JPH0637030A - Method and apparatus for additive ion implantation and electrode formation in semiconductor substrate - Google Patents
Method and apparatus for additive ion implantation and electrode formation in semiconductor substrateInfo
- Publication number
- JPH0637030A JPH0637030A JP4189668A JP18966892A JPH0637030A JP H0637030 A JPH0637030 A JP H0637030A JP 4189668 A JP4189668 A JP 4189668A JP 18966892 A JP18966892 A JP 18966892A JP H0637030 A JPH0637030 A JP H0637030A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- semiconductor substrate
- semiconductor
- additive
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 124
- 239000000758 substrate Substances 0.000 title claims abstract description 112
- 238000005468 ion implantation Methods 0.000 title claims abstract description 53
- 239000000654 additive Substances 0.000 title claims abstract description 50
- 230000000996 additive effect Effects 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims description 26
- 230000015572 biosynthetic process Effects 0.000 title description 2
- 150000002500 ions Chemical class 0.000 claims abstract description 66
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000001816 cooling Methods 0.000 claims abstract description 28
- 239000007788 liquid Substances 0.000 claims abstract description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 18
- 238000002844 melting Methods 0.000 claims abstract description 14
- 230000008018 melting Effects 0.000 claims abstract description 14
- 238000002156 mixing Methods 0.000 claims description 14
- 238000005280 amorphization Methods 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 238000007740 vapor deposition Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims 3
- 238000000151 deposition Methods 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 230000007547 defect Effects 0.000 abstract description 34
- 229910052710 silicon Inorganic materials 0.000 description 22
- 239000010703 silicon Substances 0.000 description 22
- -1 silicon ions Chemical class 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- 238000000137 annealing Methods 0.000 description 14
- 238000002513 implantation Methods 0.000 description 11
- 229910052796 boron Inorganic materials 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- QRYFCNPYGUORTK-UHFFFAOYSA-N 4-(1,3-benzothiazol-2-yldisulfanyl)morpholine Chemical compound C1COCCN1SSC1=NC2=CC=CC=C2S1 QRYFCNPYGUORTK-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009684 ion beam mixing Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体基板への添加物
イオンの注入方法およびイオンミキシング法による半導
体基板の電極形成方法、ならびに、これら方法を実施す
るための装置に関するものであり、特に、イオン注入に
より生ずる照射欠陥の抑制、除去を容易ならしめるため
の改善に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for implanting an additive ion into a semiconductor substrate, a method for forming an electrode on a semiconductor substrate by an ion mixing method, and an apparatus for carrying out these methods. The present invention relates to an improvement for facilitating the suppression and removal of irradiation defects caused by ion implantation.
【0002】[0002]
【従来の技術】半導体基板に添加物イオンを注入する従
来技術としては、特開平3−145722号公報記載の
ように、半導体基板をイオン注入時に液体窒素または液
体ヘリウム温度まで冷却して格子振動を抑制し、チャネ
リングを促すように添加物イオンを注入することによっ
て、急峻な添加物プロファイルを得、かつ照射欠陥の生
成を抑制し、その後、アニールを行う方法がある。2. Description of the Related Art As a conventional technique for implanting additive ions into a semiconductor substrate, as described in JP-A-3-145722, the semiconductor substrate is cooled to liquid nitrogen or liquid helium temperature at the time of ion implantation to cause lattice vibration. There is a method of implanting additive ions so as to suppress and promote channeling to obtain a steep additive profile and suppress generation of irradiation defects, and then perform annealing.
【0003】また、特開昭63−185016号公報記
載のように、予めイオン注入領域を非晶質化し、その後
添加物イオンを注入し、その後、アニールを行なうこと
によって、照射欠陥の除去を容易にする試みがなされて
いる。Further, as described in Japanese Patent Laid-Open No. 63-185016, it is easy to remove irradiation defects by making the ion-implanted region amorphous, preliminarily implanting additive ions, and then annealing. Attempts have been made to
【0004】また半導体基板に電極を形成する従来技術
として、半導体基板上に電極用の金属を蒸着し、次にこ
れにミキシング用イオン(半導体または蒸着金属と同じ
物質のイオン)を照射して蒸着金属と半導体基板とをミ
キシングさせる所謂イオンミキシング法による電極形成
方法がある。As a conventional technique for forming electrodes on a semiconductor substrate, metal for electrodes is vapor-deposited on a semiconductor substrate, and then mixing ions (semiconductor or ions of the same substance as the vapor-deposited metal) are irradiated to vapor-deposit. There is an electrode forming method by a so-called ion mixing method in which a metal and a semiconductor substrate are mixed.
【0005】[0005]
【発明が解決しようとする課題】前記第1に述べた添加
物イオン注入方法では添加物イオン注入時に半導体基板
を液体窒素または液体ヘリウム温度まで冷却することに
より照射欠陥の生成を抑制している。この冷却には熱伝
達を利用するが、半導体は熱伝達が悪いためこれらの温
度にまで冷却されるには時間がかかる。さらに、液体窒
素やヘリウムを使用することは、コスト高になる点や、
取り扱いが煩雑になるという問題がある。In the additive ion implantation method described above, the generation of irradiation defects is suppressed by cooling the semiconductor substrate to the liquid nitrogen or liquid helium temperature during the additive ion implantation. Although heat transfer is used for this cooling, it takes time for the semiconductor to be cooled to these temperatures due to poor heat transfer. In addition, using liquid nitrogen or helium is expensive,
There is a problem that handling becomes complicated.
【0006】また、前記第2に述べた添加物イオン注入
方法では、半導体基板に半導体の自己イオン(半導体と
同じ物質のイオン、すなわち、例えば半導体がシリコン
ならば、シリコンイオン)を注入することによって予め
非晶質化をした後に添加物イオンを注入し、その後アニ
ールによって再結晶化させることにより、アニール温度
を低減するようにしている。しかし、非晶質化領域と結
晶領域との界面近傍に照射欠陥が形成され、アニール中
にこの欠陥が成長し、アニール後にも欠陥が残存すると
いう問題がある。また、完全にこの欠陥を除去するため
には長時間のアニールが必要であり高集積化を図るとが
できないという問題がある。Further, in the additive ion implantation method described above, by implanting semiconductor self-ions (ions of the same substance as the semiconductor, that is, if the semiconductor is silicon, silicon ions) into the semiconductor substrate. The annealing temperature is lowered by performing the amorphization in advance and then implanting the additive ions and then recrystallizing by annealing. However, there is a problem that irradiation defects are formed in the vicinity of the interface between the amorphized region and the crystalline region, the defects grow during annealing, and the defects remain after annealing. Further, there is a problem that a long time annealing is required to completely remove this defect, and high integration cannot be achieved.
【0007】また、前記第3に述べた半導体用の電極を
イオンミキシング法で形成する方法においてはミキシン
グ時に半導体中に照射欠陥が形成されるという問題があ
る。Further, in the method of forming the electrode for the semiconductor described above by the ion mixing method, there is a problem that irradiation defects are formed in the semiconductor during the mixing.
【0008】よって、本発明の第1の目的は、前記第1
に述べた従来の添加物イオン注入方法を改善し、添加物
イオン注入時の半導体基板温度を上記従来方法でのそれ
よりも高い温度にしても照射欠陥を抑制でき、その除去
を容易にする半導体基板への添加物イオン注入方法およ
びそのための装置を提供することにある。Therefore, the first object of the present invention is to provide the above-mentioned first object.
A semiconductor that improves the conventional additive ion implantation method described above and suppresses irradiation defects even if the semiconductor substrate temperature at the time of additive ion implantation is higher than that of the conventional method described above, and facilitates its removal. It is an object to provide a method for implanting an additive ion into a substrate and an apparatus therefor.
【0009】また、第2の目的は、前記第2に述べた従
来の添加物イオン注入方法を改善し、半導体基板の非晶
質化時に形成される欠陥を抑制でき、その除去を容易に
する、半導体基板への添加物イオン注入方法およびその
ための装置を提供することにある。A second object is to improve the conventional additive ion implantation method described above, to suppress defects formed when the semiconductor substrate is amorphized, and to facilitate its removal. A method for implanting an additive ion into a semiconductor substrate and an apparatus therefor are provided.
【0010】また、第3の目的は、前記第3に述べたイ
オンミキシングによる電極形成方法を改善し、照射欠陥
を抑制でき、その除去を容易にする、半導体基板の電極
形成方法およびそのための装置を提供することにある。A third object is to improve the electrode forming method by ion mixing described in the third aspect, to suppress irradiation defects and to facilitate their removal, and a device therefor. To provide.
【0011】[0011]
【課題を解決するための手段】上記第1の目的は、特許
請求の範囲の請求項1又は5の構成によって、また上記
第2の目的は請求項2,3,6又は7の構成によって、
また、上記第3の目的は請求項4又は8の構成によって
達成される。The first object is the structure of claims 1 or 5 in the claims, and the second object is the structure of claims 2, 3, 6 or 7.
The third object is achieved by the structure of claim 4 or 8.
【0012】[0012]
【作用】先ず、請求項1又は5に記載の発明に関して作
用を説明する。図7は、半導体基板たるシリコン基板に
添加物イオンとして100keVボロンイオンを20℃
の温度と−70℃の温度とで1×1013個注入し、その
後、850℃の温度で20分アニールしたときの半導体
基板の断面の模式図であり、図の上下方向が半導体基板
の厚さ方向である。図7に示す様に、照射欠陥として発
生する転位ループの大きさ及びその存在領域の幅Wはイ
オン注入温度に依って異なる。図8は種々異なる温度で
上記と同じ条件でイオン注入し、アニールしたときの照
射欠陥の存在領域の幅(図1のW)を測定した結果であ
る。縦軸は幅W、横軸はイオン注入温度Tである。これ
らの図からわかるように、照射欠陥は注入温度が低温に
なるほど微小化し、かつ、その存在領域が局在化するた
めアニールによる除去が容易となる。照射欠陥の生成は
点欠陥(原子1個サイズの欠陥で、はじき出された原子
とその跡の空孔を意味する)の挙動に依存するので、ボ
ロン以外の添加物イオンを注入した場合、または、注入
イオンのエネルギーを変化させた場合も同様の結果が得
られる。First, the operation of the invention according to claim 1 or 5 will be described. FIG. 7 shows 100 keV boron ions at 20 ° C. as additive ions on a silicon substrate which is a semiconductor substrate.
Is a schematic view of a cross section of a semiconductor substrate when 1 × 10 13 pieces are implanted at a temperature of −70 ° C. and then annealed at a temperature of 850 ° C. for 20 minutes, and the vertical direction in the figure is the thickness of the semiconductor substrate. Direction. As shown in FIG. 7, the size of the dislocation loop generated as an irradiation defect and the width W of the existing region thereof differ depending on the ion implantation temperature. FIG. 8 shows the results of measuring the width (W in FIG. 1) of the irradiation defect existing region when the ion implantation is performed under the same conditions as above at various temperatures. The vertical axis represents the width W and the horizontal axis represents the ion implantation temperature T. As can be seen from these figures, irradiation defects become finer as the implantation temperature becomes lower, and their existing regions are localized, so that they can be easily removed by annealing. Since the generation of irradiation defects depends on the behavior of point defects (a defect of one atom size, which means ejected atoms and vacancies in the trace thereof), when an additive ion other than boron is implanted, or Similar results are obtained when the energy of the implanted ions is changed.
【0013】図8の結果から、シリコンの場合、イオン
注入温度を−20℃以下にすると、欠陥の存在領域幅W
が顕著に減少することがわかる。この−20℃なる温度
はシリコンの融点(絶対温度)の15%に相当する温度
である。シリコン以外の半導体の場合でも、照射欠陥の
生成量はイオン注入温度に依存し、イオン注入時の温度
を半導体の融点(絶対温度)の15%に相当する温度以
下とすることにより、照射欠陥の存在領域幅を低減でき
る。From the results of FIG. 8, in the case of silicon, when the ion implantation temperature is -20 ° C. or less, the defect existing region width W
It can be seen that is significantly reduced. The temperature of −20 ° C. corresponds to 15% of the melting point (absolute temperature) of silicon. Even in the case of semiconductors other than silicon, the generation amount of irradiation defects depends on the ion implantation temperature, and by setting the temperature at the time of ion implantation to a temperature equal to or lower than 15% of the melting point (absolute temperature) of the semiconductor, the irradiation defects The width of the existing region can be reduced.
【0014】以上のように、イオン注入時に半導体基板
の温度を、半導体の融点(絶対温度で表わされた)の1
5%に相当する温度以下にするならば、先述の従来技術
の如くイオン注入時に半導体基板を液体窒素の温度まで
冷却しなくても、照射欠陥の発生量および発生域を抑制
することができ、従って、その除去はアニールによって
容易になし得る。As described above, the temperature of the semiconductor substrate at the time of ion implantation is 1 of the melting point (expressed in absolute temperature) of the semiconductor.
If the temperature is equal to or lower than 5%, it is possible to suppress the generation amount and generation region of irradiation defects without cooling the semiconductor substrate to the temperature of liquid nitrogen at the time of ion implantation as in the prior art described above. Therefore, the removal can be easily performed by annealing.
【0015】しかし、イオン注入時の半導体基板温度に
バラツキがあると、アニール条件によっては照射欠陥が
除去できずに残存する場合がある。そこで、本発明で
は、イオン注入時の半導体基板温度を、液体窒素の温度
よりは高くかつ半導体の融点(絶対温度)の15%に相
当する温度以下の範囲で一定に制御する。However, if the temperature of the semiconductor substrate at the time of ion implantation varies, the irradiation defect may remain without being removed depending on the annealing conditions. Therefore, in the present invention, the temperature of the semiconductor substrate at the time of ion implantation is controlled to be constant within a range higher than the temperature of liquid nitrogen and equal to or lower than 15% of the melting point (absolute temperature) of the semiconductor.
【0016】次に、請求項2,3,6又は7に記載の発
明に関して作用を説明する。半導体をイオン注入により
非晶質化するためには、ある注入量以上のイオン注入が
必要となる。この必要注入量の下限値を非晶質化の臨界
線量という。非晶質化した領域と結晶領域の界面には照
射欠陥が形成されるが、この欠陥量は注入したイオン数
に依存する。依って、本発明では、半導体の自己イオン
(半導体と同じ物質のイオン)をそれのみでは上記臨界
線量に達しない程度に注入した後、添加物イオン注入
し、その両者の注入量の合計を上記臨界線量に達せし
め、このとき始めて非晶質化が生じるようにする。すな
わち、従来技術においては自己イオン注入のみでイオン
注入量を非晶質化の臨界線量に達せしめて非晶質化して
いたのに対し、本発明では、自己イオンの注入を先に行
い、その後に添加物イオンを注入し、その両者の注入合
計量が非晶質化の臨界線量に達したときに始めて非晶質
化が起る様にするのである。これにより、自己イオンの
みで予め非晶質化する従来技術よりも照射欠陥の発生を
低減することができ、従ってアニールによる除去が容易
になる。Next, the operation of the invention according to claim 2, 3, 6 or 7 will be described. In order to amorphize a semiconductor by ion implantation, a certain amount of ion implantation or more is required. The lower limit of this required injection amount is called the critical dose for amorphization. Irradiation defects are formed at the interface between the amorphized region and the crystalline region, and the amount of this defect depends on the number of implanted ions. Therefore, in the present invention, after the self-ion of the semiconductor (ion of the same substance as the semiconductor) is injected to such an extent that the critical dose is not reached by itself, the additive ion is injected, and the total of the injection amounts of both is The critical dose is reached so that amorphization occurs only at this time. That is, in the prior art, the amount of ion implantation was made amorphous by reaching the critical dose for amorphization by only self-ion implantation, whereas in the present invention, self-ion implantation is performed first and then The additive ions are implanted into the amorphous silicon, and the amorphization occurs only when the total dose of the two ions reaches the critical dose for the amorphization. As a result, it is possible to reduce the occurrence of irradiation defects as compared with the conventional technique in which amorphization is performed only with self-ions in advance, and therefore removal by annealing becomes easier.
【0017】この場合、自己イオン注入時および添加物
イオン注入時の半導体基板温度を前述と同様に液体窒素
の温度より高くかつ半導体の融点の15%の温度以下の
範囲の温度に制御すれば、前記非晶質化の臨界線量が低
減し、より有効に照射欠陥の発生量および発生領域を小
さくできる。In this case, if the temperature of the semiconductor substrate at the time of self-ion implantation and at the time of additive ion implantation is controlled to be higher than the temperature of liquid nitrogen and not higher than 15% of the melting point of the semiconductor as described above, The critical dose for the amorphization is reduced, and the generation amount and generation region of irradiation defects can be reduced more effectively.
【0018】請求項4または8に記載の発明において
も、ミキシング用イオン照射時の半導体基板温度を、そ
の規定する温度に制御することによって、照射欠陥の生
成が少くなるので、その除去が容易になる。Also in the invention described in claim 4 or 8, by controlling the temperature of the semiconductor substrate at the time of irradiation of the mixing ions to a temperature regulated by the irradiation, the generation of irradiation defects is reduced, so that the removal thereof can be easily performed. Become.
【0019】[0019]
【実施例】半導体基板に添加物イオンを注入する一実施
例を図1により説明する。添加物はイオン源1によって
イオン化され、添加物イオン2となって引出電極3によ
って前方に引き出され、分析マグネット4によって不純
物を取り除かれ、加速管5によって加速される。加速さ
れたイオン2は、四重極レンズ6で収束され、偏向レン
ズ7によって縦横に走査される。この走査されたイオン
は半導体基板8中に注入される。半導体基板8上にはフ
ォトマスク9が被せられており、任意所定領域のみへの
注入が可能となる。半導体基板8はステージ10に複数
個固定されている。以上の装置は真空容器11内にあ
り、この容器11内は真空ポンプ12によって排気され
る。均一にイオン注入をするため、ステージ10は歯車
131,132を介して回転駆動モータ13で回転され
る。111はステージ10を軸支するために容器12に
設けられたシール軸受である。ステージ10は、それに
内蔵された電子冷却装置(例えばペルチエ効果を利用し
たもの)14により冷却され、半導体基板8を冷却す
る。この冷却作用により、イオン注入時の半導体基板温
度が、半導体の融点(絶対温度)の15%に相当する温
度以下でかつ液体窒素の温度よりは高い一定温度になる
ように制御する。そのため、イオン注入時の半導体基板
8の温度を基板8に設けられた熱電対15で測定し、熱
電対15からの信号を信号処理装置16に送り、基板8
の温度が上記の一定温度からずれた場合、信号処理装置
16は電子冷却装置14用の電源17の出力を調整して
基板8の温度を上記の一定温度に制御する。電子冷却装
置14の代りに冷凍サイクルの冷媒蒸発器をステージ1
0内に設けて冷却をしてもよい。EXAMPLE An example of implanting additive ions into a semiconductor substrate will be described with reference to FIG. The additive is ionized by the ion source 1, becomes the additive ion 2, is extracted forward by the extraction electrode 3, the impurities are removed by the analysis magnet 4, and is accelerated by the acceleration tube 5. The accelerated ions 2 are converged by the quadrupole lens 6 and scanned vertically and horizontally by the deflection lens 7. The scanned ions are implanted into the semiconductor substrate 8. The semiconductor substrate 8 is covered with a photomask 9 so that it can be implanted only in an arbitrary predetermined region. A plurality of semiconductor substrates 8 are fixed to the stage 10. The above apparatus is in a vacuum container 11, and the inside of this container 11 is exhausted by a vacuum pump 12. In order to perform uniform ion implantation, the stage 10 is rotated by the rotary drive motor 13 via the gears 131 and 132. Reference numeral 111 denotes a seal bearing provided on the container 12 to support the stage 10 axially. The stage 10 is cooled by an electronic cooling device (for example, one utilizing the Peltier effect) 14 built in the stage 10 to cool the semiconductor substrate 8. By this cooling action, the temperature of the semiconductor substrate at the time of ion implantation is controlled to be a constant temperature equal to or lower than the temperature corresponding to 15% of the melting point (absolute temperature) of the semiconductor and higher than the temperature of liquid nitrogen. Therefore, the temperature of the semiconductor substrate 8 at the time of ion implantation is measured by the thermocouple 15 provided on the substrate 8, the signal from the thermocouple 15 is sent to the signal processing device 16, and the substrate 8
When the temperature of 1 is deviated from the above constant temperature, the signal processing device 16 adjusts the output of the power supply 17 for the electronic cooling device 14 to control the temperature of the substrate 8 to the above constant temperature. Instead of the electronic cooling device 14, a refrigerating cycle refrigerant evaporator is used as stage 1.
It may be provided in 0 for cooling.
【0020】図2は、半導体基板に添加物イオンを注入
する注入装置の他の実施例の概略図である。図1の各部
と対応する部分は同じ符号で表わし、これらの部分の構
造、作用について重複した説明は省略する。本実施例に
おいては半導体基板8を支持しているステージ10はそ
の内部に導入されている液体窒素18によって冷却さ
れ、半導体基板8を冷却する。半導体基板8には図1と
同様に添加物イオン2が注入される。このイオン注入
時、半導体基板8の温度が図1の実施例の場合と同じ一
定温度になるように制御する。そのためには、本実施例
では、イオン注入時の基板8の温度は基板8に設けられ
た熱電対15で測定され、熱電対15からの信号は信号
処理装置16に送られ、基板8の温度が上記一定温度か
らずれた場合には、信号処理装置16は半導体基板8に
対向設置されたヒータ20の電源19の出力を調整しヒ
ータ20の発熱量を調整することによって半導体基板1
8の温度を上記一定温度に制御する。FIG. 2 is a schematic view of another embodiment of an implanter for implanting additive ions into a semiconductor substrate. Portions corresponding to the respective portions in FIG. 1 are denoted by the same reference numerals, and duplicated description of the structure and operation of these portions will be omitted. In this embodiment, the stage 10 supporting the semiconductor substrate 8 is cooled by the liquid nitrogen 18 introduced into the stage 10 to cool the semiconductor substrate 8. The additive ions 2 are implanted into the semiconductor substrate 8 as in FIG. At the time of this ion implantation, the temperature of the semiconductor substrate 8 is controlled to be the same constant temperature as in the embodiment of FIG. For that purpose, in the present embodiment, the temperature of the substrate 8 at the time of ion implantation is measured by the thermocouple 15 provided on the substrate 8, the signal from the thermocouple 15 is sent to the signal processing device 16, and the temperature of the substrate 8 is measured. Is deviated from the above constant temperature, the signal processing device 16 adjusts the output of the power source 19 of the heater 20 installed facing the semiconductor substrate 8 to adjust the heat generation amount of the heater 20.
The temperature of 8 is controlled to the above constant temperature.
【0021】図3は、自己イオン(半導体と同じ物質の
イオン)と添加物イオンとの注入により半導体を非晶質
化させて半導体素子を製造する実施例の概略図であり、
図3において、図1の各部と同様の部分は同じ符号で示
し、これらの部分の構造、作用について重複した説明は
省略する。本実施例においては、自己イオン注入用の加
速器22を用いて半導体基板8に自己イオンを注入す
る。その後、添加物イオン注入用の加速器23を用いて
添加物イオンを半導体基板8に注入し、注入領域を非晶
質化する。イオン注入中の基板8の温度は図1の実施例
の場合と同様とし、その温度制御の仕方も図1の場合と
同様である。上記自己イオンの注入および添加物イオン
の注入は、それら両者の注入量の合計によって、始めて
先述の非晶質化の臨界線量が達成され、その時に始めて
非晶質化が起る様になされる。図9は、本実施例に関
し、半導体基板がシリコンである場合に、自己イオンと
してシリコンイオンを、また添加物イオンとしてボロン
イオンを注入し、両者の注入量の合計を臨界線量と等し
くするための両者の注入量の相関を示す図であり、縦軸
がシリコンイオンの注入量、横軸がボロンイオンの注入
量であり、線Lは両者の注入量の合計が臨界線量に等し
くなる様な線を示している。FIG. 3 is a schematic view of an embodiment in which a semiconductor device is manufactured by amorphizing the semiconductor by implanting self ions (ions of the same substance as the semiconductor) and additive ions.
In FIG. 3, parts similar to those of FIG. 1 are denoted by the same reference numerals, and duplicated description of the structure and operation of these parts will be omitted. In this embodiment, the self-ion implantation is performed on the semiconductor substrate 8 using the self-ion implantation accelerator 22. After that, the additive ions are implanted into the semiconductor substrate 8 by using the accelerator for implanting the additive ions 23 to make the implanted region amorphous. The temperature of the substrate 8 during ion implantation is the same as in the embodiment of FIG. 1, and the temperature control method is also the same as in the case of FIG. The above-mentioned self-ion implantation and additive-ion implantation are performed such that the critical dose for amorphization described above is achieved for the first time by the sum of the injection amounts of both, and at that time, amorphization occurs for the first time. . FIG. 9 relates to the present embodiment, and in the case where the semiconductor substrate is silicon, silicon ions are implanted as self ions and boron ions are implanted as additive ions so that the sum of the implantation doses of both is made equal to the critical dose. It is a figure which shows the correlation of the implantation amount of both, the vertical axis is the implantation amount of silicon ions, the horizontal axis is the implantation amount of boron ions, and the line L is a line where the total of the implantation amounts of both is equal to the critical dose. Is shown.
【0022】図4はミキシング法により半導体基板に電
極を形成する実施例の概略図である。ステージ10に固
定された半導体基板8に蒸着源24より蒸発された電極
用の金属を蒸着する。この場合、基板8にはマスク9を
被せてあり所要領域のみに蒸着が行なえる。均一に金属
膜を蒸着させるためにステージ10を回転させることに
よって基板8を回転させる。蒸着膜厚は、基板8上に設
置された水晶発振器25を用いて制御する。すなわち、
基板8に蒸着された膜厚によって該水晶発振器25の周
波数が変化するので、その周波数から蒸着膜厚が測定で
き、これに基づいて蒸着膜厚が所定になるように制御す
る。このようにして電極用金属を所定の膜厚になる様に
蒸着した後、蒸着領域にイオン加速器26を用いて半導
体の自己イオンを照射することによって、前記の蒸着さ
れた電極用金属と半導体基板8のミキシングを行ない化
合物を形成する。ミキシング時には、基板8の温度は図
1の実施例の場合と同じ温度に且つ同じ制御の仕方で制
御される。FIG. 4 is a schematic view of an embodiment in which electrodes are formed on a semiconductor substrate by a mixing method. The metal for the electrode evaporated from the evaporation source 24 is vapor-deposited on the semiconductor substrate 8 fixed to the stage 10. In this case, the substrate 8 is covered with the mask 9 so that vapor deposition can be performed only in a required region. The substrate 8 is rotated by rotating the stage 10 in order to uniformly deposit the metal film. The vapor deposition film thickness is controlled by using the crystal oscillator 25 installed on the substrate 8. That is,
Since the frequency of the crystal oscillator 25 changes depending on the film thickness deposited on the substrate 8, the deposited film thickness can be measured from the frequency, and the deposited film thickness is controlled based on this. In this way, the electrode metal is vapor-deposited so as to have a predetermined film thickness, and the vapor deposition region is irradiated with the self-ions of the semiconductor by using the ion accelerator 26, whereby the vapor-deposited electrode metal and the semiconductor substrate are deposited. 8 is mixed to form a compound. During mixing, the temperature of the substrate 8 is controlled to the same temperature and in the same control manner as in the embodiment of FIG.
【0023】なお、図3、図4に示した実施例において
も、図2に示した実施例と同様な手段で半導体基板の冷
却および温度制御をする如く構成してもよい。In the embodiment shown in FIGS. 3 and 4, the semiconductor substrate may be cooled and the temperature may be controlled by the same means as in the embodiment shown in FIG.
【0024】次に、本発明を利用して、N型シリコン基
板8中にPNP接合を形成し、電極を取付けるまでの製
造プロセスの1例を図5で説明する。まず、フォトマス
ク9を被せたN型シリコン基板8を冷却して−30℃に
する。この基板温度は、イオン注入中一定になるように
する。この様に基板8を冷却しながら、ボロンイオン2
7を1×1013個注入する。ボロンイオン27の注入
後、マスク9を除去し、次に、電極設置部以外に新たな
マスク9’を被せ、電極用金属としてモリブデン28を
電極設置部に0.5μm蒸着する。その後、600ke
Vシリコンイオン29を1×1013個照射し、モリブデ
ン28とシリコン基板8をミキシングして両者の界面に
モリブデンシリサイド31を形成する。このようにして
エミッタ32、コレクタ33、ベース34部の電極を形
成する。電極形成後、マスク9’を取り除き、850℃
で1時間アニールし、モリブデンシリサイド31の領域
を安定させ、かつ照射欠陥を除去する。Next, an example of a manufacturing process for forming a PNP junction in the N-type silicon substrate 8 and attaching electrodes by using the present invention will be described with reference to FIG. First, the N-type silicon substrate 8 covered with the photomask 9 is cooled to -30 ° C. This substrate temperature is kept constant during ion implantation. While cooling the substrate 8 in this way, boron ions 2
1 × 10 13 of 7 is injected. After the implantation of the boron ions 27, the mask 9 is removed, a new mask 9'is covered next to the portion other than the electrode mounting portion, and molybdenum 28 as an electrode metal is vapor-deposited at 0.5 μm on the electrode mounting portion. Then 600 ke
Irradiate 1 × 10 13 V silicon ions 29 to mix the molybdenum 28 and the silicon substrate 8 to form molybdenum silicide 31 at the interface between the two. In this way, the electrodes of the emitter 32, the collector 33, and the base 34 are formed. After forming the electrodes, the mask 9'is removed and the temperature is 850 ° C.
Annealing is performed for 1 hour to stabilize the region of molybdenum silicide 31 and remove irradiation defects.
【0025】本発明を利用して、N型シリコン基板8中
にPNP接合を形成し、電極を取付けるまでの製造プロ
セスの他の1例を図6で説明する。まず、フォトマスク
9を被せたシリコン基板8を冷却して−30℃にする。
この基板温度はイオン注入中一定になるようにする。こ
の様に基板8を冷却しながら、シリコンイオン29を
4.9×1015個注入し、この注入後、ボロンイオン2
7を1×1013個注入しP層30を形成する。この注入
領域30は非晶質となる。次に、マスク9を除去し、電
極設置部以外に新たなマスク9’を被せ、電極設置部に
電極用金属としてモリブデン28を0.5μm蒸着す
る。その後、600keVシリコンイオン29を1×1
013個照射し、モリブデン28とシリコン基板8をミキ
シングして両者の界面にモリブデンシリサイド31を形
成する。このようにしてエミッタ32、コレクタ33、
ベース34部の電極を形成する。電極形成後、600℃
で2時間アニールし、モリブデンシリサイド31の領域
を安定させ、かつ照射領域の再結晶化を図る。Another example of the manufacturing process for forming the PNP junction in the N-type silicon substrate 8 and mounting the electrodes using the present invention will be described with reference to FIG. First, the silicon substrate 8 covered with the photomask 9 is cooled to -30 ° C.
This substrate temperature is kept constant during ion implantation. While cooling the substrate 8 in this manner, 4.9 × 10 15 silicon ions 29 are implanted, and after this implantation, boron ions 2 are added.
1 × 10 13 of 7 is implanted to form the P layer 30. The implantation region 30 becomes amorphous. Next, the mask 9 is removed, a new mask 9'is covered over the electrode installation portion, and 0.5 μm of molybdenum 28 is vapor-deposited as an electrode metal on the electrode installation portion. After that, 600 keV silicon ion 29 is added to 1 × 1.
Irradiating 0 13 pieces, the molybdenum 28 and the silicon substrate 8 are mixed to form molybdenum silicide 31 at the interface between the two. In this way, the emitter 32, the collector 33,
The electrodes of the base 34 are formed. 600 ° C after electrode formation
Is annealed for 2 hours to stabilize the region of molybdenum silicide 31 and to recrystallize the irradiated region.
【0026】[0026]
【発明の効果】本発明によれば、半導体基板への添加物
イオン注入をする場合に、イオン注入によって形成され
る照射欠陥が低減されるので、その除去が容易になる。
その結果、アニール時の添加物の拡散の抑制、半導体デ
バイスの高集積化を図ることが可能になる。また、半導
体基板を液体窒素やヘリウムの温度まで冷却する必要が
なく、半導体素子の製造が安価で且つ容易になる。According to the present invention, when an additive ion is implanted into a semiconductor substrate, irradiation defects formed by the ion implantation are reduced, so that the defect can be easily removed.
As a result, it is possible to suppress the diffusion of the additive during annealing and achieve high integration of the semiconductor device. Further, since it is not necessary to cool the semiconductor substrate to the temperature of liquid nitrogen or helium, the semiconductor element can be manufactured inexpensively and easily.
【0027】また、電極をイオンビームミキシング法を
用いて半導体基板に形成する場合も、上記イオン注入の
場合と同様に照射欠陥が低減され、その除去が容易にな
る。Also, when the electrodes are formed on the semiconductor substrate by using the ion beam mixing method, irradiation defects are reduced and removal thereof is facilitated as in the case of the above-mentioned ion implantation.
【図1】本発明により添加物イオンを注入する実施例を
示す図。FIG. 1 is a diagram showing an example of implanting additive ions according to the present invention.
【図2】本発明により添加物イオンを注入する他の実施
例を示す図。FIG. 2 is a diagram showing another embodiment of implanting additive ions according to the present invention.
【図3】本発明により、自己イオン注入後、添加物イオ
ンを注入する実施例を示す図。FIG. 3 is a diagram showing an example of implanting additive ions after self-ion implantation according to the present invention.
【図4】本発明により半導体基板に電極を形成する実施
例を示す図。FIG. 4 is a diagram showing an example of forming electrodes on a semiconductor substrate according to the present invention.
【図5】本発明を利用した低温イオン注入によるPNP
接合製造プロセスを示す図。FIG. 5: PNP by low temperature ion implantation using the present invention
The figure which shows a joining manufacturing process.
【図6】本発明を利用した非晶質化プロセスによるPN
P接合製造プロセスを示す図。FIG. 6 is a PN formed by an amorphization process utilizing the present invention.
The figure which shows a P junction manufacturing process.
【図7】二つの異なる温度でイオン注入後アニールした
場合の半導体基板の模式的断面図。FIG. 7 is a schematic cross-sectional view of a semiconductor substrate when annealed after ion implantation at two different temperatures.
【図8】アニール後シリコン基板中に残存する欠陥領域
の幅のイオン注入温度依存性を示す実験グラフの図。FIG. 8 is a diagram of an experimental graph showing the ion implantation temperature dependence of the width of the defect region remaining in the silicon substrate after annealing.
【図9】シリコンにシリコンイオンとボロンイオンを注
入し、両者の注入量の合計を臨界線量とする際の注入量
の相関を示す図。FIG. 9 is a diagram showing a correlation between implantation amounts when implanting silicon ions and boron ions into silicon and setting the sum of the implantation amounts of both ions as a critical dose.
1…イオン源 2…添加物イオン 3…引出電極 4…分析マグネッ
ト 5…加速管 6…四重極レンズ 7…偏向レンズ 8…半導体基板 9…フォトマスク 10…ステージ 11…真空容器 12…真空ポンプ 13…回転駆動モータ 14…電子冷却装
置 15…熱電対 16…信号処理装
置 17…電子冷却用電源 18…液体窒素 19…ヒータ用電源 20…ヒータ 22…自己イオン注入用加速器 23…添加物イオ
ン注入用加速器 24…蒸着源 25…水晶発振器 26…ミキシングイオン用加速器 27…ボロンイオ
ン 28…モリブデン 29…シリコンイ
オン 30…P層 31…モリブデン
シリサイド 32…エミッタ 33…コレクタ 34…ベースDESCRIPTION OF SYMBOLS 1 ... Ion source 2 ... Additive ion 3 ... Extraction electrode 4 ... Analysis magnet 5 ... Accelerating tube 6 ... Quadrupole lens 7 ... Deflection lens 8 ... Semiconductor substrate 9 ... Photomask 10 ... Stage 11 ... Vacuum container 12 ... Vacuum pump 13 ... Rotation drive motor 14 ... Electronic cooling device 15 ... Thermocouple 16 ... Signal processing device 17 ... Electronic cooling power supply 18 ... Liquid nitrogen 19 ... Heater power supply 20 ... Heater 22 ... Self-ion implantation accelerator 23 ... Additive ion implantation Accelerator 24 ... Evaporation source 25 ... Crystal oscillator 26 ... Mixing ion accelerator 27 ... Boron ion 28 ... Molybdenum 29 ... Silicon ion 30 ... P layer 31 ... Molybdenum silicide 32 ... Emitter 33 ... Collector 34 ... Base
───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本素行 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 大和田 伸朗 東京都青梅市今井2326 株式会社日立製作 所デバイス開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motoyuki Hashimoto 1168 Moriyama-cho, Hitachi-shi, Ibaraki Inside the Institute for Energy Research, Nitrate Works (72) Inventor Shinro Owada 2326 Imai, Ome-shi, Tokyo Hitachi, Ltd. Device Development In the center
Claims (9)
れた半導体の融点の15%に相当する温度以下で且つ液
体窒素の温度よりは高い温度範囲内の一定温度に制御し
ながら、添加物イオンを半導体基板に注入することを特
徴とする半導体基板への添加物イオン注入方法。1. Addition while controlling the temperature of the semiconductor substrate to a constant temperature within a temperature range equal to or lower than 15% of the melting point of the semiconductor expressed in absolute temperature and higher than the temperature of liquid nitrogen. A method of implanting an additive ion into a semiconductor substrate, which comprises implanting a product ion into a semiconductor substrate.
導体の非晶質化の臨界線量に達しない程度に注入した後
に、添加物イオンを注入し、これら両者のイオンの注入
量の合計を上記臨界線量に達せしめることによって半導
体基板のイオン注入領域を非晶質化することを特徴とす
る半導体基板への添加物イオン注入方法。2. A semiconductor substrate is implanted with self-ions of a semiconductor to such an extent that the critical dose for amorphization of the semiconductor is not reached, and then additive ions are implanted. A method for implanting an additive ion into a semiconductor substrate, which comprises amorphizing an ion-implanted region of the semiconductor substrate by reaching a critical dose.
オン注入方法であって、半導体基板の温度を、絶対温度
で表わされた半導体の融点の15%に相当する温度以下
で且つ液体窒素の温度よりは高い温度範囲内の一定温度
に制御しながら、自己イオンおよび添加物イオンの注入
を行うことを特徴とするもの。3. The method of implanting additive ions into a semiconductor substrate according to claim 2, wherein the temperature of the semiconductor substrate is equal to or lower than a temperature corresponding to 15% of the melting point of the semiconductor expressed in absolute temperature, and the liquid. The method is characterized in that the self-ions and the additive ions are implanted while controlling the temperature to be a constant temperature higher than the temperature of nitrogen.
に、半導体基板の温度を、絶対温度で表わされた半導体
の融点の15%に相当する温度以下で且つ液体窒素の温
度よりは高い温度範囲内の一定温度に制御しながらミキ
シング用イオンを照射してミキシングを行うことを特徴
とする半導体基板の電極形成方法。4. After depositing the electrode metal on the semiconductor substrate, the temperature of the semiconductor substrate is not higher than the temperature corresponding to 15% of the melting point of the semiconductor expressed in absolute temperature and higher than the temperature of liquid nitrogen. A method for forming an electrode on a semiconductor substrate, which comprises irradiating mixing ions and performing mixing while controlling the temperature to a constant temperature within a temperature range.
体基板に添加物イオンを照射するイオン加速器と、これ
らを収容した真空容器と、半導体基板を冷却するために
前記支持装置に設けられた冷却装置と、半導体基板の温
度を測定する温度測定装置と、添加物イオン注入時に前
記温度測定装置の測定結果に基づいて半導体基板の温度
を液体窒素の温度よりは高く且つ絶対温度で表わされた
半導体の融点の15%に相当する温度以下の温度範囲内
の一定温度に保つ様に前記冷却装置を制御する制御装置
と、を備えたことを特徴とする半導体基板への添加物イ
オン注入装置。5. A supporting device for supporting the semiconductor substrate, an ion accelerator for irradiating the semiconductor substrate with additive ions, a vacuum container accommodating these, and a cooling provided in the supporting device for cooling the semiconductor substrate. A device, a temperature measuring device for measuring the temperature of the semiconductor substrate, and a temperature of the semiconductor substrate higher than the temperature of liquid nitrogen and expressed as an absolute temperature based on the measurement result of the temperature measuring device at the time of the additive ion implantation. An additive ion implantation device for a semiconductor substrate, comprising: a controller for controlling the cooling device so as to maintain a constant temperature within a temperature range equal to or lower than 15% of a melting point of the semiconductor.
体基板に半導体の自己イオンを照射するイオン加速器
と、半導体基板に添加物イオンを照射するイオン加速器
と、これらを収容した真空容器と、を備えたことを特徴
とする半導体への添加物イオン注入装置。6. A support device for supporting the semiconductor substrate, an ion accelerator for irradiating the semiconductor substrate with semiconductor self ions, an ion accelerator for irradiating the semiconductor substrate with additive ions, and a vacuum container accommodating these. An additive ion implanter for a semiconductor, which is characterized by being provided.
置に設けられた冷却装置と、半導体基板の温度を測定す
る温度測定装置と、自己イオンおよび添加物イオン注入
時に前記温度測定装置の測定結果に基づいて半導体基板
の温度を液体窒素の温度よりは高く且つ絶対温度で表わ
された半導体の融点の15%に相当する温度以下の温度
範囲内の一定温度に保つ様に前記冷却装置を制御する制
御装置と、を備えたことを特徴とする請求項6記載の半
導体基板への添加物イオン注入装置。7. A cooling device provided in the supporting device for cooling the semiconductor substrate, a temperature measuring device for measuring the temperature of the semiconductor substrate, and a measurement result of the temperature measuring device during self-ion and additive ion implantation. The cooling device is controlled so as to keep the temperature of the semiconductor substrate higher than the temperature of liquid nitrogen and within a temperature range equal to or lower than the temperature corresponding to 15% of the melting point of the semiconductor expressed in absolute temperature. 7. A device for implanting an additive ion to a semiconductor substrate according to claim 6, further comprising:
体基板に電極用金属を蒸着させる蒸着装置と、半導体基
板にミキシング用イオンを照射するイオン加速器と、こ
れらを収容した真空容器と、半導体基板を冷却するため
に前記支持装置に設けられた冷却装置と、半導体基板の
温度を測定する温度測定装置と、ミキシング用イオン注
入時に前記温度測定装置の測定結果に基づいて半導体基
板の温度を液体窒素の温度よりは高く且つ絶対温度で表
わされた半導体の融点の15%に相当する温度以下の温
度範囲内の一定温度に保つ様に前記冷却装置を制御する
制御装置と、を備えたことを特徴とする半導体基板の電
極形成装置。8. A support device for supporting a semiconductor substrate, a vapor deposition device for vapor-depositing a metal for an electrode on the semiconductor substrate, an ion accelerator for irradiating the semiconductor substrate with mixing ions, a vacuum container accommodating these, and a semiconductor substrate. A cooling device provided in the supporting device for cooling the temperature of the semiconductor substrate, a temperature measuring device for measuring the temperature of the semiconductor substrate, and the temperature of the semiconductor substrate based on the measurement result of the temperature measuring device at the time of ion implantation for mixing. Control device for controlling the cooling device so that the cooling device is maintained at a constant temperature within a temperature range which is higher than the temperature of 15% and which corresponds to 15% of the melting point of the semiconductor expressed in absolute temperature. An electrode forming device for a characteristic semiconductor substrate.
物イオン注入装置、あるいは請求項8記載の半導体基板
の電極形成装置であって、前記冷却装置を液体窒素を用
いた冷却装置とし、該冷却装置の他に更に半導体基板加
熱装置を備え、前記制御装置が、前記冷却装置の代りに
前記半導体加熱装置を制御することにより、半導体基板
の温度を前記一定の温度に保つ様にしたもの。9. An apparatus for implanting additive ions to a semiconductor according to claim 5 or 7, or an apparatus for forming electrodes on a semiconductor substrate according to claim 8, wherein the cooling device is a cooling device using liquid nitrogen. A semiconductor substrate heating device is further provided in addition to the cooling device, and the control device controls the semiconductor heating device instead of the cooling device so that the temperature of the semiconductor substrate is maintained at the constant temperature. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04189668A JP3100230B2 (en) | 1992-07-16 | 1992-07-16 | Method for implanting additive ions into semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04189668A JP3100230B2 (en) | 1992-07-16 | 1992-07-16 | Method for implanting additive ions into semiconductor substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0637030A true JPH0637030A (en) | 1994-02-10 |
JP3100230B2 JP3100230B2 (en) | 2000-10-16 |
Family
ID=16245181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04189668A Expired - Fee Related JP3100230B2 (en) | 1992-07-16 | 1992-07-16 | Method for implanting additive ions into semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3100230B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07111251A (en) * | 1993-10-12 | 1995-04-25 | Nippondenso Co Ltd | Method of activating impurities |
JP2004103763A (en) * | 2002-09-09 | 2004-04-02 | Fuji Electric Device Technology Co Ltd | Method for manufacturing semiconductor device |
WO2005027208A1 (en) * | 2003-09-12 | 2005-03-24 | Matsushita Electric Industrial Co., Ltd. | Method of controlling impurity doping and impurity doping apparatus |
CN102203913A (en) * | 2008-10-02 | 2011-09-28 | 瓦里安半导体设备公司 | Thermal modulation of implant process |
WO2022164447A1 (en) * | 2021-01-29 | 2022-08-04 | Applied Materials, Inc. | Cathode drive unit, deposition system, method of operating a deposition system and method of manufacturing a coated substrate |
-
1992
- 1992-07-16 JP JP04189668A patent/JP3100230B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07111251A (en) * | 1993-10-12 | 1995-04-25 | Nippondenso Co Ltd | Method of activating impurities |
JP2004103763A (en) * | 2002-09-09 | 2004-04-02 | Fuji Electric Device Technology Co Ltd | Method for manufacturing semiconductor device |
WO2005027208A1 (en) * | 2003-09-12 | 2005-03-24 | Matsushita Electric Industrial Co., Ltd. | Method of controlling impurity doping and impurity doping apparatus |
US7666770B2 (en) | 2003-09-12 | 2010-02-23 | Panasonic Corporation | Method of controlling impurity doping and impurity doping apparatus |
CN102203913A (en) * | 2008-10-02 | 2011-09-28 | 瓦里安半导体设备公司 | Thermal modulation of implant process |
JP2012506132A (en) * | 2008-10-02 | 2012-03-08 | ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド | Temperature control method for embedding process |
WO2022164447A1 (en) * | 2021-01-29 | 2022-08-04 | Applied Materials, Inc. | Cathode drive unit, deposition system, method of operating a deposition system and method of manufacturing a coated substrate |
Also Published As
Publication number | Publication date |
---|---|
JP3100230B2 (en) | 2000-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080108208A1 (en) | Techniques for forming shallow junctions | |
US20080090392A1 (en) | Technique for Improved Damage Control in a Plasma Doping (PLAD) Ion Implantation | |
KR20110082007A (en) | Defect-free junction formation using octadecaborane self-amorphizing implants | |
CN107039251B (en) | DC ion implantation for solid phase epitaxial regrowth in solar cell fabrication | |
Hart et al. | Rapid thermal processing in semiconductor technology | |
US20020187614A1 (en) | Methods for forming ultrashallow junctions with low sheet resistance | |
US7105427B1 (en) | Method for shallow dopant distribution | |
US3953243A (en) | Method for setting the lifetime of charge carriers in semiconductor bodies | |
JPH0637030A (en) | Method and apparatus for additive ion implantation and electrode formation in semiconductor substrate | |
JPH03108716A (en) | Heat treating method for semiconductor integrated circuit device | |
US6835626B2 (en) | Method to overcome instability of ultra-shallow semiconductor junctions | |
JP2000188257A (en) | Manufacture of crystalline silicon-based semiconductor thin film | |
EP0544470A1 (en) | Thin film transistor, method of fabricating the same and ion implantation method used in the fabrication | |
JPH0319218A (en) | Formation process and device of soi substrate | |
JP2985472B2 (en) | Method of forming silicon film | |
US11195732B2 (en) | Low thermal budget annealing | |
KR20110009872A (en) | Apparatus and method for converting the properties of thin film using irradiation of electron beam | |
JP3296052B2 (en) | Activation method of impurities | |
JP3291149B2 (en) | Method for producing crystalline thin film | |
Kunibe et al. | Development of ion mixing equipment for R&D use and preparation of tin films by N2 gas assisted ion beam mixing | |
JPH06151348A (en) | Manufacture of semiconductor device | |
JPH0661168A (en) | Ion implanting method and electrode forming method | |
KR200159282Y1 (en) | Ion implanter having hard bake oven | |
JP2880785B2 (en) | Method of forming silicide layer | |
JPS61163635A (en) | Semiconductor impurity doping device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070818 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080818 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080818 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090818 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |