JPH0637292B2 - Method for producing coarse particles of porous lithium aluminate - Google Patents

Method for producing coarse particles of porous lithium aluminate

Info

Publication number
JPH0637292B2
JPH0637292B2 JP1051968A JP5196889A JPH0637292B2 JP H0637292 B2 JPH0637292 B2 JP H0637292B2 JP 1051968 A JP1051968 A JP 1051968A JP 5196889 A JP5196889 A JP 5196889A JP H0637292 B2 JPH0637292 B2 JP H0637292B2
Authority
JP
Japan
Prior art keywords
coarse particles
particles
lithium aluminate
carbonate
coarse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1051968A
Other languages
Japanese (ja)
Other versions
JPH02233519A (en
Inventor
義和 山桝
敏明 柿原
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP1051968A priority Critical patent/JPH0637292B2/en
Publication of JPH02233519A publication Critical patent/JPH02233519A/en
Publication of JPH0637292B2 publication Critical patent/JPH0637292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換するエネルギー部門で用いる燃料電池のう
ち、特に、電解質として溶融炭酸塩を含浸させる溶融炭
酸塩型燃料電池の電解質板の強化材として用いるための
多孔質のリチウムアルミネート粗粒子を製造する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a fuel cell used in the energy sector for directly converting chemical energy of a fuel into electric energy, and in particular, molten carbonate impregnated with molten carbonate as an electrolyte. The present invention relates to a method for producing porous lithium aluminate coarse particles for use as a reinforcing material for an electrolyte plate of a salt fuel cell.

[従来の技術] 現在までに提案されている溶融炭酸塩型燃料電池として
は、電解質としての溶融炭酸塩を、多孔質のマトリック
ステープにしみ込ませてなる電解質板を作り、この電解
質板をカソード(酸素極)とアノード(燃料極)の両電
極で両面から挟み、カソード側に酸化ガスを供給すると
共にアノード側に燃料ガスを供給することによりカソー
ドとアノードとの間で発電が行われるようにしたものを
1セルとし、各セルをセパレータを介して多層に積層さ
せてスタックとし、このスタックを適当な締付力で締め
付けるようにしてある。
[Prior Art] As a molten carbonate fuel cell that has been proposed so far, a molten carbonate as an electrolyte is impregnated into a porous matrix tape to form an electrolyte plate, and this electrolyte plate is used as a cathode ( It is sandwiched by both electrodes (oxygen electrode) and anode (fuel electrode) from both sides, and by supplying oxidizing gas to the cathode side and supplying fuel gas to the anode side, power is generated between the cathode and the anode. One cell is used, each cell is laminated in multiple layers via a separator to form a stack, and the stack is tightened with an appropriate tightening force.

上記溶融炭酸塩型燃料電池に用いられる電解質板は、従
来より種々の方法により製造されているが、その製造方
法の1つとして、数μ以下のセラミック粒子、たとえ
ば、リチウムアルミネート(LiAlO2)粉末により多数の
空孔を有するマトリックスを形成し、このマトリックス
に電解質を含浸させ、マトリックスの空隙に電解質を保
持させるようにして電解質板とするものがある。
The electrolyte plate used in the molten carbonate fuel cell has been conventionally manufactured by various methods. One of the manufacturing methods is ceramic particles of several μ or less, for example, lithium aluminate (LiAlO 2 ) There is an electrolyte plate in which a matrix having a large number of pores is formed from powder and the matrix is impregnated with an electrolyte so that the electrolyte is retained in the voids of the matrix.

かかる方法により得られた電解質板は、カソードとアノ
ードの両電極に挟まれて使用されるもので、カソード側
に供給される酸化ガスとアノード側に供給される燃料ガ
スを完全に分離しなければならないが、電解質板は燃料
電池の運転、停止に伴い室温と燃料電池の運転温度(約
650℃)との間で熱的に繰り返し作動されることによる
大きさ応力を受け、このときの最大の応力は電解質が液
相より固相へ変化する際特に、運転の緊急停止時に温度
の急低下が生じた場合は顕著に発生する。かかる相変化
に伴って体積が急激に変化してエネルギーを放出する
が、このエネルギーは電解質板に割れを生じさせること
によって逃がされる。電解質板に表裏方向に貫通する割
れが生じると、最早、電解質板は、酸化ガスと燃料ガス
とを分離する能力を維持できず、酸化ガスと燃料ガスが
直接接触してしまい、電池出力の低下もしくは爆発の危
険性を生じるという問題がある。
The electrolyte plate obtained by such a method is used by being sandwiched between both the cathode and anode electrodes, and the oxidizing gas supplied to the cathode side and the fuel gas supplied to the anode side must be completely separated. However, the temperature of the electrolyte plate should be kept at room temperature and the operating temperature of the fuel cell (approx.
650 ° C), it receives a magnitude stress due to repeated thermal operation, and the maximum stress at this time is when the electrolyte changes from the liquid phase to the solid phase, especially when the operation is suddenly stopped. If a decrease occurs, it will occur remarkably. Along with such a phase change, the volume suddenly changes to release energy, which is released by causing cracks in the electrolyte plate. If a crack that penetrates through the electrolyte plate in the front and back direction occurs, the electrolyte plate will no longer be able to maintain the ability to separate the oxidizing gas and the fuel gas, and the oxidizing gas and the fuel gas will come into direct contact with each other, reducing the battery output. Or there is a problem of causing a risk of explosion.

そのため、従来では電解質板を製造する場合に、前期し
た数μ以下のリチウムアルミネート粒子を支持粒子とし
てマトリックスを形成するに際し、上記粒子よりもはる
かに大きいリチウムアルミネートの粗粒子(50〜 150
μ)を、上記支持粒子としての数μ以下のリチウムアル
ミネート粒子に対し適宜の割り合い(たとえば、数μ以
下のリチウムアルミネート粒子90vol %に対し10vol
%)で混入し、電解質板に発生する表裏両面への貫通割
れを、上記混入したリチウムアルミネートの粗粒子で阻
止させることによって低減させるようにし、該リチウム
アルミネートの粗粒子を割れ低減粒子、すなわち、電解
質板の強化材として用いるようにしたものが提案されて
いる(特開昭57-27569号公報)。
Therefore, in the conventional case of producing an electrolyte plate, when forming a matrix using lithium aluminate particles having a particle size of several μ or less as a support particle, the coarse particles of lithium aluminate (50 to 150 μm) much larger than the above particles are used.
μ) to an appropriate proportion of lithium aluminate particles of several μ or less as the supporting particles (for example, 10 vol to 90 vol% of lithium aluminate particles of several μ or less).
%), The penetration cracks on both the front and back surfaces generated in the electrolyte plate are reduced by blocking the mixed lithium aluminate coarse particles, and the coarse particles of the lithium aluminate are reduced in cracking particles, That is, a material which is used as a reinforcing material for an electrolyte plate has been proposed (JP-A-57-27569).

[発明が解決しようとする課題] ところが、上記特開昭57-27569号公報に記載されている
電解質板の強化材(割れ低減粒子)としてのリチウムア
ルミネート粗粒子は、電解質板に発生しようとする表裏
方向への貫通割れを遮切ることによって貫通割れを生じ
させないようにする物体として機能するだけのものであ
り、且つ内部に炭酸塩が含浸できないものであり、上記
従来のリチウムアルミネート粗粒子を、マトリックスを
形成する支持粒子としての数μ以下のリチウムアルミネ
ート粒子中に混入して、電解質板の強化材として用いた
場合には、燃料電池を運転温度から室温に冷却するとき
の炭酸塩の凝固時に、強化材としての上記リチウムアル
ミネート粗粒子の周囲と炭酸塩の界面に隙間が生じ、上
記炭酸塩が固まるときに電解質板に生じた多数の割れが
上記粗粒子周囲の隙間と連通して、割れが電解質板を貫
通するおそれがある。
[Problems to be Solved by the Invention] However, the lithium aluminate coarse particles as the reinforcing material (crack reducing particles) of the electrolyte plate described in JP-A-57-27569 described above are liable to be generated in the electrolyte plate. The above-mentioned conventional lithium aluminate coarse particles merely function as an object for preventing penetration cracks by blocking penetration cracks in the front and back directions, and cannot impregnate carbonate inside. Is mixed into lithium aluminate particles of several μ or less as supporting particles forming a matrix and used as a reinforcing material for an electrolyte plate, a carbonate when cooling the fuel cell from operating temperature to room temperature. At the time of solidification, a gap was formed at the interface between the carbonate and the surroundings of the lithium aluminate coarse particles as the reinforcing material, and when the carbonate solidified, it was generated in the electrolyte plate. Cracked number communicates with the gap around the coarse particles, cracks which may penetrate the electrolyte plate.

そのため、本発明者等は、電解質板の強化材としてリチ
ウムアルミネート粗粒子を用いたときに該粗粒子の周囲
に一連の隙間が形成されることがないようにするための
工夫研究を行った結果、電解質板の強化板として用いた
ときに電解質としての炭酸塩を強化材の内部に含浸させ
ることができれば、燃料電池の冷却時に炭酸塩が固体に
なるときに強化材中の炭酸塩が内部に入ったまま固体と
なって周辺の炭酸塩と一連となり、強化材の周囲には一
連の隙間が形成されなくなることに着目し、強化材とし
て多孔質のリチウムアルミネート粗粒子を用いればよい
ことを見い出した。
Therefore, the inventors of the present invention have conducted a device study to prevent a series of gaps from being formed around the coarse particles when the lithium aluminate coarse particles are used as the reinforcing material of the electrolyte plate. As a result, if the carbonate as the electrolyte can be impregnated inside the reinforcing material when it is used as the reinforcing plate of the electrolyte plate, the carbonate in the reinforcing material will be contained inside when the carbonate becomes solid when the fuel cell is cooled. It should be noted that porous lithium aluminate coarse particles should be used as the reinforcing material, paying attention to the fact that it becomes a solid as it enters and becomes a series with the surrounding carbonate, and a series of gaps is not formed around the reinforcing material. Found out.

そこで、本発明は、上記多孔質のリチウムアルミネート
粗粒子を製造する方法を提供しようとするものである。
Therefore, the present invention is intended to provide a method for producing the porous lithium aluminate coarse particles.

[課題を解決するための手段] 本発明は、上記課題を解決するために、少数のシリカ粒
子と多数のアルミナ粒子とを結合して粗粒子を造り、次
いで、該粗粒子をリチウムイオンを含む炭酸塩中で 500
℃〜1000℃に昇温して、粗粒子中のシリカ粒子を炭酸塩
中に溶出させると共に該シリカ粒子の溶出により空孔が
できたアルミナ粒子による粗粒子をリチウム化してリチ
ウムアルミネート粗粒子とし、しかる後、上記リチウム
アルミネート粗粒子を冷却した後、水洗、酸洗して多孔
質のリチウムアルミネート粗粒子を得る方法とする。
又、上記水洗、酸洗は、初期炭酸塩の成分を設定すれ
ば、特に行わなくてもよい。
[Means for Solving the Problems] In order to solve the above problems, the present invention combines a small number of silica particles and a large number of alumina particles to form coarse particles, and then the coarse particles contain lithium ions. 500 in carbonate
The temperature is raised to ℃ ~ 1000 ℃, the silica particles in the coarse particles are eluted into carbonate and the coarse particles due to the alumina particles having pores due to the elution of the silica particles are lithiated to obtain lithium aluminate coarse particles. After that, the lithium aluminate coarse particles are cooled, and then washed with water and pickled to obtain porous lithium aluminate coarse particles.
Further, the above-mentioned washing with water and pickling do not have to be performed if the components of the initial carbonate are set.

[作 用] 少数のシリカ粒子を多数のアルミナ粒子で包み込むよう
にして1つの粗粒子を造り、この粗粒子中からシリカ粒
子を溶出させて空孔を形成させるようにするので、シリ
カ粒子の粒径を変えることによって空孔径を任意に変え
ることができる。得られた多孔質のリチウムアルミネー
ト粗粒子を電解質板の強化材として用いると、電解質と
しての炭酸塩が空孔内に入り込み、燃料電池の冷却時に
はそのまま固体となるので、空孔内に入った炭酸塩と強
化材周辺の炭酸塩とが連続することになり、強化材の周
囲に一連の隙間が形成されることがなくなる。
[Operation] A single coarse particle is made by enclosing a small number of silica particles with a large number of alumina particles, and the silica particles are eluted from the coarse particles to form pores. The pore diameter can be arbitrarily changed by changing the diameter. When the obtained porous lithium aluminate coarse particles are used as a reinforcing material for the electrolyte plate, carbonate as an electrolyte enters the pores and becomes solid as it is when the fuel cell is cooled. Since the carbonate and the carbonate around the reinforcement are continuous, a series of gaps are not formed around the reinforcement.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の多孔質リチウムアルミネート粗粒子の
製造方法を実施する場合の一工程例を示すもので、1は
シリカ(SiO2)1aの供給部、2 はアルミナ(Al2O3)の
供給部、3 は分散剤3aの供給部、4 は結合剤4aの供給
部、5 はシリカ1aとアルミナ2aを結合剤4aと混合してス
ラリー6 とする混合処理部、7 は造粒処理部(造粒
器)、8 は造粒処理部7 で所定の粒径に造粒された粗粒
子7aを、リチウムイオンを含む炭酸塩9a中で昇温させて
粗粒子7a中の上記シリカ1aを粗粒子7a中より炭酸塩9a中
に溶出させると共に残ったアルミナ2aをリチウム化する
リチウム化処理部、9 はリチウムイオンを含む炭酸塩供
給部、10は冷却部、11は粗粒子を水洗、酸洗して内部に
残っている炭酸塩を除去させる脱炭酸塩処理部、12は製
品としての多孔質リチウムアルミネート粗粒子である。
なお、13は上記多孔質リチウムアルミネート粗粒子12の
強度を高めるために必要に応じて用いる高温加熱部であ
り、13a は該高温加熱部13で得られる強固なリチウムア
ルミネート粗粒子である。
FIG. 1 shows an example of a process for carrying out the method for producing porous lithium aluminate coarse particles of the present invention, in which 1 is a supply part of silica (SiO 2 ) 1a and 2 is alumina (Al 2 O 3 ), 3 is a dispersant 3a supply part, 4 is a binder 4a supply part, 5 is a mixing treatment part for mixing silica 1a and alumina 2a with the binder 4a to form a slurry 6, and 7 is granulation. A treatment unit (granulator), 8 heats the coarse particles 7a granulated to a predetermined particle size in the granulation processing unit 7 in a carbonate 9a containing lithium ions to obtain the silica in the coarse particles 7a. A lithiation treatment unit that elutes 1a from the coarse particles 7a into the carbonate 9a and lithiates the remaining alumina 2a, 9 is a carbonate supply unit containing lithium ions, 10 is a cooling unit, and 11 is a coarse particle washed with water. , A decarbonation treatment part to remove the carbonate remaining by pickling, 12 is a porous lithium aluminate crude product It is a child.
In addition, 13 is a high temperature heating part used as needed in order to increase the strength of the porous lithium aluminate coarse particles 12, and 13a is a strong lithium aluminate coarse particle obtained in the high temperature heating part 13.

上記の製造工程に沿って本発明の多孔質リチウムアルミ
ネート粗粒子を製造する場合を、次に具体的に説明す
る。
The case of producing the porous lithium aluminate coarse particles of the present invention along the above production process will be specifically described below.

先ず、多数のアルミナ(Al2O3)2aを分散剤3aで分散さ
せた後、該多数のアルミナ2aと少数のシリカ(SiO2)1a
を結合剤(たとえば、ポリビニルアルコール)4aと混合
処理部5 にて混合してスラリー6 とし、このスラリー6
を造粒処理部7 に入れ、該造粒処理部7 にて多数のアル
ミナ2aの粒子の中に少数のシリカ1aが混入された形の粗
粒子7aを造る。上記において、少数のシリカ1aは後述す
るように粗粒子7aに空孔を形成させるためのもので、そ
の粒径は1μ〜10μとする。又、多数用いるアルミナ2a
の粒径は、0.01μ〜10μ程度とするが、任意の粗粒径が
調整し易いこと、粒子形状が球状になり易いこと等から
は、0.01μ〜 1μが良好である。更に、上記造粒処理部
7 で造粒される粗粒子7aは、粒径を 0.5μ〜 200μとす
る。
First, after dispersing a large number of alumina (Al 2 O 3 ) 2a with a dispersant 3a, the large number of alumina 2a and a small number of silica (SiO 2 ) 1a are dispersed.
Is mixed with a binder (for example, polyvinyl alcohol) 4a in the mixing processing section 5 to form a slurry 6, and this slurry 6
Is put into the granulation processing section 7, and the granulation processing section 7 prepares coarse particles 7a in a form in which a small number of silica 1a is mixed in a large number of particles of alumina 2a. In the above description, a small number of silicas 1a are for forming pores in the coarse particles 7a as described later, and the particle size thereof is 1 μ to 10 μ. Also, many used alumina 2a
The particle size of is from 0.01 μ to 10 μ, but 0.01 μ to 1 μ is preferable because it is easy to adjust any coarse particle size and the particle shape is likely to be spherical. Further, the above granulation processing section
The coarse particles 7a granulated in 7 have a particle size of 0.5 μ to 200 μ.

次に、上記造られた 0.5μ〜 200μの粗粒子7aを、リチ
ウム化処理部8 にてリチウムイオンを含む炭酸塩9 中で
約 500℃〜1000℃の温度に昇温させ、粗粒子7a中の少数
のシリカ1aを炭酸塩9 中に溶出させて、第2図に示す如
く粗粒子7aに空孔14を形成させると共に、残る粗粒子構
成体であるアルミナ2aからなる粗粒子をリチウム化し
て、粗粒子7aをリチウムアルミネート粗粒子7bとし、次
いで、上記リチウムアルミネート粗粒子7bを冷却した
後、脱炭酸塩処理部11にて水洗、酸洗して、空孔14のあ
る多孔質のリチウムアルミネート粗粒子12とする。
Next, the 0.5 μ to 200 μ coarse particles 7a produced above are heated to a temperature of about 500 ° C. to 1000 ° C. in the lithium ion-containing carbonate 9 in the lithiation processing unit 8 to obtain the coarse particles 7a. A small amount of silica 1a is dissolved in carbonate 9 to form pores 14 in the coarse particles 7a as shown in FIG. 2, and the remaining coarse particles composed of alumina 2a, which is the coarse particle constituent, are lithiated. , Coarse particles 7a to lithium aluminate coarse particles 7b, then, after cooling the lithium aluminate coarse particles 7b, washed with water in the decarbonation treatment section 11, pickled, porous with pores 14 Use lithium aluminate coarse particles 12.

上記において、リチウムイオンを含む炭酸塩9 として
は、通常、常温では固体(粉末状)であり、昇温により
液化するものであるが、初期から液状化した炭酸塩を使
用してもよい。又、リチウム化するときの昇温温度を 5
00℃〜1000℃としたのは、 500℃以下では、反応自体が
非常に遅く、1000℃以上では、反応後の粗粒子7b又はア
ルミナ2a自身の焼結が進み、粗粒子径が小さくなった
り、リチウムアルミネート粗粒子7bに形成される空孔14
がつぶれたりするので、上記の温度範囲が最適である。
更に、冷却部10での冷却方法としては、要求する粗粒物
性(大きさ、空孔径)により強制冷却(ガス等を流す)
や徐冷(炉冷)を行うようにする。この場合、冷却時間
は特に問題とはされない。
In the above description, the lithium ion-containing carbonate 9 is usually a solid (powder) at room temperature and liquefies when heated, but a carbonate liquefied from the beginning may be used. In addition, the temperature rise during lithiation is 5
00 ℃ ~ 1000 ℃, the reaction itself is very slow below 500 ℃, above 1000 ℃, the coarse particles 7b after the reaction or the alumina 2a itself sintering proceeds, the coarse particle size becomes small. , Holes 14 formed in the lithium aluminate coarse particles 7b
The above-mentioned temperature range is optimal, because it will be crushed.
Further, as a cooling method in the cooling unit 10, forced cooling (flowing gas etc.) is carried out depending on required physical properties of coarse particles (size, pore diameter).
Or slow cooling (furnace cooling). In this case, the cooling time does not matter.

上記の実施例では、粗粒子7aをリチウム化処理部8 にて
リチウムイオンを含む炭酸塩中で 500℃〜1000℃に昇温
して粗粒子7a中からシリカ1aを溶出させて多孔質にする
と共にリチウム化してリチウムアルミネート粗粒子7bと
し、これを冷却後、脱塩酸塩処理して製品としての多孔
質リチウムアルミネート粗粒子12を得る工程について示
したが、上記脱炭酸塩処理を行わせる脱炭酸塩処理部で
の水洗、酸洗工程は、粗粒子の内部に含まれる炭酸塩組
成を考慮して初期炭酸塩の成分を設定すれば特に必要で
ないので、省略した製造工程としてよい。しかし、上記
以下のときは必要な工程であり、又、この工程により粒
子(表面及び空孔表面を含む)の表面処理が行えるの
で、かかる工程を組み込むことによりリチウムアルミネ
ート粗粒子の内部に残っている炭酸塩を除去することが
できる。
In the above example, the coarse particles 7a are heated to 500 ° C. to 1000 ° C. in a carbonate containing lithium ions in the lithiation processing unit 8 to elute the silica 1a from the coarse particles 7a to make it porous. It was lithiated with lithium aluminate coarse particles 7b, and after cooling this, a process for obtaining a porous lithium aluminate coarse particle 12 as a product by treatment with dehydrochloric acid was shown. The steps of washing with water and pickling in the decarbonation treatment section are not particularly required as long as the components of the initial carbonate are set in consideration of the composition of carbonate contained in the coarse particles, and thus may be omitted manufacturing steps. However, in the following cases, it is a necessary step, and since the surface treatment of the particles (including the surface and the pore surface) can be performed by this step, it is left inside the lithium aluminate coarse particles by incorporating such a step. Carbonate can be removed.

上記脱炭酸塩処理を行う場合の具体的な方法を説明する
と、先ず、粗粒子を温水洗浄した後、酢酸等で中和し、
次いで、酢酸等水溶液に含浸(任意時間、任意組成)さ
せ、次に、アルコール洗浄を行い、最後に乾燥させるよ
うにする。
Explaining a specific method in the case of performing the decarbonation treatment, first, after coarse particles are washed with warm water, neutralized with acetic acid, etc.,
Then, it is impregnated with an aqueous solution of acetic acid or the like (arbitrary time, arbitrary composition), followed by alcohol cleaning, and finally drying.

上述した製造工程で得られた多孔質リチウムアルミネー
ト粗粒子12の空孔14の径が大きい場合は、強度を高める
ために、第1図に示す高温加熱部13で再度1000℃以上ま
で加熱処理して固化させ、強固な多孔質リチウムアルミ
ネート粗粒子13a が得られるようにする。
When the pores 14 of the porous lithium aluminate coarse particles 12 obtained in the above manufacturing process have a large diameter, in order to increase the strength, the high temperature heating unit 13 shown in FIG. And solidify to obtain strong porous lithium aluminate coarse particles 13a.

上述した方法により製造された多孔質リチウムアルミネ
ート粗粒子12又は13a は、燃料電池を構成する電解質板
の強化材として使用する。この場合は、微細なリチウム
アルミネート粒子の如きセラミック粒子を支持粒子とし
てマトリックスを形成するときに、第3図に一部につい
て示す如く、上記支持粒子内に、本発明により製造され
た多数の空孔を有する多孔質リチウムアルミネート粗粒
子12又は13a を混入して電解質板15のマトリックス15a
を形成し、このマトリックス15a に、電解質として溶融
炭酸塩16を含浸させると、溶融炭酸塩16が強化材として
の多孔質リチウムアルミネート粗粒子12又は13a の空孔
14内に入り込むので、燃料電池が運転温度( 650℃)か
ら室温に冷却されて溶融炭酸塩16が固化するときは、上
記空孔14内に入った溶融炭酸塩16はそのまま固体になっ
て粗粒子12又は13a の周辺の溶融炭酸塩16と一連となり
得る。これにより粗粒子12又は13a の周囲には一連の隙
間が形成されなくなり、万一、電解質板15の両面から生
じた割れ17が粗粒子12又は13a に達しても、この割れ17
が貫通するようなことがなくなる。
The porous lithium aluminate coarse particles 12 or 13a produced by the above-mentioned method are used as a reinforcing material for an electrolyte plate constituting a fuel cell. In this case, when a matrix is formed by using ceramic particles such as fine lithium aluminate particles as supporting particles, a large number of voids produced by the present invention are contained in the supporting particles as shown in part in FIG. The matrix 15a of the electrolyte plate 15 containing the porous lithium aluminate coarse particles 12 or 13a having pores.
When this matrix 15a is impregnated with molten carbonate 16 as an electrolyte, the molten carbonate 16 becomes pores of the porous lithium aluminate coarse particles 12 or 13a as a reinforcing material.
When the fuel cell is cooled from the operating temperature (650 ° C.) to room temperature and the molten carbonate 16 solidifies, the molten carbonate 16 that has entered the holes 14 becomes solid and remains as it is. It may be in series with the molten carbonate 16 around the particles 12 or 13a. As a result, a series of gaps are not formed around the coarse particles 12 or 13a, and even if the cracks 17 generated from both surfaces of the electrolyte plate 15 reach the coarse particles 12 or 13a, the cracks 17
Will not penetrate.

なお、本発明の製造工程として第1図に示した実施例で
は、少数のシリカ(SiO2)1aと多数のアルミナ(Al
2O3)2aを混合処理部5 にて結合剤4aで混合してスラリ
ー6 とする場合を例示したが、シリカ1aとアルミナ2aの
結合方法として、上記以外に、静電吸着を利用した方
法、機械的力を利用した方法もある。
In the embodiment shown in FIG. 1 as the manufacturing process of the present invention, a small number of silica (SiO 2 ) 1a and a large number of alumina (Al
2 O 3 ) 2a was mixed with the binder 4a in the mixing treatment section 5 to form the slurry 6, but as a bonding method for the silica 1a and the alumina 2a, a method using electrostatic adsorption other than the above is used. , There is also a method that uses mechanical force.

[発明の効果] 以上述べた如く、本発明の多孔質リチウムアルミネート
粗粒子の製造方法によれば、少数のシリカ粒子を多数の
アルミナ粒子で包むようにして所要径の粗粒子を造り、
この粗粒子を500 ℃〜1000℃に昇温して、粗粒子の内部
からシリカ粒子を溶出させて空孔を形成させると共にア
ルミナ粒子をリチウム化してリチウムアルミネートと
し、次いで、冷却後、必要に応じて脱炭酸塩処理を行っ
て多孔質リチウムアルミネートの粗粒子を製造するの
で、多数の空孔を有するリチウムアルミネート粗粒子を
簡易な方法により製造できると共に、シリカ粒子の粒径
を任意に変えることにより任意の空孔径の粗粒子が得ら
れ、又、この粗粒子を溶融炭酸塩型燃料電池の電解質板
の強化材として用いることにより、溶融炭酸塩が粗粒子
の内部まで入り込むことができ且つ内部に入った溶融炭
酸塩を燃料電池の冷却時にそのまま固化させることがで
きるので、粗粒子の周囲に一連の隙間が形成されるとい
う従来の強化材の問題を解消させることができる、とい
う優れた効果を奏し得る。
[Effects of the Invention] As described above, according to the method for producing porous lithium aluminate coarse particles of the present invention, a small number of silica particles are wrapped with a large number of alumina particles to form coarse particles having a required diameter,
The coarse particles are heated to 500 ℃ ~ 1000 ℃, to elute the silica particles from the inside of the coarse particles to form pores and to lithiate the alumina particles to lithium aluminate, and after cooling, if necessary. Since coarse particles of porous lithium aluminate are produced by performing decarbonation treatment accordingly, lithium aluminate coarse particles having a large number of pores can be produced by a simple method, and the particle diameter of silica particles can be arbitrarily set. By changing it, coarse particles with an arbitrary pore size can be obtained, and by using these coarse particles as a reinforcing material for the electrolyte plate of the molten carbonate fuel cell, molten carbonate can penetrate into the inside of the coarse particles. Moreover, since the molten carbonate that has entered the inside can be solidified as it is when the fuel cell is cooled, the problem of the conventional reinforcing material that a series of gaps are formed around the coarse particles is eliminated. It can be erased, an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の製造方法を実施する製造工程の一例を
示す概要図、第2図は本発明の製造方法により製造され
た多孔質リチウムアルミネート粗粒子の概略図、第3図
は本発明の製造方法により製造された多孔質リチウムア
ルミネート粗粒子を電解質板の強化材として使用したと
きの状態を示す概略図である。 1 ……シリカ供給部、1a……シリカ、2 ……アルミナ供
給部、2a……アルミナ、3 ……分散剤供給部、3a……分
散剤、4 ……結合剤供給部、4a……結合剤、5 ……混合
処理部、6 ……スラリー、7 ……造粒処理部(造粒
器)、7a……粗粒子、8 ……リチウム化処理部、9 ……
リチウムイオンを含む炭酸塩供給部、9a……リチウムイ
オンを含む炭酸塩、10……冷却部、11……脱炭酸塩処理
部、12……多孔質リチウムアルミネート粗粒子(製
品)。
FIG. 1 is a schematic diagram showing an example of a production process for carrying out the production method of the present invention, FIG. 2 is a schematic diagram of porous lithium aluminate coarse particles produced by the production method of the present invention, and FIG. It is a schematic diagram showing the state when the porous lithium aluminate coarse particles manufactured by the manufacturing method of the invention are used as a reinforcing material of an electrolyte plate. 1 ...... Silica supply section, 1a ...... Silica, 2 ...... Alumina supply section, 2a ...... Alumina, 3 ...... Dispersant supply section, 3a ...... Dispersant, 4 ...... Binder supply section, 4a ...... Bind Agent, 5 ... Mixing processing part, 6 ... Slurry, 7 ... Granulation processing part (granulator), 7a ... Coarse particles, 8 ... Lithiation processing part, 9 ...
Carbonate supply unit containing lithium ions, 9a ... Carbonate containing lithium ions, 10 ... Cooling unit, 11 ... Decarbonation treatment unit, 12 ... Porous lithium aluminate coarse particles (product).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少数のシリカ粒子と多数のアルミナ粒子と
を結合して粗粒子を造り、次いで、該粗粒子をリチウム
イオンを含む炭酸塩中で 500℃〜1000℃に昇温し、粗粒
子中のシリカ粒子を炭酸塩中に溶出させて空孔を形成さ
せると共に該空孔が形成されたアルミナによる粗粒子を
リチウム化してリチウムアルミネート粗粒子とし、しか
る後、上記空孔のあるリチウムアルミネート粗粒子を冷
却して多孔質のリチウムアルミネート粗粒子を得ること
を特徴とする多孔質リチウムアルミネート粗粒子の製造
方法。
1. A coarse particle is produced by combining a small number of silica particles and a large number of alumina particles, and then the coarse particles are heated in a carbonate containing lithium ions to 500 ° C. to 1000 ° C. The silica particles therein are dissolved in carbonate to form vacancies, and the coarse particles made of alumina in which the vacancies are formed are lithiated to obtain lithium aluminate coarse particles. A method for producing porous lithium aluminate coarse particles, which comprises cooling the nate coarse particles to obtain porous lithium aluminate coarse particles.
JP1051968A 1989-03-06 1989-03-06 Method for producing coarse particles of porous lithium aluminate Expired - Lifetime JPH0637292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051968A JPH0637292B2 (en) 1989-03-06 1989-03-06 Method for producing coarse particles of porous lithium aluminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051968A JPH0637292B2 (en) 1989-03-06 1989-03-06 Method for producing coarse particles of porous lithium aluminate

Publications (2)

Publication Number Publication Date
JPH02233519A JPH02233519A (en) 1990-09-17
JPH0637292B2 true JPH0637292B2 (en) 1994-05-18

Family

ID=12901672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051968A Expired - Lifetime JPH0637292B2 (en) 1989-03-06 1989-03-06 Method for producing coarse particles of porous lithium aluminate

Country Status (1)

Country Link
JP (1) JPH0637292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105774A2 (en) * 2011-01-31 2012-08-09 Korea Institute Of Science And Technology Molten carbonate fuel cells including reinforced lithium aluminate matrix, method for preparing the same, and method for supplying lithium source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2789678B2 (en) * 1989-06-08 1998-08-20 三菱電機株式会社 Electrolyte holding layer for molten carbonate fuel cells
US6290928B1 (en) 1997-04-07 2001-09-18 Nippon Chemicals Industrial Co. Gamma lithium aluminate product and process of making

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105774A2 (en) * 2011-01-31 2012-08-09 Korea Institute Of Science And Technology Molten carbonate fuel cells including reinforced lithium aluminate matrix, method for preparing the same, and method for supplying lithium source
WO2012105774A3 (en) * 2011-01-31 2012-09-27 Korea Institute Of Science And Technology Molten carbonate fuel cells including reinforced lithium aluminate matrix, method for preparing the same, and method for supplying lithium source

Also Published As

Publication number Publication date
JPH02233519A (en) 1990-09-17

Similar Documents

Publication Publication Date Title
CN108155412B (en) A kind of inorganic-inorganic hybrid solid-state electrolyte ceramic membrane and preparation method thereof
JPS5871564A (en) Matrix material for molten carbonate salt fuel battery
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
JP3331313B2 (en) Electrolyte matrix for molten carbonate fuel cells
JPH0746610B2 (en) Molten carbonate fuel cell positive electrode and method for producing the same
JPH0754132A (en) Ito sintered compact and sputtering target
JPH0637292B2 (en) Method for producing coarse particles of porous lithium aluminate
US4548877A (en) Electrolyte reservoir for carbonate fuel cells
US5399443A (en) Fuel cells
US6110854A (en) Liquid-phase sintering process for aluminate ceramics
WO1992004496A1 (en) Method of producing porous lithium aluminate fiber and coarse particle
JPS6326511B2 (en)
JP3434127B2 (en) Fuel cell sealing material and method of manufacturing the same
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
JP3601188B2 (en) Method for producing γ-lithium aluminate powder
JPS62154576A (en) Manufacture of molten carbonate fuel cell
JP2505446B2 (en) Method for producing raw material dispersion for gas diffusion electrode reaction layer
US4156056A (en) Thermal cell and method of making the same
JPS5887774A (en) Formation of electrolyte layer for fused carbonate fuel battery
JPH03233863A (en) Electrode for molten carbonate fuel cell and manufacture thereof
JPS6276159A (en) Manufacture of fuel electrode for fuel cell of molten carbonate type
JPH06290792A (en) Manufacture of electrode for molten carbonate fuel cell
JPH0548581B2 (en)
JP3557676B2 (en) Method for producing β-lithium aluminate long fiber
CN110176600A (en) The preparation method of secondary battery positive electrode material