JPH0637410A - Ceramic circuit board - Google Patents

Ceramic circuit board

Info

Publication number
JPH0637410A
JPH0637410A JP21245892A JP21245892A JPH0637410A JP H0637410 A JPH0637410 A JP H0637410A JP 21245892 A JP21245892 A JP 21245892A JP 21245892 A JP21245892 A JP 21245892A JP H0637410 A JPH0637410 A JP H0637410A
Authority
JP
Japan
Prior art keywords
ceramic
metal
circuit board
circuit
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21245892A
Other languages
Japanese (ja)
Other versions
JP3056889B2 (en
Inventor
Katsunori Terano
克典 寺野
Yoshiyuki Nakamura
美幸 中村
Koichi Uchino
紘一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16622967&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0637410(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP4212458A priority Critical patent/JP3056889B2/en
Publication of JPH0637410A publication Critical patent/JPH0637410A/en
Application granted granted Critical
Publication of JP3056889B2 publication Critical patent/JP3056889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

PURPOSE:To provide a ceramic circuit board, which has large breaking resistance, in which generation of a crack to bending stress can be inhibited remarkably and which also has excellent heat-cycle resistance. CONSTITUTION:In a ceramic circuit board, the total of the length of the joining section of a metallic circuit 2 and a ceramic board 1 is set at 20% or more to the length of the ceramic board 1 and the thickness of the metallic circuit 2 is set in 0.1-0.3mm in all cross sections of the ceramic circuit board.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス回路基
板、詳しくはパワー半導体モジュール等に使用されるセ
ラミックス回路基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic circuit board, and more particularly to a ceramic circuit board used for a power semiconductor module or the like.

【0002】[0002]

【従来の技術】近年、ロボットやモーター等の産業機器
の高性能化に伴い、大電力・高能率インバーターなど大
電力モジュールの変遷が進んでおり、半導体素子から発
生する熱も増加の一途をたどっている。この熱を効率よ
く放散するため、大電力モジュール基板では従来より様
々な方法がとられてきた。特に最近、良好な熱伝導率を
有するセラミックス基板の出現により、基板上に半導体
素子を搭載する構造も採用されている。
2. Description of the Related Art In recent years, along with the high performance of industrial equipment such as robots and motors, the transition of high power and high efficiency inverters and other high power modules has progressed, and the heat generated from semiconductor elements has also continued to increase. ing. In order to efficiently dissipate this heat, various methods have been conventionally used in high power module substrates. In particular, recently, with the advent of a ceramic substrate having a good thermal conductivity, a structure in which a semiconductor element is mounted on the substrate has been adopted.

【0003】従来より、金属とセラミックスを接合する
方法には様々な方法があるが、特に回路基板の構造とい
う点からは、Mo−Mn法、活性金属メタライズ法(以
下、単に活性金属法という)、硫化銅法、DBC法、銅
メタライズ法があげられる。これらの中で大電力モジュ
ール基板の製造では、現在、金属として銅を用い、セラ
ミックスとの接合方法として活性金属法又はDBC法を
用いることが主流となっており、更に、高熱伝導を有す
る窒化アルミニウムを絶縁基板として使用することが普
及しつつある。
Conventionally, there are various methods for joining metal and ceramics, but from the viewpoint of the structure of the circuit board, the Mo--Mn method and the active metal metallizing method (hereinafter simply referred to as the active metal method) are used. The copper sulfide method, the DBC method, and the copper metallizing method can be used. Among these, in the manufacture of high-power module substrates, it is currently the mainstream to use copper as the metal and the active metal method or the DBC method as the method for joining with ceramics. Furthermore, aluminum nitride having high thermal conductivity is used. It is becoming widespread to use as an insulating substrate.

【0004】従来の銅板と窒化アルミニウム基板を接合
する方法としては、銅板を窒化アルミニウム基板との間
に活性金属を含むろう材を介在させ、加熱処理し接合体
を形成する活性金属法(例えば、特開昭60ー177634 号公
報)や、銅板と表面を酸化処理してなる窒化アルミニウ
ム基板とを銅の融点以下、Cu2O-Oの共晶温度以上で加熱
接合するDBC法(例えば、特開昭56ー163093号公報)
などが知られている。
As a conventional method for joining a copper plate and an aluminum nitride substrate, an active metal method (for example, a method of interposing a brazing material containing an active metal between a copper plate and an aluminum nitride substrate and performing heat treatment to form a joined body (for example, JP-A-60-177634) or a DBC method in which a copper plate and an aluminum nitride substrate whose surface is oxidized are heat-bonded at a temperature not higher than the melting point of copper and not lower than the eutectic temperature of Cu 2 OO (see, for example, JP-A- (56-163093 publication)
Are known.

【0005】活性金属法はDBC法に比べて、 (1)接合処理温度が低いので、AlN−Cuの熱膨張
差によって生じる残留応力が小さい。 (2)接合層が延性金属であるので、ヒートショックや
ヒートサイクルに対して耐久性が良好である。 などの利点があるが、絶縁基板にセラミックスを使用す
るため、曲げ応力に弱く、クラックが生じ易いという問
題があった。
Compared to the DBC method, the active metal method (1) has a lower bonding treatment temperature, so that the residual stress caused by the difference in thermal expansion of AlN-Cu is smaller. (2) Since the bonding layer is a ductile metal, it has good durability against heat shock and heat cycles. However, since ceramics is used for the insulating substrate, there is a problem that it is weak against bending stress and cracks easily occur.

【0006】これは、パワーモジュール組立工程の中で
セラミックス回路基板を厚さ数mmのベース銅板へ半田付
けする際、半田の融点、例えばPb:Sn=37:63 共晶半田の
場合には、230 ℃以上に加熱する必要があるので、この
時の熱履歴によりベース銅板が反りセラミックス回路基
板に曲げ応力が加わってクラックが生じたり、また、組
み立てられたパワーモジュールを放熱フィンにボルト締
めする際、機械的な曲げ応力により、クラックが生じ絶
縁不良となる問題があった。このクラックは歩留りを低
下させるだけでなく、高い信頼性が要求されるパワーモ
ジュールの分野では致命的な欠陥となる。
This is because when a ceramic circuit board is soldered to a base copper plate having a thickness of several mm in the power module assembly process, the melting point of the solder, for example, in the case of Pb: Sn = 37: 63 eutectic solder, Since it is necessary to heat it to 230 ° C or higher, the heat history at this time causes the base copper plate to warp, causing bending stress on the ceramic circuit board to cause cracks, or when the assembled power module is bolted to the heat radiation fins. However, there is a problem that cracks occur due to mechanical bending stress, resulting in poor insulation. This crack not only lowers the yield but also becomes a fatal defect in the field of power modules that require high reliability.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、セラミ
ックス回路基板に曲げ応力が加わった場合、金属回路の
パターンの端部に沿ってクラックが発生していることに
着目した。セラミックスと金属板の接合面において、熱
膨張率の差によって生じる引張応力は、 Wittmerらによ
る"Mechanical Properties of Liquid-Phase-Bonded Co
pper-Ceramic Substrates" (Journal of the American
Ceramic Society March 1982,vol.65,No.3,p149-153)
には、金属板の厚みに支配されることが記載されてい
る。
DISCLOSURE OF THE INVENTION The present inventors have noticed that when bending stress is applied to a ceramics circuit board, cracks are generated along the end portions of the pattern of the metal circuit. The tensile stress caused by the difference in the coefficient of thermal expansion at the joint surface of ceramics and metal plates is described by Wittmer et al. In "Mechanical Properties of Liquid-Phase-Bonded Co
pper-Ceramic Substrates "(Journal of the American
Ceramic Society March 1982, vol.65, No.3, p149-153)
Describes that it is governed by the thickness of the metal plate.

【0008】しかしながら、その接合面は金属板により
補強されているため、曲げ応力が集中しにくい。一方、
金属回路のパターン端部は、熱膨張率の差から生じる金
属回路板の引張応力が加わっている上に、金属板の補強
効果もないため、曲げ応力が集中しやすく、クラックが
生じる。
However, since the joint surface is reinforced by the metal plate, the bending stress is hard to concentrate. on the other hand,
At the pattern end of the metal circuit, the tensile stress of the metal circuit plate caused by the difference in the coefficient of thermal expansion is applied and the reinforcing effect of the metal plate is not present, so that bending stress is likely to concentrate and cracks occur.

【0009】本発明者らは、上記問題を解決するために
鋭意検討した結果、例えば、セラミックス回路基板の中
心部のように、曲げ応力が集中し易い部分の金属回路の
パターン形状を金属板の補強効果が得られるように設計
し、しかも金属回路の厚みを薄くすれば、金属回路のパ
ターン端部にかかる引張応力が小さくなることによって
セラミックス回路基板の抗折強度が大きくなり、クラッ
クの発生を抑制できることを見いだし、本発明を完成し
たものである。
As a result of intensive studies for solving the above problems, the inventors of the present invention have found that the pattern shape of the metal circuit in the portion where the bending stress is likely to be concentrated, such as the central portion of the ceramics circuit board, is made into a metal plate. If the metal circuit is designed to have a reinforcing effect and the thickness of the metal circuit is reduced, the tensile stress applied to the pattern circuit edge of the metal circuit is reduced, which increases the bending strength of the ceramic circuit board and prevents the occurrence of cracks. The inventors have found that they can be suppressed and completed the present invention.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、セ
ラミックス回路基板の全ての断面において、金属回路と
セラミックス基板との接合部分の長さの合計がセラミッ
クス基板の長さに対して20%以上であり、金属回路の厚
みが0.1 〜0.3mm であることを特徴とするセラミックス
回路基板である。
That is, according to the present invention, in all the cross sections of the ceramic circuit board, the total length of the joint portion between the metal circuit and the ceramic board is 20% or more with respect to the length of the ceramic board. The ceramic circuit board is characterized in that the metal circuit has a thickness of 0.1 to 0.3 mm.

【0011】以下、さらに詳しく本発明について説明す
ると、本発明の最大の特徴は、従来用いられている材料
や工程をほとんど変更することなしに、セラミックス回
路基板の抗折強度を高め、クラックの抑制に大きな効果
をあげたことである。
The present invention will be described in more detail below. The greatest feature of the present invention is that the bending strength of the ceramic circuit board is increased and cracks are suppressed without changing the materials and processes conventionally used. It was a great effect on.

【0012】金属回路とセラミックスが接合している部
分は、金属回路の補強効果により、曲げ応力が集中しな
いためにクラックが生じにくい。従って、本発明では、
金属回路の補強効果を示す指標として、セラミックス回
路基板の断面において、金属回路とセラミックス基板と
の接合部分の長さの合計とセラミックス基板の長さとの
割合(以下、この割合をパターン率という。)で表すこ
ととした。
Due to the reinforcing effect of the metal circuit, bending stress is not concentrated at the portion where the metal circuit and the ceramics are joined, so that cracks are less likely to occur. Therefore, in the present invention,
As an index showing the reinforcing effect of the metal circuit, in the cross section of the ceramic circuit board, the ratio of the total length of the joint portion between the metal circuit and the ceramic substrate and the length of the ceramic substrate (hereinafter, this ratio is referred to as a pattern ratio). It was decided to express with.

【0013】なお、金属回路が形成されていてもセラミ
ックス基板と接合していない部分すなわち非接合部は、
金属回路からの引張応力はなく曲げ応力は集中しない
が、金属回路の補強効果がないので、パターン率の算出
にあたっては、金属回路とセラミックス基板とは接合し
ていないものとして扱う。
Incidentally, even if a metal circuit is formed, a portion which is not joined to the ceramic substrate, that is, a non-joint portion,
Although there is no tensile stress from the metal circuit and no bending stress is concentrated, since there is no reinforcing effect on the metal circuit, the metal circuit and the ceramic substrate are treated as being not bonded when calculating the pattern ratio.

【0014】本発明においては、パターン率は20%以上
が必要であり、30%以上特に40%以上が好ましい。パタ
ーン率が20%未満では、補強効果が小さくセラミックス
回路基板のクラック防止効果が十分でなくなる。
In the present invention, the pattern rate is required to be 20% or more, preferably 30% or more, particularly 40% or more. If the pattern ratio is less than 20%, the reinforcing effect is small and the crack preventing effect of the ceramic circuit board is insufficient.

【0015】本発明において、パターン率を20%以上に
する断面の位置については特に限定しないが、曲げ応力
が集中し易い部分、例えばセラミックス回路基板の中心
部のパターン率を大きくすることが望ましい。
In the present invention, the position of the cross section for increasing the pattern rate to 20% or more is not particularly limited, but it is desirable to increase the pattern rate in the portion where bending stress is likely to concentrate, for example, the central portion of the ceramic circuit board.

【0016】金属回路を形成するのに使用される金属板
の材質については、特に制限はなく、通常は、銅、ニッ
ケル、銅合金、ニッケル合金が用いられる。金属回路の
厚みは、0.1 〜0.3mm とする。0.1mm 未満では、パター
ン率を20%以上にしても十分な補強効果が得られず、ま
た、0.3mm をこえると、セラミックス基板と金属回路の
熱膨張率の差により、接合・冷却時に発生する金属回路
の引張応力が大きくなって耐ヒートサイクル性が低下す
る。
The material of the metal plate used to form the metal circuit is not particularly limited, and usually copper, nickel, copper alloy or nickel alloy is used. The thickness of the metal circuit is 0.1 to 0.3 mm. If it is less than 0.1 mm, a sufficient reinforcing effect cannot be obtained even if the pattern rate is 20% or more, and if it exceeds 0.3 mm, it occurs during bonding / cooling due to the difference in the coefficient of thermal expansion between the ceramic substrate and the metal circuit. The tensile stress of the metal circuit increases and the heat cycle resistance decreases.

【0017】一方、セラミックス基板の裏面に設けられ
る金属板の材質についても上記したものが用いられる。
また、その厚みは、セラミックス基板の回路面に形成さ
せた金属回路部分の体積によって決定するのが望まし
い。すなわち、本発明では、裏面の金属板の体積を金属
回路部分の金属板の体積以下とすることが望ましい。こ
れによって、セラミックス回路基板の反りがなくなる
か、又は反りが生じたとしてもその方向は回路面が凹に
なるので、そのように反ったものをベース銅板に半田付
けしても、セラミックス回路基板とベース銅板との間に
はボイドが発生しないので、熱伝導性は低下しない。
On the other hand, as the material of the metal plate provided on the back surface of the ceramic substrate, the above-mentioned materials are used.
Further, the thickness thereof is preferably determined by the volume of the metal circuit portion formed on the circuit surface of the ceramic substrate. That is, in the present invention, it is desirable that the volume of the metal plate on the back surface be equal to or less than the volume of the metal plate of the metal circuit portion. As a result, the warpage of the ceramic circuit board disappears, or even if warpage occurs, the circuit surface becomes concave in that direction, so even if such warped one is soldered to the base copper plate, Since no void is generated between the base copper plate and the base copper plate, the thermal conductivity does not decrease.

【0018】これに対して、裏面の金属板の体積が回路
面の金属回路部分の金属板の体積をこえると、裏面の金
属板の引張応力が大きくなるので、それをベース銅板に
半田付けすると、セラミックス回路基板は回路面が凸の
方向に反ってしまい、セラミックス回路基板とベース銅
板との間にボイドが発生して熱伝導性が低下する。
On the other hand, when the volume of the metal plate on the back surface exceeds the volume of the metal plate on the metal circuit portion of the circuit surface, the tensile stress of the metal plate on the back surface becomes large, so if it is soldered to the base copper plate. As for the ceramic circuit board, the circuit surface warps in a convex direction, and a void is generated between the ceramic circuit board and the base copper plate, and the thermal conductivity is lowered.

【0019】本発明で使用されるセラミックス基板の材
質については、特に制限はなく、窒化アルミニウム(Al
N )、窒化ケイ素(Si3N4 )、酸化アルミニウム(Al2O
3 )、ムライト等から選ばれた少なくとも一種又は二種
以上を主成分とするものがあげられ、中でも熱伝導率が
大きい窒化アルミニウムが好ましい。
The material of the ceramic substrate used in the present invention is not particularly limited, and aluminum nitride (Al
N), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O
3 ) and those containing at least one or more selected from mullite and the like as a main component, and among them, aluminum nitride having a large thermal conductivity is preferable.

【0020】金属板とセラミックス基板との接合体を製
造する際の接合方法としては、上記したDBC法や活性
金属法を用いることができる。
The above-mentioned DBC method or active metal method can be used as a joining method for producing a joined body of a metal plate and a ceramic substrate.

【0021】[0021]

【実施例】以下、実施例と比較例をあげて更に具体的に
説明する。
EXAMPLES Hereinafter, examples and comparative examples will be described in more detail.

【0022】実施例1〜5 比較例1〜3 市販の窒化アルミニウム基板(60mm×40mm×0.5mm )
に、Zr-Ag-Cu系の活性金属ろう材を図1及び図2に示す
ように、金属回路のa値とb値を変えた種々の回路パタ
ーンをスクリーン印刷し、この回路パターンと同じ形状
に打ち抜いた表1に示す厚みを有する無酸素銅板を接合
し、接合体を製造した。接合条件は、温度900 ℃、真空
度1.0 ×10-6torrとし、得られた接合体はいずれも無電
解Ni-Pメッキを5μm 施した。
Examples 1 to 5 Comparative Examples 1 to 3 Commercially available aluminum nitride substrate (60 mm x 40 mm x 0.5 mm)
In addition, as shown in Fig. 1 and Fig. 2, Zr-Ag-Cu based active metal brazing material is screen-printed with various circuit patterns with different a and b values of the metal circuit, and the same shape as this circuit pattern is formed. The oxygen-free copper plate having the thickness shown in Table 1 punched out was joined to manufacture a joined body. The joining conditions were a temperature of 900 ° C. and a degree of vacuum of 1.0 × 10 −6 torr, and all the obtained joined bodies were electroless Ni—P plated at 5 μm.

【0023】得られた接合体について、以下に従う抗折
強度と耐ヒートサイクル性を測定した。それらの結果を
表1に示す。なお、表1に示したパターン率は、図1の
A部における値である。
The bending strength and heat cycle resistance of the obtained joined body were measured as follows. The results are shown in Table 1. The pattern rates shown in Table 1 are values in the A section of FIG.

【0024】(1)抗折強度 測定機器:島津製作所製「オートグラフAG-2000A型」ロ
ードセル;50kg 測定条件:スパン;30mm、3点曲げ、クロスヘッド速
度;0.5mm/min図2に示すセラミックス回路基板のBの
位置にクロスヘッドをあて、JIS R1601 に準拠して測定
した。
(1) Bending strength measuring device: Shimadzu “Autograph AG-2000A type” load cell; 50 kg Measuring conditions: Span: 30 mm, 3-point bending, crosshead speed: 0.5 mm / min Ceramics shown in FIG. The crosshead was applied to the position B of the circuit board, and the measurement was performed according to JIS R1601.

【0025】(2)耐ヒートサイクル性 測定機器:八島製作所製 ロータリー熱衝撃試験機 TS
ER-2252-A 測定条件:気中にて、-40 ℃×30分、25℃×10分、125
℃×30分、25℃×10分を1サイクルとし、500 サイクル
実施した。 評 価 :A;電極剥離なし B;僅かに電極剥離発生
C;電極剥離発生
(2) Heat cycle resistance measuring instrument: Yashima Seisakusho rotary thermal shock tester TS
ER-2252-A Measurement condition: -40 ℃ × 30 minutes, 25 ℃ × 10 minutes, 125 in air
One cycle consists of ℃ × 30 minutes and 25 ℃ × 10 minutes, 500 cycles were carried out. Evaluation: A: No electrode peeling B: Slight electrode peeling C: Electrode peeling

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明のように、金属回路のパターン率
を大きくし、しかも金属回路の厚みを薄くするだけで、
セラミックス回路基板の抗折強度を増大させることがで
きるので、曲げ応力に対するクラックの発生を著しく抑
えることができ、耐ヒートサイクル性にも優れたセラミ
ックス回路基板となる。
As in the present invention, by increasing the pattern ratio of the metal circuit and reducing the thickness of the metal circuit,
Since the bending strength of the ceramic circuit board can be increased, the generation of cracks against bending stress can be significantly suppressed, and the ceramic circuit board also has excellent heat cycle resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 セラミックス回路基板の一例を示す上面図で
ある。
FIG. 1 is a top view showing an example of a ceramics circuit board.

【図2】 図1の裏面図である。FIG. 2 is a rear view of FIG.

【符号の説明】[Explanation of symbols]

1 セラミックス基板 2 金属回路 3 裏面金属板 A パターン率測定位置 B 抗折強度測定位置 1 Ceramics substrate 2 Metal circuit 3 Back metal plate A Pattern ratio measurement position B Bending strength measurement position

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス回路基板の全ての断面にお
いて、金属回路とセラミックス基板との接合部分の長さ
の合計がセラミックス基板の長さに対して20%以上であ
り、金属回路の厚みが0.1 〜0.3mm であることを特徴と
するセラミックス回路基板。
1. In all the cross sections of the ceramics circuit board, the total length of the joint portion between the metal circuit and the ceramics board is 20% or more with respect to the length of the ceramics board, and the thickness of the metal circuit is 0.1-. Ceramic circuit board characterized by being 0.3 mm.
JP4212458A 1992-07-17 1992-07-17 Ceramic circuit board Expired - Lifetime JP3056889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4212458A JP3056889B2 (en) 1992-07-17 1992-07-17 Ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4212458A JP3056889B2 (en) 1992-07-17 1992-07-17 Ceramic circuit board

Publications (2)

Publication Number Publication Date
JPH0637410A true JPH0637410A (en) 1994-02-10
JP3056889B2 JP3056889B2 (en) 2000-06-26

Family

ID=16622967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4212458A Expired - Lifetime JP3056889B2 (en) 1992-07-17 1992-07-17 Ceramic circuit board

Country Status (1)

Country Link
JP (1) JP3056889B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302187A (en) * 2008-06-11 2009-12-24 Denki Kagaku Kogyo Kk Insulated metal base circuit board and hybrid integrated circuit module using the same
JP2021132238A (en) * 2016-07-28 2021-09-09 株式会社東芝 Circuit board and semiconductor module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302187A (en) * 2008-06-11 2009-12-24 Denki Kagaku Kogyo Kk Insulated metal base circuit board and hybrid integrated circuit module using the same
JP2021132238A (en) * 2016-07-28 2021-09-09 株式会社東芝 Circuit board and semiconductor module

Also Published As

Publication number Publication date
JP3056889B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
EP1450401B1 (en) Module comprising a ceramic circuit board
JPH07202063A (en) Ceramic circuit board
JP2003273289A (en) Ceramic circuit board and power module
KR100374379B1 (en) Substrate
JP4104429B2 (en) Module structure and module using it
JPH11195854A (en) Board, its manufacture and metal bonding body suitable for board
JP2911644B2 (en) Circuit board
JPH08250823A (en) Ceramic circuit board
JP4910113B2 (en) Method for producing metal / ceramic bonding substrate
JP2003168770A (en) Silicon nitride circuit board
JP4557398B2 (en) Electronic element
JPH10247763A (en) Circuit board and manufacture thereof
JP2009088330A (en) Semiconductor module
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JPH10190176A (en) Circuit board
JP3599517B2 (en) Circuit board for power module
JPH08102570A (en) Ceramic circuit board
JP4427154B2 (en) Ceramic circuit board
JPH0637410A (en) Ceramic circuit board
JP3722573B2 (en) Ceramic substrate, circuit board using the same, and manufacturing method thereof
JPH08274423A (en) Ceramic circuit board
WO2020218193A1 (en) Ceramic circuit substrate and electronic component module
JP4057436B2 (en) Copper base alloy and heat sink material using the copper base alloy
JP3613759B2 (en) Metal-ceramic composite substrate
JP3383892B2 (en) Method for manufacturing semiconductor mounting structure

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080414

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100414

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110414

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130414