JPH0637096A - Annealing method for thin film - Google Patents

Annealing method for thin film

Info

Publication number
JPH0637096A
JPH0637096A JP19043092A JP19043092A JPH0637096A JP H0637096 A JPH0637096 A JP H0637096A JP 19043092 A JP19043092 A JP 19043092A JP 19043092 A JP19043092 A JP 19043092A JP H0637096 A JPH0637096 A JP H0637096A
Authority
JP
Japan
Prior art keywords
thin film
annealing
energy
electric energy
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19043092A
Other languages
Japanese (ja)
Inventor
Hiroshi Takeuchi
寛 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19043092A priority Critical patent/JPH0637096A/en
Publication of JPH0637096A publication Critical patent/JPH0637096A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To provide a method for improving characteristics by applying a pulselike electric energy to a circuit formed of a thin film material. CONSTITUTION:A pulselike electric energy is applied between terminals of an electronic component by an aging unit composed of a DC power source 1 and an oscillator 12 for generating a signal for controlling a voltage applying time, and the film is heat treated by utilizing a small Joule heat generated by the film itself. Since the heat generation of the film itself is used, its purpose is performed by the small energy, and hence a large-scale facility is not required, and an effect is obtained in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜で構成された回路の
特性を向上するもので、薄膜のアニーリング方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film annealing method for improving the characteristics of a thin film circuit.

【0002】[0002]

【従来の技術】半導体やセンサ等の電子部品には各種材
料を薄膜に加工して所望の機能を発揮させているものが
多くあり、薄膜の生成には気相成長法が一般に用いられ
ている。
2. Description of the Related Art There are many electronic parts such as semiconductors and sensors that are processed into various types of thin films to exhibit desired functions, and vapor phase epitaxy is generally used for forming thin films. .

【0003】気相成長法で生成した薄膜は膜中に種々の
要因で発生するミクロな欠陥が集合し、応力が発生する
などの外乱によって十分にその機能が発揮されないこと
が多い。このような場合、薄膜の生成後、または、その
後の加工工程を経た後でアニーリングと称する加熱処理
で応力の緩和や、欠陥の回復処理が行われるのが普通で
ある。
In the thin film formed by the vapor phase growth method, micro defects generated by various factors are aggregated in the film, and its function is often not sufficiently exhibited due to disturbance such as stress generation. In such a case, after the thin film is formed, or after the subsequent processing step, stress relaxation and defect recovery processing are usually performed by heat treatment called annealing.

【0004】従来のアニーリング処理には雰囲気炉や真
空炉等の大がかりな設備が一般的であった。そしてこれ
らの炉を稼働する際には大がかりな炉自体も昇温、降温
するため一プロセス当たりの時間が長くなり、その運転
費も高額を要した。特に雰囲気を一定に保つためのガス
置換や膜の反応を防ぐための真空排気にはガスの導入設
備や排気装置などの附帯設備も大がかりなものが必要で
あった。
For the conventional annealing treatment, large-scale equipment such as an atmosphere furnace or a vacuum furnace is generally used. When operating these furnaces, a large-scale furnace itself needs to be heated and cooled, so that the time required for one process is long and the operating cost is high. In particular, gas replacement to keep the atmosphere constant and vacuum exhaust to prevent reaction of the film required large-scale auxiliary equipment such as gas introduction equipment and exhaust equipment.

【0005】その一例を図5に示す。図5は回転磁場中
アニール法と呼ばれる磁性膜のアニール装置の概略図で
ある。
An example thereof is shown in FIG. FIG. 5 is a schematic diagram of a magnetic film annealing apparatus called an annealing method in a rotating magnetic field.

【0006】図において、1は基板、2は拡散ポンプ、
3は回転ポンプ、4はヒータ、5は磁石、6はモータで
ある。
In the figure, 1 is a substrate, 2 is a diffusion pump,
3 is a rotary pump, 4 is a heater, 5 is a magnet, and 6 is a motor.

【0007】磁性膜が変質しないように10-6(Tor
r)オーダーの高真空に排気後、ヒーターで磁性薄膜を
生成した基板を約400℃に加熱、基板全体の温度を均
一に保つため一定時間保持後加熱を停止し、自然冷却で
常温迄冷却する。このプロセス中に排気、加熱時は真空
容器の外側に設けた磁石を固定して直流磁界を印加し、
冷却時には前記磁石をモーターで回転させて回転磁場中
で冷却する方法である。この例でも判るように、排気設
備、回転磁場印加装置が必要な他、真空中で加熱、冷却
するため一プロセスに2時間程度を費やしていた。
To prevent the magnetic film from deteriorating, 10 -6 (Tor
After evacuating to a high vacuum of r) order, the substrate on which the magnetic thin film is formed is heated by a heater to about 400 ° C., the heating is stopped for a certain period of time to keep the temperature of the entire substrate uniform, and the substrate is naturally cooled to room temperature. . During evacuation and heating during this process, a magnet provided outside the vacuum vessel is fixed and a DC magnetic field is applied,
During cooling, the magnet is rotated by a motor to cool in a rotating magnetic field. As can be seen from this example, in addition to the need for exhaust equipment and a rotating magnetic field application device, it took about 2 hours to perform one process for heating and cooling in vacuum.

【0008】[0008]

【発明が解決しようとする課題】本発明は前述したよう
に薄膜の機能を高めるためのアニーリングに必要な装置
と時間を簡略化するためのものである。
SUMMARY OF THE INVENTION As described above, the present invention is to simplify the equipment and time required for annealing for enhancing the function of a thin film.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するために、薄膜にパルス状の電気エネルギーを印加
し、薄膜自身の発熱を利用してアニーリングを行うもの
である。
In order to solve the above-mentioned problems, the present invention applies pulsed electric energy to a thin film and uses the heat generated by the thin film itself to perform annealing.

【0010】[0010]

【作用】部品の一部を構成する薄膜にパルス状の電気エ
ネルギーを印加すると、薄膜部分は断面積が小さいため
僅かなエネルギーでも発熱を生じ薄膜自身にはアニーリ
ングに十分な温度に達する。但しこの熱量は非常に微少
なため、すぐに基板や保護膜に放散されるので部品全体
としてはほとんど温度上昇も生じない程度の熱量である
が、薄膜自身が発熱源であり、最も効率よくこの熱を利
用できるため、微少な発熱でもアニーリング効果が得ら
れるものである。この際には特に短時間内に集中して発
熱したほうが効果が高くなるので、電気エネルギーを如
何に集中して短時間に印加するかが課題になる。
When pulsed electric energy is applied to the thin film forming a part of the component, the thin film portion has a small cross-sectional area, so that even a small amount of energy causes heat generation and the thin film itself reaches a temperature sufficient for annealing. However, this amount of heat is so small that it is immediately dissipated to the substrate and protective film, so that the temperature of the entire component hardly rises, but the thin film itself is the heat source and the most efficient Since heat can be used, an annealing effect can be obtained even with a slight heat generation. In this case, the effect is enhanced especially when the heat is generated in a concentrated manner within a short time. Therefore, how to concentrate and apply the electric energy in a short time becomes a problem.

【0011】[0011]

【実施例】以下、上記した課題を有する電子部品の中
で、本発明の効果を最も顕著に示すものの一つとして、
強磁性薄膜の磁気抵抗効果を利用した磁気センサ(以下
MRセンサ)を用いて本発明を具体的に説明する。
EXAMPLES Among the electronic parts having the above-mentioned problems, one of the most remarkable effects of the present invention is as follows.
The present invention will be specifically described using a magnetic sensor (hereinafter referred to as an MR sensor) that utilizes the magnetoresistive effect of a ferromagnetic thin film.

【0012】Ni−Fe(20wt%)材を真空蒸着法
で基板18上に0.1μmの薄膜に生成し、フォトリソ
技術で15ミクロンの線幅の感磁部16を形成した後、
保護膜を生成し、素子に切断分離して端子17a,17
b,17cを接続し、図3に示すMRセンサを作製し
た。その端子間(17a−17b間、17b−17c
間)に、図1に示したエージング回路でパルスを印加し
た。
A Ni-Fe (20 wt%) material was formed into a thin film of 0.1 μm on a substrate 18 by a vacuum evaporation method, and after forming a magnetic sensitive portion 16 having a line width of 15 μm by a photolithography technique,
A protective film is formed and cut into elements to separate the terminals 17a, 17
By connecting b and 17c, the MR sensor shown in FIG. 3 was manufactured. Between the terminals (between 17a-17b, 17b-17c
Pulse) was applied by the aging circuit shown in FIG.

【0013】図1は、コンデンサ15と、このコンデン
サ15の両端を直流電源11とMRセンサ13に切り替
えるリレー14と、このリレー14を制御する信号を発
生する発振器12で構成したエージング器の概念図で、
発振器からの制御信号によって図2に示すような波形の
パルスをMRセンサ13の各端子間に印加するものであ
る。
FIG. 1 is a conceptual diagram of an aging device composed of a capacitor 15, a relay 14 for switching both ends of the capacitor 15 to a DC power supply 11 and an MR sensor 13, and an oscillator 12 for generating a signal for controlling the relay 14. so,
A pulse having a waveform as shown in FIG. 2 is applied between the terminals of the MR sensor 13 by a control signal from the oscillator.

【0014】印加条件は、 (1)電圧:600(V)、エネルギー:0.4(m
J) (2)電圧:600(V)、エネルギー:1.3(m
J) (3)電圧:600(V)、エネルギー:1.8(m
J) (4)電圧:600(V)、エネルギー:3.6(m
J) (5)電圧:600(V)、エネルギー:5.4(m
J) で行った。
The application conditions are: (1) voltage: 600 (V), energy: 0.4 (m)
J) (2) Voltage: 600 (V), Energy: 1.3 (m
J) (3) Voltage: 600 (V), Energy: 1.8 (m
J) (4) Voltage: 600 (V), Energy: 3.6 (m
J) (5) Voltage: 600 (V), Energy: 5.4 (m
J).

【0015】各条件のパルスを印加前後で抵抗変化率
(Δρ/ρ)を測定し、特性の改善度を変化率で評価し
た。
The rate of change in resistance (Δρ / ρ) was measured before and after applying the pulse under each condition, and the degree of improvement in characteristics was evaluated by the rate of change.

【0016】実施例の特性を図4に示す。印加エネルギ
ー密度と共に抵抗変化率は大きくなり、本発明による方
法でのアニール効果が示されている。実施例中の(5)
の条件では逆に変化率が低下しているが、この現象は図
5に示した従来法においても加熱温度を高めすぎると生
じるものであり、この傾向からも本発明が従来法と同様
のメカニズムでアニール効果が発揮されていることが示
されていると考えられる。
The characteristics of the embodiment are shown in FIG. The rate of change in resistance increases with the applied energy density, indicating the annealing effect of the method according to the present invention. (5) in the examples
On the contrary, the change rate is decreased under the condition of 1. However, this phenomenon occurs even in the conventional method shown in FIG. 5 when the heating temperature is too high. From this tendency, the present invention has the same mechanism as the conventional method. It is considered that the annealing effect is exhibited in.

【0017】[0017]

【発明の効果】以上実施例で述べたように本発明によれ
ば、電子部品を構成する薄膜回路にパルス状の電気エネ
ルギーを印加して瞬間的に発熱させることにより、微少
なエネルギーで薄膜だけを加熱することができる。従っ
て従来法に比べ処理時間の短縮ができるだけでなく、大
型の設備を必要とせず工業的に優れたアニール方法を提
供するものである。
As described in the above embodiments, according to the present invention, pulsed electric energy is applied to a thin film circuit which constitutes an electronic component to generate heat instantaneously, so that only a thin film can be formed with a small amount of energy. Can be heated. Therefore, not only the processing time can be shortened as compared with the conventional method, but also a large-scale equipment is not required and an industrially excellent annealing method is provided.

【0018】尚、本発明ではMRセンサを用いてその効
果を詳細に説明したが、本発明の効果はMRセンサだけ
でなく、薄膜抵抗器や半導体等の微細な薄膜回路で構成
される電子部品においても二次的なアニール処理で改善
される特性については同様の効果を得ることができる。
Although the effect of the present invention has been described in detail in the present invention by using the MR sensor, the effect of the present invention is not limited to the MR sensor, but an electronic component formed by a fine thin film circuit such as a thin film resistor or semiconductor. Also in the above, similar effects can be obtained with respect to the characteristics improved by the secondary annealing treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するためのパルス印加装置の一例
を示す概略図
FIG. 1 is a schematic diagram showing an example of a pulse applying device for carrying out the present invention.

【図2】本発明で用いる印加パルス波形図FIG. 2 is an applied pulse waveform diagram used in the present invention.

【図3】MRセンサの概略図FIG. 3 is a schematic diagram of an MR sensor.

【図4】本発明効果を示す特性図FIG. 4 is a characteristic diagram showing the effect of the present invention.

【図5】従来法による回転磁場中のアニール装置を示す
概略図
FIG. 5 is a schematic view showing an annealing device in a rotating magnetic field by a conventional method.

【符号の説明】[Explanation of symbols]

11 直流電源 12 発振器 13 MRセンサ 14 リレー 15 コンデンサ 16 感磁部 17a,17b,17c 端子 18 基板 11 DC power supply 12 Oscillator 13 MR sensor 14 Relay 15 Capacitor 16 Magnetically sensitive part 17a, 17b, 17c Terminal 18 Board

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成された所望形状よりなる薄膜
回路の両端にパルス状の電気エネルギーを印加すること
を特徴とする薄膜のアニーリング方法。
1. A method of annealing a thin film, characterized in that pulsed electric energy is applied to both ends of a thin film circuit having a desired shape formed on a substrate.
【請求項2】薄膜が磁性体であることを特徴とする請求
項1記載の薄膜のアニーリング方法。
2. The thin film annealing method according to claim 1, wherein the thin film is a magnetic material.
JP19043092A 1992-07-17 1992-07-17 Annealing method for thin film Pending JPH0637096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19043092A JPH0637096A (en) 1992-07-17 1992-07-17 Annealing method for thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19043092A JPH0637096A (en) 1992-07-17 1992-07-17 Annealing method for thin film

Publications (1)

Publication Number Publication Date
JPH0637096A true JPH0637096A (en) 1994-02-10

Family

ID=16258004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19043092A Pending JPH0637096A (en) 1992-07-17 1992-07-17 Annealing method for thin film

Country Status (1)

Country Link
JP (1) JPH0637096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110043673A (en) * 2008-07-16 2011-04-27 에프코스 아게 Method for increasing the esd pulse stability of an electrical component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110043673A (en) * 2008-07-16 2011-04-27 에프코스 아게 Method for increasing the esd pulse stability of an electrical component
JP2011528183A (en) * 2008-07-16 2011-11-10 エプコス アクチエンゲゼルシャフト Method for improving the stability of electrical components against electrostatic discharge pulses

Similar Documents

Publication Publication Date Title
KR0165898B1 (en) Vacuum processing method and apparatus
US6361662B1 (en) Method for fabricating a semiconductor device in a magnetron sputtering system
JP2766433B2 (en) Semiconductor vapor deposition equipment
US2900282A (en) Method of treating magnetic material and resulting articles
JPH01185176A (en) Processing method using electrostatic adsorption
JPS6051847B2 (en) How to form an oxide layer
US2916593A (en) Induction heating apparatus and its use in silicon production
JP3017631B2 (en) Control method of low-temperature processing equipment
JPH0637096A (en) Annealing method for thin film
JP3218917B2 (en) Plasma processing apparatus and plasma processing method
JP2630118B2 (en) Vacuum processing method and device
JPH10303185A (en) Etching apparatus and etching method
JP2000232098A (en) Control method for sample temperature and vacuum process device
JPH01268126A (en) Wafer processing device
JPH05129420A (en) Electrostatic chucking equipment
JP2663785B2 (en) Electrostatic suction device
JPH09283495A (en) Electrode and discharge-generating device
JP3205091B2 (en) Electrode cooling method
JP4304945B2 (en) Metal film heat treatment method
JPH0529265A (en) Plasma ashing device
JPH0721954A (en) Ion beam generating method and electron field ionization type gas phase ion source
JP3020521B2 (en) Thin film element and method for forming the same
JPH03107484A (en) Plasma treating device
JPH01308027A (en) Wafer processor
JPH04303935A (en) Thin-film formation apparatus