction coil.
4 is a support beam. This support beam 4 is
It consists of a support hardware 4-1, a water cooling pipe 4-2, and a fireproof heat insulating material 4-3. Note that steel piece 1 is support hardware 4
-1, and is loaded into the furnace from the bottom using a lifting device (not shown).

さて第4図に示したとおり、耐熱金属製のサポート金物
4−1が鋼片長手方向に適当な間隔を開けて配置され、
鋼片1と直接接触してこれを支持している。この耐熱金
属サポート4−1は、水冷されたバイブ4−2により支
持されている。さらにこのパイプ4−2は、サポート金
物4−1の一部を含め、耐火断熱材4−3によりライニ
ングされ、冷却水への熱移動を極力防止する構造になっ
ている。
Now, as shown in FIG. 4, support fittings 4-1 made of heat-resistant metal are arranged at appropriate intervals in the longitudinal direction of the steel piece.
It directly contacts and supports the steel piece 1. This heat-resistant metal support 4-1 is supported by a water-cooled vibe 4-2. Furthermore, this pipe 4-2, including a part of the support hardware 4-1, is lined with a fireproof heat insulating material 4-3, and has a structure to prevent heat transfer to the cooling water as much as possible.

ところでこのようなサポート構造においては、以下に述
べるような問題がある。
However, such a support structure has the following problems.

すなわち誘導加熱炉においては、被加熱物である鋼片自
身が発熱体であることから、周りに低温部があると鋼片
からの熱移動が生じ、鋼片自身の温度が低下することで
ある。
In other words, in an induction heating furnace, the steel billet itself, which is the object to be heated, is the heating element, so if there is a low temperature area around it, heat transfer from the steel billet occurs, and the temperature of the steel billet itself decreases. .

ここで第5図に基づいて熱の移動を考えると次のとおり
である。鋼片1は、自己発熱によって温度が上昇すると
、これに伴い耐火断熱材4−3への熱移動Q1が生じ、
ついで断熱材内部への熱拡散Q2、さらには水冷バイブ
4−2を介した冷却水への熱移動Q、が発生し、時間と
ともに定常状態となって各部はあるバランスされた温度
となる。ここで注目すべきことは、熱源はあくまで鋼片
自身であるから、この熱移動量を補償して鋼片自身が発
熱しなければならないことである。
Here, considering the transfer of heat based on FIG. 5, it is as follows. When the temperature of the steel slab 1 rises due to self-heating, heat transfer Q1 to the fireproof insulation material 4-3 occurs,
Then, heat diffusion Q2 into the inside of the heat insulating material, and further heat transfer Q to the cooling water via the water-cooled vibe 4-2, occur, and over time a steady state is reached and each part has a certain balanced temperature. What should be noted here is that since the heat source is the steel billet itself, the steel billet itself must generate heat by compensating for this amount of heat transfer.

一方このような熱移動が発生しない鋼片部分たとえば鋼
片上部においては、鋼片の発熱分はそのまま鋼片の温度
上昇につながる。従って鋼片には、その場所によって、
鋼片の温度上昇に無視できないアンバランスが発生し、
鋼片温度が不均一となる。
On the other hand, in a portion of the steel billet where such heat transfer does not occur, such as the upper portion of the steel billet, the heat generated by the steel billet directly leads to an increase in the temperature of the steel billet. Therefore, depending on the location of the steel piece,
A non-negligible imbalance occurs in the temperature rise of the steel billet,
The temperature of the steel billet becomes uneven.

これの防止策として、第6図に示すように、鋼片の幅方
向に誘導コイルを分割し、それぞれのコイル5を個別に
制御して幅方向の均一加熱を達成しようとする試みがあ
るが、鋼片下部に上記したような大きな熱移動がある限
り、鋼片に温度分布がつくのは避けられず、単に最下限
温度を確保できるにすぎなかった。
To prevent this, there has been an attempt to achieve uniform heating in the width direction by dividing the induction coil in the width direction of the steel billet and controlling each coil 5 individually, as shown in FIG. As long as there is a large heat transfer as described above in the lower part of the steel slab, it is inevitable that the steel slab will have a temperature distribution, and it was only possible to ensure the lowest temperature limit.

(発明が解決しようとする課題) 従って温度分布の不均一を防止するには、鋼片下部言い
換えれば昇温ビーム上部の温度維持に対しては、鋼片か
らの熱移動に頼らず、別の熱源により熱移動を補償する
ことが必要である。
(Problem to be solved by the invention) Therefore, in order to prevent uneven temperature distribution, it is necessary to maintain the temperature at the bottom of the steel billet, in other words, at the top of the heating beam, by using another method instead of relying on heat transfer from the steel billet. It is necessary to compensate for heat transfer by the heat source.

なお、昇温ビーム上部においても、鋼片と直接接触して
いる耐熱金属製のサポート金物の周辺部については、こ
のサポート金物に誘導電流が流れるように誘導コイルを
配置しておけば、この金物の自己発熱によって温度が上
昇するので、熱移動の発生を抑制することができるけれ
ども、サポート金物間の耐火断熱材部分にはかような発
熱は期待できないのでとくに熱の移動が著しい。
Furthermore, in the upper part of the heating beam, if an induction coil is placed so that an induced current flows through the support hardware around the heat-resistant metal support hardware that is in direct contact with the steel piece, it will be possible to Since the temperature rises due to self-heating, the occurrence of heat transfer can be suppressed, but such heat transfer cannot be expected in the refractory insulation material between the support hardware, so the transfer of heat is particularly significant.

(課題を解決するための手段) 上述したとおり、鋼片下面からの熱の移動を防止するに
は、昇降装置上部の温度維持のための熱は鋼片からの入
熱にたよるのではな(、自らの発熱に期待する必要があ
る。しかしながら昇降装置を構成するものは大部分が耐
火断熱材であり、これらは誘導電流が流れないため自己
発熱はしない。
(Means for solving the problem) As mentioned above, in order to prevent heat transfer from the bottom surface of the steel slab, it is necessary to rely on heat input from the steel slab to maintain the temperature at the top of the lifting device. (It is necessary to rely on the equipment to generate its own heat. However, most of the materials that make up the lifting and lowering equipment are fireproof and insulating materials, and because no induced current flows through them, they do not generate heat on their own.

そこで発明者らは、上記の問題を解決すべく鋭意研究を
重ねた結果、熱補償するためには、耐火断熱材の上層面
近傍に、誘導電流にて自己発熱するものを配置してやれ
ば良く、とくにこの場合に、耐火断熱材の熱抵抗とうま
く組合せてやれば、パイプ冷却水への熱移動(損失熱)
を極力抑え得ると同時に耐火断熱材の鋼片と面する部分
の温度を高く維持して鋼片から耐火断熱材への熱移動を
抑えることができ、鋼片温度の低下を効果的に防止し得
ることる知見を得た。
As a result of intensive research to solve the above problem, the inventors found that in order to compensate for the heat, it is sufficient to place something that generates heat by itself due to an induced current near the upper surface of the fireproof insulation material. Especially in this case, if you combine it with the thermal resistance of the fireproof insulation material, the heat transfer (heat loss) to the pipe cooling water can be reduced.
At the same time, it is possible to maintain the temperature of the part of the fireproof insulation material facing the steel billet high, suppressing heat transfer from the steel billet to the fireproof insulation material, and effectively preventing a drop in the temperature of the steel billet. I gained a lot of knowledge.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、鋼片をその幅方向に直立させ、昇
降ビーム上に載置した状態で加熱を施す下部装入式の竪
型誘導加熱炉において、鋼片と直接接触するサポートビ
ームの鋼片R直面および該サポートビームの鋼片載置面
よりも高さレベルが低いサポートビーム間の耐火断熱材
の上層面近傍にそれぞれ、誘導加熱によって発熱する発
熱体を配置してなる竪型誘導加熱炉である。
In other words, the present invention provides a bottom-charging vertical induction heating furnace in which the steel billet is placed upright in its width direction and heated while placed on a lifting beam, and the steel billet of the support beam is in direct contact with the steel billet. A vertical induction heating furnace in which a heating element that generates heat by induction heating is arranged near the upper surface of the refractory insulation material between the support beams, which has a lower height level than the R face and the steel piece mounting surface of the support beam. It is.

以下、この発明を具体的に説明する。This invention will be specifically explained below.

第1図に、この発明に従う鋼片サポート昇降装置の構造
を示し、図中番号6が耐火断熱材4−3の上層部に埋め
込んだ発熱物質である。かかる発熱物質6としては、加
熱されることにより耐火断熱材の温度を上昇させ、しか
も鋼片からの入熱と相まって到達する温度に耐え得るも
のであれば良く、一般的にはサポート金物に使用されて
いる耐熱金属が有利に適合するが、その他力−ボンレン
ガなと金属以外の利用も十分可能である。
FIG. 1 shows the structure of a steel billet support lifting device according to the present invention, and number 6 in the figure is a heat-generating substance embedded in the upper layer of the fireproof heat insulating material 4-3. The exothermic substance 6 may be any substance that raises the temperature of the fireproof insulation material when heated and can withstand the temperature reached in combination with the heat input from the steel slab, and is generally used for support hardware. Although heat-resistant metals such as those described above are suitable, other materials other than metals such as bricks can also be used.

なお発熱体の大きさは、必要とする耐火・断熱材の温度
に応じて定めればよく、ここに所要温度は実験的、経験
的に容易に求めることができる。
The size of the heating element may be determined according to the required temperature of the fireproof/insulating material, and the required temperature can be easily determined experimentally or empirically.

(実施例) 第1図に示したところにおいて、発熱体として厚み: 
30ma+のコバルト系耐熱金属を採用し、目標温度を
1300°Cとして鋼片の加熱を行った。
(Example) In the place shown in Figure 1, the thickness of the heating element:
A 30ma+ cobalt-based heat-resistant metal was used, and the steel slab was heated at a target temperature of 1300°C.

加熱処理後、矢視断面A−A’の温度分布について調べ
た結果を第2図に示す。また同図には発熱体を用いない
従来法に従って加熱処理を行ったときの温度分布につい
ての調査結果も併せて示す。
After the heat treatment, the temperature distribution in the cross section AA' in the direction of arrows was investigated and the results are shown in FIG. The figure also shows the results of a study on temperature distribution when heat treatment was performed according to a conventional method that does not use a heating element.

なお鋼片への投入電力量は同一である。Note that the amount of power input to the steel slab is the same.

同図より明らかなように、発熱体を配置した場合は、発
熱体を配置しなかった場合に比べて、耐火断熱材部にお
ける温度低下は著しく軽減されている。
As is clear from the figure, when a heating element is disposed, the temperature drop in the fireproof heat insulating material portion is significantly reduced compared to when a heating element is not disposed.

なお投入電力量の面では鋼片への投入電力量は同じであ
るが、発熱体の発熱量はすなわち耐火断熱材を高温に維
持するのに消費した熱量は当然ながら消費電力の増加に
つながっている。しかしながら鋼片の低温部を解消した
ことによる品質、歩留り面での向上を考えれば、充分の
効果がある。
In terms of the amount of power input, the amount of power input to the steel slab is the same, but the amount of heat generated by the heating element, that is, the amount of heat consumed to maintain the fireproof insulation material at a high temperature, naturally leads to an increase in power consumption. There is. However, if you consider the improvement in quality and yield by eliminating the low-temperature part of the steel billet, there is a sufficient effect.

(発明の効果) かくしてこの発明によれば、鋼片の誘導加熱に際し、鋼
片下面からの熱放散を効果的に防止して鋼片の均一加熱
が実現できる。
(Effects of the Invention) Thus, according to the present invention, uniform heating of the steel slab can be achieved by effectively preventing heat dissipation from the lower surface of the steel slab during induction heating of the steel slab.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従う鋼片サポート昇降装置の構造
を示す模式図、 第2図は、第1図の矢視断面A−A’の加熱処理後にお
ける温度分布図、 第3図は、竪型誘導加熱炉の全体図、 第4図は、サポート構造の詳細図、 第5図は、従来の竪型誘導加熱炉における鋼片下部から
の熱の移動を示した図、 第6図は、分割式誘導コイルをそなえる竪型誘導加熱炉
の縦断面図である。 1・・・鋼片       2・・・炉壁3・・・誘導
コイル    4・・・サポートビーム4−1・・・サ
ポート金物 4−3・・・耐火断熱材 6・・・発熱体 4−2・・・水冷パイプ 5・・・分割コイル 特 許 出 願 人
Fig. 1 is a schematic diagram showing the structure of a steel billet support lifting device according to the present invention, Fig. 2 is a temperature distribution diagram after heat treatment on the cross section AA' in Fig. 1, and Fig. 3 is: An overall view of the vertical induction heating furnace, Figure 4 is a detailed view of the support structure, Figure 5 is a diagram showing the transfer of heat from the bottom of the steel billet in a conventional vertical induction heating furnace, and Figure 6 is , is a longitudinal sectional view of a vertical induction heating furnace equipped with a split induction coil. 1... Steel piece 2... Furnace wall 3... Induction coil 4... Support beam 4-1... Support hardware 4-3... Fireproof insulation material 6... Heating element 4-2 ...Water cooling pipe 5...Split coil patent applicant

Claims (1)

【特許請求の範囲】 1、鋼片をその幅方向に直立させ、昇降ビーム上に載置
した状態で加熱を施す下部装入式の竪型誘導加熱炉にお
いて、 鋼片と直接接触するサポートビームの鋼片載置面および
該サポートビームの鋼片載置面よりも高さレベルが低い
サポートビーム間の耐火断熱材の上層面近傍にそれぞれ
、誘導加熱によって発熱する発熱体を配置したことを特
徴とする竪型誘導加熱炉。
[Claims] 1. In a bottom-loading vertical induction heating furnace in which the steel billet is heated while standing upright in its width direction and placed on a lifting beam, the support beam is in direct contact with the steel billet. A heating element that generates heat by induction heating is arranged near the steel billet mounting surface of the support beam and the upper surface of the fireproof insulation material between the support beams, which is lower in height than the steel billet mounting surface of the support beam. Vertical induction heating furnace.
JP1246573A 1989-09-25 1989-09-25 Rigid induction heating furnace Expired - Lifetime JPH0637673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246573A JPH0637673B2 (en) 1989-09-25 1989-09-25 Rigid induction heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246573A JPH0637673B2 (en) 1989-09-25 1989-09-25 Rigid induction heating furnace

Publications (2)

Publication Number Publication Date
JPH03110380A true JPH03110380A (en) 1991-05-10
JPH0637673B2 JPH0637673B2 (en) 1994-05-18

Family

ID=17150428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246573A Expired - Lifetime JPH0637673B2 (en) 1989-09-25 1989-09-25 Rigid induction heating furnace

Country Status (1)

Country Link
JP (1) JPH0637673B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559197U (en) * 1992-01-10 1993-08-06 新日本製鐵株式会社 Stand for heating material of vertical induction furnace
CN113025798A (en) * 2021-03-01 2021-06-25 宏圳精密模具(吴江)有限公司 Mould heat treatment equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559197U (en) * 1992-01-10 1993-08-06 新日本製鐵株式会社 Stand for heating material of vertical induction furnace
CN113025798A (en) * 2021-03-01 2021-06-25 宏圳精密模具(吴江)有限公司 Mould heat treatment equipment

Also Published As

Publication number Publication date
JPH0637673B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US7388896B2 (en) Induction melter apparatus
CN108603723B (en) Cold crucible furnace with means for forming a magnetic flux concentrator heated by two electromagnetic inductors, use of the furnace for melting a mixture of metal and oxides as a melt
KR20110135934A (en) High-temperature furnace for annealing sheet metal packets
EP0171905A1 (en) Liquid cooled cover for electric arc furnace
US4165868A (en) Method and apparatus for heating coils of strip
TW200813267A (en) Crystallization furnace
JPH03110380A (en) Vertical induction heating furnace
JPH09184686A (en) Longitudinal graphite growing device for carbon electrode body
CN201390766Y (en) Annealing heat treatment device for super-huge roller chain gate leaves and integral gate slots
US4247736A (en) Induction heater having a cryoresistive induction coil
US2635125A (en) Glass induction furnace
CN106232265A (en) Casting ladle heater
JP3140108B2 (en) Vertical induction heating furnace
CN213680980U (en) Thermal field device for improving material melting efficiency
JP7469832B1 (en) Electrically heated cupola system
JPH0456730A (en) Vertical slab induction heating furnace
JP2878348B2 (en) Induction heating device
JP2642838B2 (en) Hearth structure of vertical induction heating furnace
JP2648843B2 (en) Vertical induction heating furnace
JPH08185972A (en) Plasma heating method of fused metal and device therefor
SU1397683A1 (en) Continuous furnace for heating blanks
JPS5864323A (en) Direct fire type coil annealing device
JP2920655B2 (en) Electromagnetic levitation melting furnace
JP2698512B2 (en) Hearth metal fittings for vertical induction heating equipment
JP2562502Y2 (en) Protective structure of refractory for taphole of electric furnace