JPH0635817B2 - Method for removing nitrogen oxides from diesel engine exhaust gas - Google Patents

Method for removing nitrogen oxides from diesel engine exhaust gas

Info

Publication number
JPH0635817B2
JPH0635817B2 JP1025209A JP2520989A JPH0635817B2 JP H0635817 B2 JPH0635817 B2 JP H0635817B2 JP 1025209 A JP1025209 A JP 1025209A JP 2520989 A JP2520989 A JP 2520989A JP H0635817 B2 JPH0635817 B2 JP H0635817B2
Authority
JP
Japan
Prior art keywords
exhaust gas
ammonia
nitrogen oxides
engine
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1025209A
Other languages
Japanese (ja)
Other versions
JPH02204614A (en
Inventor
基伸 小林
昭維 宇野
太 木下
光晴 萩
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Yanmar Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd, Yanmar Diesel Engine Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1025209A priority Critical patent/JPH0635817B2/en
Priority to KR1019900001186A priority patent/KR950012137B1/en
Priority to US07/474,274 priority patent/US5021227A/en
Priority to EP90102103A priority patent/EP0381236B2/en
Priority to DE69005322T priority patent/DE69005322T3/en
Publication of JPH02204614A publication Critical patent/JPH02204614A/en
Priority to US07/678,119 priority patent/US5116579A/en
Publication of JPH0635817B2 publication Critical patent/JPH0635817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はディーゼルエンジン排ガス中の窒素酸化物除去
方法に関するものである。詳しく述べると、ディーゼル
エンジンから排出される排ガスの性状の変動に対して、
窒素酸化物を除去できると同時に、窒素酸化物除去後の
排ガス中に含まれるアンモニアを極力制御することがで
きる窒素酸化物の除去方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for removing nitrogen oxides from a diesel engine exhaust gas. In detail, with respect to changes in the properties of the exhaust gas emitted from the diesel engine,
The present invention relates to a method for removing nitrogen oxides, which can remove nitrogen oxides and at the same time control the ammonia contained in the exhaust gas after the nitrogen oxides are removed.

(従来の技術) 従来、酸化雰囲気下における窒素酸化物除去方法として
はアンモニアを還元剤として用いる選択還元脱硝法が、
排ガス中の酸素濃度の影響を受けずに窒素酸化物とアン
モニアが選択的に反応するために、酸化雰囲気下におい
ても効果的な方法とされ、火力発電プラントのボイラ及
び加熱炉等の固定発生源の排気ガス浄化に広く適用され
てきた。
(Prior Art) Conventionally, a selective reduction denitration method using ammonia as a reducing agent has been used as a method for removing nitrogen oxides in an oxidizing atmosphere.
Since nitrogen oxides and ammonia react selectively without being affected by the oxygen concentration in the exhaust gas, it is an effective method even in an oxidizing atmosphere, and is a fixed source for boilers and heating furnaces of thermal power plants. It has been widely applied to exhaust gas purification.

一方、内燃機関からの排ガス中の窒素酸化物の低減につ
いても、アンモニア選択還元法が適用された例が種々開
示されている。例えば、エンジンの燃料調節ガバナ,給
気温度及び給気量に基づいて、排ガス中に供給されるア
ンモニア流量を制御する方法(特開昭52-48722号公報参
照)等が開示されている。
On the other hand, various examples of applying the ammonia selective reduction method have also been disclosed for reducing nitrogen oxides in exhaust gas from an internal combustion engine. For example, a method for controlling the flow rate of ammonia supplied into the exhaust gas based on the fuel control governor of the engine, the supply air temperature and the supply air amount (see Japanese Patent Application Laid-Open No. 52-48722) is disclosed.

しかし、ディーゼルエンジンの場合、ボイラーに比べて
エンジン負荷の変動が著しく、それに伴って排ガス量お
よび窒素酸化物濃度が急激に変化するために、この変化
に連動させて、過不足なくアンモニアを厳密に制御する
ことは、前記の従来の技術では十分といえず、それ故排
ガス中の窒素酸化物を高い効率で除去すると同時に、排
出アンモニアを極力制御するという点において問題が残
されているといえる。
However, in the case of a diesel engine, the engine load fluctuates significantly compared to a boiler, and the exhaust gas amount and nitrogen oxide concentration change rapidly with it. Controlling cannot be said to be sufficient with the above-mentioned conventional techniques, and therefore, it can be said that there remains a problem in that nitrogen oxides in exhaust gas are removed with high efficiency and, at the same time, exhaust ammonia is controlled as much as possible.

(発明が解決しようとする問題点) 本発明の目的はディーゼルエンジン排ガス中の窒素酸化
物をアンモニアの存在下で触媒と接触させて、排ガス性
状の急激な変動に対しても窒素酸化物を効率良く除去で
き且つエンジン燃焼性能の変化による窒素酸化物量の変
化にも対応できると同時に窒素酸化物除去後に含まれる
アンモニアを極力制御する窒素酸化物除去方法を提供す
ることにある。
(Problems to be Solved by the Invention) An object of the present invention is to bring nitrogen oxides in diesel engine exhaust gas into contact with a catalyst in the presence of ammonia so that the nitrogen oxides can be efficiently treated even when the exhaust gas properties change rapidly. It is an object of the present invention to provide a nitrogen oxide removing method which can remove well and can cope with a change in the amount of nitrogen oxide due to a change in engine combustion performance, and at the same time, control the ammonia contained after removing the nitrogen oxide as much as possible.

(問題点を解決するための手段) 本発明は上記目的の達成のため、第一発明では、 ディーゼルエンジン排ガス中の窒素酸化物をアンモニア
の存在下に触媒を用いて還元除去するにあたり、エンジ
ン出力,排気ガス温度そして吸入空気の湿度をそれぞれ
測定し、エンジン出力及び排気ガス温度の測定値並びに
吸入空気の湿度と窒素酸化物量がほぼ比例する関係に基
づいてアンモニアを流量制御し、該排ガス中に供給する
ことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides, in the first invention, the reduction of nitrogen oxides in diesel engine exhaust gas by using a catalyst in the presence of ammonia to reduce engine output. , The exhaust gas temperature and the intake air humidity are measured, and the flow rate of ammonia is controlled based on the measured values of the engine output and the exhaust gas temperature, and the relationship between the intake air humidity and the amount of nitrogen oxides. It is characterized by supplying.

そして第二発明では、ディーゼルエンジン排ガス中の窒
素酸化物をアンモニアの存在下に触媒を用いて還元除去
するにあたり、エンジン出力,排気ガス温度,エンジン
給気温度そして吸入空気の湿度をそれぞれ測定し、エン
ジン出力及び排気ガス温度及びエンジン給気温度の測定
値並びに吸入空気の湿度と窒素酸化物量がほぼ比例する
関係に基づいてアンモニアを流量制御し、該排ガス中に
供給することを特徴とする。
And, in the second invention, in reducing and removing nitrogen oxides in diesel engine exhaust gas using a catalyst in the presence of ammonia, engine output, exhaust gas temperature, engine supply air temperature and intake air humidity are respectively measured, The flow rate of ammonia is controlled based on the measured values of the engine output, the exhaust gas temperature and the engine supply air temperature, and the relationship between the humidity of intake air and the amount of nitrogen oxides, and the ammonia is supplied into the exhaust gas.

本発明者等が検討したところによると、ディーゼルエン
ジンから排出かれる窒素酸化物の総量は第1乃至3図に
示す如く、エンジンの出力,エンジンの排気ガス温度お
よび給気温度にほぼ比例して増減するが、更に、第4図
に示す如く吸入空気の湿度にも比例してそれぞれ減少及
び増加することが知見された。
According to a study made by the present inventors, the total amount of nitrogen oxides discharged from the diesel engine increases or decreases in proportion to the engine output, the exhaust gas temperature of the engine, and the supply air temperature, as shown in FIGS. However, it was further found that the humidity decreases and increases in proportion to the humidity of the intake air as shown in FIG.

すなわち、第1図及び第2図に示す如く窒素酸化物の排
出量はエンジンの出力や排気ガス温度に比例するため
に、エンジン出力や排気ガス温度に対応してアンモニア
を供給することによりアンモニア供給量を制御すること
が可能であるが、窒素酸化物濃度は大気条件すなわちエ
ンジンの給気温度のみならず吸入空気の湿度等によって
も大きく影響を受けるために、これ等の給気温度及び吸
入空気の湿度を測定して、その測定値により、窒素酸化
物排出量をさらに補正することが重要である。
That is, as shown in FIGS. 1 and 2, the emission amount of nitrogen oxides is proportional to the output of the engine and the temperature of the exhaust gas. Therefore, ammonia is supplied in accordance with the engine output and the exhaust gas temperature. Although the amount can be controlled, the nitrogen oxide concentration is greatly affected not only by the atmospheric conditions, that is, the intake air temperature of the engine but also by the humidity of the intake air. It is important to measure the humidity of the water and to further correct the nitrogen oxide emissions by the measured value.

特に、エンジンの出力によりアンモニア供給量を制御す
る場合、エンジンや過給機の汚れで窒素酸化物排出量と
出力の相関関係が経時的に変化するために、第2図に示
す如くエンジン排気ガス温度を測定し、その測定値によ
り窒素酸化物排出量を補正することが必要である。
In particular, when the ammonia supply amount is controlled by the engine output, the correlation between the nitrogen oxide emission amount and the output changes with time due to dirt on the engine and the supercharger. It is necessary to measure the temperature and correct the nitrogen oxide emissions by the measured value.

したがって、エンジンから排出される窒素酸化物の総量
はエンジンの出力,排気ガス温度,給気温度そして吸入
空気の湿度を測定して直接に求め得た窒素酸化物総排出
量に比例してアンモニア供給量を決定する。
Therefore, the total amount of nitrogen oxides emitted from the engine is proportional to the total amount of nitrogen oxides emission that can be directly obtained by measuring the engine output, exhaust gas temperature, supply air temperature and intake air humidity. Determine the amount.

それにより、窒素酸化物の排出量および濃度が急激に変
化しても、その排出量および濃度に比例して、時間的な
遅れがなく最適量のアンモニアを正確に供給し、排ガス
中の窒素酸化物を効果的に除去できること、および窒素
酸化物除去後の排ガス中における残留アンモニアを極力
抑止できることを確認したものである。
As a result, even if the amount and concentration of nitrogen oxides change drastically, the optimum amount of ammonia can be accurately supplied with no time delay in proportion to the amount and concentration of nitrogen oxides, and It was confirmed that the substances can be effectively removed and that the residual ammonia in the exhaust gas after removing the nitrogen oxides can be suppressed as much as possible.

(作用) アンモニアの供給量が、エンジンの出力と排気ガス温度
と吸入空気の湿度とさらには給気温度の測定値に基づい
て求めた排ガス中の窒素酸化物の量および濃度に比例し
て決定されて、排ガス中における窒素酸化物の総量に対
してより正確な最適量のアンモニアが応答性良く供給さ
れ、エンジン負荷に対応して常時効率的に窒素酸化物の
除去が行なわれ且つ同除去後におけるアンモニアの残留
が極力抑止されていることになる。
(Function) The supply amount of ammonia is determined in proportion to the amount and concentration of nitrogen oxides in the exhaust gas, which is obtained based on the measured values of engine output, exhaust gas temperature, intake air humidity, and supply air temperature. As a result, a more accurate and optimum amount of ammonia is supplied with good response to the total amount of nitrogen oxides in the exhaust gas, and nitrogen oxides are constantly and efficiently removed according to the engine load, and after the removal. It means that the residual of ammonia in is suppressed as much as possible.

(実施例) 以下、本発明を詳細に説明する。(Example) Hereinafter, the present invention will be described in detail.

第5図に示しているエンジン本体(1)に備えた排ガス
浄化装置(A)は本発明の第1発明を実施するのに開発
したものを例示しており、エンジン本体(1)には出力
計(2)又は被駆動機(1a)の出力比例信号器(2a)が
設けられ、またエンジン本体(1)のマニホールド
(3)と連通状の排気管(4)には排ガス温度検出器
(5)と排気管ガスタービン(6)と反応器(7)とが
設けられている。又、排気管(4)における反応器
(7)の上流側に設置されたアンモニア注入ノズル
(8)にはアンモニア輸送管(9)が接続され、このア
ンモニア輸送管(9)にはアンモニア調整弁(10)およ
びアンモニア流量計(11)が設けられていると共にアン
モニア容器(12)が接続されている。
The exhaust gas purifying apparatus (A) provided in the engine body (1) shown in FIG. 5 exemplifies the one developed to carry out the first invention of the present invention, and the engine body (1) has an output. An exhaust gas temperature detector (2) is provided in the meter (2) or the output proportional signal device (2a) of the driven machine (1a), and an exhaust gas temperature detector (4) is connected to the manifold (3) of the engine body (1). 5), the exhaust pipe gas turbine (6) and the reactor (7) are provided. In addition, an ammonia transport pipe (9) is connected to an ammonia injection nozzle (8) installed upstream of the reactor (7) in the exhaust pipe (4), and an ammonia regulating valve is connected to this ammonia transport pipe (9). (10) and an ammonia flow meter (11) are provided, and an ammonia container (12) is connected.

そして、出力計(2)又は出力比例信号器(2a)と排ガ
ス温度検出器(5)とエンジン本体(1)の吸入空気の
湿度を測定する湿度検出器(13)は演算器(14)に連絡
され、この演算器(14)は比率設定器(15)およびアン
モニア流量制御器(16)を通じてアンモニア調整弁(1
0)と連絡している。
The output meter (2) or the output proportional signal device (2a), the exhaust gas temperature detector (5), and the humidity detector (13) for measuring the humidity of the intake air of the engine body (1) are provided in the calculator (14). This calculator (14) is connected to the ammonia adjusting valve (1) through the ratio setter (15) and the ammonia flow controller (16).
0).

すなわち、エンジン本体(1)の負荷量に応答して、エ
ンジン出力計(2)又は出力比例信号器(2a)と排ガス
温度検出器(5)と吸入空気の湿度検出器(13)からの
各信号を演算器(14)に入力する。演算器(14)におい
て、窒素酸化物の総排出量を算出し、この信号を比率設
定器(15)に入出し、比率設定器(15)で予め設定され
たアンモニア/窒素酸化物比により供給するアンモニア
量を決定する。
That is, in response to the load amount of the engine body (1), each of the engine output meter (2) or the output proportional signal (2a), the exhaust gas temperature detector (5), and the intake air humidity detector (13). The signal is input to the calculator (14). The calculator (14) calculates the total amount of nitrogen oxides emitted, and outputs this signal to and from the ratio setter (15) and supplies it at the ammonia / nitrogen oxide ratio preset by the ratio setter (15). Determine the amount of ammonia to use.

そして、該比率設定器(15)の出力はアンモニア流量信
号として、アンモニア流量制御器(16)に入力され、ア
ンモニア調整弁(10)の開閉を制御し、反応器(7)に
流れ込む排ガスに混入されるアンモニア量を制御する。
The output of the ratio setter (15) is input to the ammonia flow rate controller (16) as an ammonia flow rate signal to control the opening / closing of the ammonia adjusting valve (10) and mix with the exhaust gas flowing into the reactor (7). Controls the amount of ammonia produced.

排ガスはマニホールド(3)から排気管(4)を経て、
触媒(17)を充填した反応器(7)に流れる。
The exhaust gas passes from the manifold (3) through the exhaust pipe (4),
It flows into the reactor (7) filled with the catalyst (17).

アンモニアはアンモニア容器(12)よりアンモニア輸送
管(9)を経て、アンモニア調整弁(10)で最適な流量
に制御されて、排気管(4)において、アンモニア注入
ノズル(8)により排ガス中に混入され、必要によりガ
ス分散板(18)により、混合分散された後、触媒(17)
を通過して、排ガス中の窒素酸化物を還元除去する。
Ammonia is controlled from the ammonia container (12) through the ammonia transport pipe (9) to an optimum flow rate by the ammonia adjusting valve (10), and is mixed into the exhaust gas by the ammonia injection nozzle (8) in the exhaust pipe (4). And, if necessary, mixed and dispersed by the gas dispersion plate (18), and then the catalyst (17)
To reduce and remove nitrogen oxides in the exhaust gas.

第6図に示しているエンジン本体(1)に備えた排ガス
浄化装置(A)は本発明の第2発明を実施するのに開
発したものを例示しており、その構成は第5図に例示し
た排ガス浄化装置(A)と基本的に同構成のものである
ため、共通する構成については説明を省略し、相違する
構成について以下に説明する。
The exhaust gas purifying apparatus (A 1 ) provided in the engine body (1) shown in FIG. 6 is an example of the one developed to carry out the second invention of the present invention, and its configuration is shown in FIG. Since the exhaust gas purifying apparatus (A) has the basically same configuration, the description of the common configuration will be omitted and the different configuration will be described below.

排気管ガスタービン(6)をエンジン本体(1)と連絡
する給気管(19)には給気温度検出器(20)が設けら
れ、この給気温度検出器(20)は出力計(2)又は出力
比例信号器(2a)と排ガス温度検出器(5)と湿度検出
器(13)と同様に演算器(14)に連絡されている。
The air supply pipe (19) connecting the exhaust pipe gas turbine (6) to the engine body (1) is provided with a supply air temperature detector (20), and the supply air temperature detector (20) is an output meter (2). Alternatively, the output proportional signal (2a), the exhaust gas temperature detector (5) and the humidity detector (13) are connected to the calculator (14) as well.

この排ガス浄化装置(A)はエンジン本体(1)の負
荷量に応答して、エンジン出力計(2)又は出力比例信
号器(2a)と排ガス温度検出器(5)と湿度検出器(1
3)と給気温度検出器(20)からの各信号を演算器(1
4)に入力する。演算器(14)は窒素酸化物の総排出量
を演算しこの信号を比率設定器(15)に入力し、比率設
定器(15)で予め設定設定されたアンモニア/窒素酸化
物比により供給するアンモニア量を決定する。この比率
設定器(15)の出力はアンモニア流量信号としてアンモ
ニア流量制御器(16)に入力され、アンモニア調整弁
(10)の開閉を制御し、反応器(7)に流れ込む排ガス
に混入されるアンモニア量を制御する。それにより、ア
ンモニアはアンモニア調整弁(10)で最適な流量に制御
されて、排気管(4)において、アンモニア注入ノズル
(8)により排ガス中に混入され、必要によりガス分散
板(18)により、混合分散された後、触媒(17)を通過
して、排ガス中の窒素酸化物を還元除去する。
This exhaust gas purifying device (A 1 ) responds to the load of the engine body (1) in response to an engine output meter (2) or an output proportional signal device (2a), an exhaust gas temperature detector (5) and a humidity detector (1).
3) and each signal from the air supply temperature detector (20)
Enter in 4). The calculator (14) calculates the total amount of nitrogen oxides emitted, inputs this signal to the ratio setter (15), and supplies it with the ammonia / nitrogen oxide ratio preset by the ratio setter (15). Determine the amount of ammonia. The output of the ratio setter (15) is input to the ammonia flow rate controller (16) as an ammonia flow rate signal, controls the opening and closing of the ammonia adjusting valve (10), and is mixed with the exhaust gas flowing into the reactor (7). Control the amount. Thereby, the ammonia is controlled to an optimum flow rate by the ammonia adjusting valve (10), and is mixed into the exhaust gas by the ammonia injection nozzle (8) in the exhaust pipe (4), and if necessary by the gas dispersion plate (18). After being mixed and dispersed, it passes through the catalyst (17) to reduce and remove nitrogen oxides in the exhaust gas.

又、本発明において、用いられる触媒の形状としては、
ペレット状,球状,粒状,板状,パイプ状及びハニカム
状等が挙げられる。
Further, in the present invention, the shape of the catalyst used is
Examples include pellets, spheres, granules, plates, pipes and honeycombs.

特に、幾何学的表面積が大きいため必要触媒量が少なく
て済み、又触媒層の圧力損失が小さいという理由でハニ
カム状が好ましい。
In particular, the honeycomb shape is preferable because the required catalyst amount is small because the geometric surface area is large and the pressure loss of the catalyst layer is small.

本発明の対象となる触媒組成については、特に限定すべ
き理由はないが、チタンを主成分とする触媒やゼオライ
ト系触媒が好ましい。
The catalyst composition to be the subject of the present invention is not particularly limited, but a catalyst containing titanium as a main component or a zeolite-based catalyst is preferable.

特に、チタンを含む酸化物をA成分とし、これが60〜9
9.5重量%含まれ、バナジウム,タングステン,モリブ
デン,マンガン,銅,鉄,コバルト,セリウム、及びス
ズよりなる群から選ばれた少なくとも一種の元素の酸化
物をB成分とし、これが0.5〜40重量%の範囲に含ま
れてなる触媒が好ましい結果を与える。
In particular, the oxide containing titanium is used as the A component, and this is 60 to 9
9.5 wt%, vanadium, tungsten, molybdenum, manganese, copper, iron, cobalt, cerium, and oxide of at least one element selected from the group consisting of tin as the B component, which is 0.5 to 40 wt% Catalysts comprised in the range of% give favorable results.

触媒A成分はチタンを含む酸化物であれば好ましい結果
を与え、例えば酸化チタン、チタンとケイ素の二元系複
合酸化物(以下、TiO−SiOとする)。チタンとジ
ルコニウムの二元系複合酸化物、チタン,ケイ素及びジ
ルコニウムからなる三元系複合酸化物等が挙げられる。
A成分の比表面積は10m2/g以上、特に20m2/g以上が
好ましい結果を与える。
The catalyst A component gives preferable results if it is an oxide containing titanium, for example, titanium oxide or a binary complex oxide of titanium and silicon (hereinafter referred to as TiO 2 —SiO 2 ). Examples thereof include a binary complex oxide of titanium and zirconium, and a ternary complex oxide composed of titanium, silicon and zirconium.
The specific surface area of the component A is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more.

本発明に使用される還元剤としては、アンモニアガス,
アンモニア水、その他の尿素やショウ酸アンモニウムの
ように熱分解してアンモニアになるアンモニウム塩等が
用いられる。
The reducing agent used in the present invention includes ammonia gas,
Ammonia water, other ammonium salts such as urea and ammonium oxalate that are thermally decomposed to ammonia are used.

本発明の対象となるディーゼルエンジンから排出される
排ガスの組成としては、通常、アンモニア10〜1,000pp
m、酸素2〜21容量%、炭酸ガス5〜15容量%、水分5
〜15容量%、煤塵0.02〜1g/Nm3、及び窒素酸化
物 200〜3,000ppm程度に含有するものであるが、ディー
ゼルエンジンやガスエンジン等の内燃機関から排出され
る排ガスであれば良く、特に組成範囲を限定するもので
はない。
The composition of the exhaust gas emitted from the diesel engine that is the subject of the present invention is usually 10 to 1,000 pp of ammonia.
m, oxygen 2-21% by volume, carbon dioxide 5-15% by volume, moisture 5
˜15% by volume, soot and dust 0.02 to 1 g / Nm 3 , and nitrogen oxides 200 to 3,000 ppm, but any exhaust gas emitted from an internal combustion engine such as a diesel engine or a gas engine may be used. The composition range is not particularly limited.

処理条件としては、反応温度が 150℃〜 650℃、特に 2
00℃〜 600℃が好ましい。
The processing conditions include a reaction temperature of 150 ° C to 650 ° C, especially 2
00 ° C to 600 ° C is preferable.

空間速度は2,000〜100,000hr-1 、特に5,000〜50,000hr
-1の範囲が好ましい。
Space velocity is 2,000-100,000hr-1, especially 5,000-50,000hr
A range of -1 is preferred.

アンモニアの添加量は窒素酸化物1容量部に対して0.
3〜1.2容量部が好ましいが、通常、未反応アンモニ
アを極力抑制する必要があるためにアンモニア/窒素酸
化物のモル比を1以下として使用されることが特に好ま
しい。
The amount of ammonia added was 0.
3 to 1.2 parts by volume is preferable, but since it is usually necessary to suppress unreacted ammonia as much as possible, it is particularly preferable to use an ammonia / nitrogen oxide molar ratio of 1 or less.

以下に具体例を挙げて本発明をさらに詳細に説明する
が、本発明はこれら具体例のみに限定されるものではな
い。
Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these specific examples.

具体例I 第5図に例示した排ガス浄化装置(A)を用い、発電用
のディーゼルエンジンの排気管(4)と連通状の反応器
(7)にはV2重量%、WO7重量%を含有す
るTiO系ハニカム触媒( 150mm角相当直径3.2mm、
セル肉厚0.5mm、長さ 450mm)を6×6本2層に充填
した。
Specific Example I Using the exhaust gas purifying apparatus (A) illustrated in FIG. 5, V 2 O 5 2 wt% and WO 3 are used in a reactor (7) communicating with the exhaust pipe (4) of a diesel engine for power generation. TiO 2 honeycomb catalyst containing 7% by weight (diameter equivalent to 150 mm square 3.2 mm,
A cell wall thickness of 0.5 mm and a length of 450 mm) was filled in 2 layers of 6 × 6 pieces.

同装置(A)により、アンモニア/窒素酸化物モル比が
0.85になるように演算器(14)、及び比率設定器
(15)を作動させてアンモニアを排気管内の排ガス中に
注入し、排ガス処理量3500〜5500Nm3/hr、排ガス温度
380〜 430℃入口窒素酸化物濃度 700〜950ppm、の範囲
に変動させてエンジンを運転した。
With the device (A), the calculator (14) and the ratio setter (15) are operated so that the ammonia / nitrogen oxide molar ratio becomes 0.85, and ammonia is injected into the exhaust gas in the exhaust pipe, Exhaust gas throughput 3500-5500 Nm 3 / hr, exhaust gas temperature
The engine was operated by changing the range of 380 to 430 ° C inlet nitrogen oxide concentration to 700 to 950ppm.

その時の脱硝率は83〜86%、反応器出口における排ガス
中のアンモニア濃度は0.5〜1.0ppmであった。
At that time, the denitration rate was 83 to 86%, and the ammonia concentration in the exhaust gas at the reactor outlet was 0.5 to 1.0 ppm.

具体例II 第6図に例示した排ガス浄化装置(A)を用い、具体
例Iと同様の方法で脱硝反応を行なった。
Specific Example II Using the exhaust gas purifying apparatus (A 1 ) illustrated in FIG. 6, the denitration reaction was performed in the same manner as in Specific Example I.

この時の脱硝率は84〜86%、反応器出口における排ガス
中のアンモニア濃度は0.5〜0.8ppmであった。
At this time, the denitration rate was 84 to 86%, and the ammonia concentration in the exhaust gas at the reactor outlet was 0.5 to 0.8 ppm.

比較例1 第5図に示した排ガス浄化装置(A)において湿度検出
器(13)を設置しないこと以外は全て具体例1と同様の
方法で脱硝試験を行った。
Comparative Example 1 A denitration test was conducted in the same manner as in Example 1 except that the humidity detector (13) was not installed in the exhaust gas purifying apparatus (A) shown in FIG.

この時の脱硝率は76〜82%、反応器出口における排ガス
中のアンモニア濃度は0.5〜3ppm であり、具体例1
に比較して、吸入空気中の湿度による補正を行わないた
めに、エンジンの負荷変動に対する応答性が悪く脱硝率
も低い値であった。
At this time, the denitration rate was 76 to 82%, and the ammonia concentration in the exhaust gas at the reactor outlet was 0.5 to 3 ppm.
Compared with the above, since the correction by the humidity in the intake air is not performed, the responsiveness to the load fluctuation of the engine is poor and the denitration rate is low.

具体例I及びII記載の脱硝方法は脱硝率の変動幅が少な
く窒素酸化物を高効率で除去できると同時に、二次公害
となり得るアンモニアの放出も極めて少なく優れた方法
である。
The denitration methods described in Examples I and II are excellent methods in which the fluctuation range of the denitration rate is small and nitrogen oxides can be removed with high efficiency, and at the same time, the emission of ammonia which may cause secondary pollution is extremely small.

(発明の効果) したがって、本発明によれば次の利点がある。(Effects of the Invention) Therefore, according to the present invention, there are the following advantages.

排ガス性状の急激な変化およびエンジンの負荷の変動に
ともなう窒素酸化物量の急激な変化に迅速に応答して、
窒素酸化物を高いレベルで効率よく除去することがで
き、しかも窒素酸化物除去後の排ガスとともに放出され
る同ガス中のアンモニア量を最小限に抑止できて二次公
害の心配もなく実用上の利益大である。
Responds rapidly to abrupt changes in exhaust gas properties and changes in the amount of nitrogen oxides that accompany changes in engine load,
Nitrogen oxides can be removed efficiently at a high level, and the amount of ammonia in the gas discharged with the exhaust gas after nitrogen oxides removal can be suppressed to a minimum, and there is no worry of secondary pollution. Profitable.

【図面の簡単な説明】[Brief description of drawings]

第1図はディーゼルエンジンの出力と窒素酸化物排出量
の関係を示すグラフ。第2図は排気ガス温度と窒素酸化
物排出量の関係を示すグラフ。第3図はディーゼルエン
ジンの吸入空気の温度と窒素酸化物濃度の関係を示すグ
ラフ。第4図はディーゼルエンジンの吸入空気の絶対湿
度と窒素酸化物濃度の関係を示すグラフ。第5図および
第6図は本発明方法を行うための排ガス浄化装置を備え
たディーゼルエンジンの概略図である。 図中 (1)はエンジン本体 (2)は出力計 (2a)は出力比例信号器 (4)は排気管 (5)は排ガス温度検出器 (7)は反応器 (8)はアンモニア注入ノズル (9)はアンモニア輸送管 (10)はアンモニア調整弁 (11)はアンモニア流量計 (12)はアンモニア容器 (13)は湿度検出器 (14)は演算器 (15)は比率設定器 (16)はアンモニア流量制御器 (17)は触媒 (19)は給気管 (20)は給気温度検出器
FIG. 1 is a graph showing the relationship between the output of a diesel engine and the amount of nitrogen oxide emissions. FIG. 2 is a graph showing the relationship between exhaust gas temperature and nitrogen oxide emission amount. FIG. 3 is a graph showing the relationship between the temperature of intake air of a diesel engine and the nitrogen oxide concentration. FIG. 4 is a graph showing the relationship between the absolute humidity of intake air of a diesel engine and the nitrogen oxide concentration. 5 and 6 are schematic views of a diesel engine equipped with an exhaust gas purifying apparatus for carrying out the method of the present invention. In the figure, (1) is the engine body (2) is the output meter (2a) is the output proportional signal device (4) is the exhaust pipe (5) is the exhaust gas temperature detector (7) is the reactor (8) is the ammonia injection nozzle ( 9) Ammonia transport pipe (10) Ammonia control valve (11) Ammonia flow meter (12) Ammonia container (13) Humidity detector (14) Operator (15) Ratio setter (16) Ammonia flow controller (17) is catalyst (19) is air supply pipe (20) is air supply temperature detector

フロントページの続き (72)発明者 木下 太 兵庫県姫路市網干区興浜字西沖992番地の 1 日本触媒化学工業株式会社触媒研究所 内 (72)発明者 萩 光晴 兵庫県姫路市網干区興浜字西沖992番地の 1 日本触媒化学工業株式会社触媒研究所 内 (72)発明者 井上 明 兵庫県姫路市網干区興浜字西沖992番地の 1 日本触媒化学工業株式会社触媒研究所 内 (56)参考文献 特開 昭52−48722(JP,A) 特開 昭59−134332(JP,A) 実開 昭63−146116(JP,U)Front page continuation (72) Inventor Futoshi Kinoshita 1 at 992 Nishikioki, Akihama, Himeji-shi, Hyogo Prefecture Catalytic Research Institute, Nippon Catalysis Chemical Co., Ltd. (72) Inventor, Akira Inoue, Catalytic Laboratory, Nippon Catalysis & Chemicals Industry Co., Ltd. 1 992, Nishikioki, Kamahama, Aboshi-ku, Himeji-shi, Hyogo, Japan (56) JP, A) JP 59-134332 (JP, A) Actually developed 63-146116 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ディーゼルエンジン排ガス中の窒素酸化物
をアンモニアの存在下に触媒を用いて還元除去するにあ
たり、エンジン出力,排気ガス温度そして吸入空気の湿
度をそれぞれ測定し、エンジン出力及び排気ガス温度の
測定値並びに吸入空気の湿度と窒素酸化物量がほぼ比例
する関係に基づいてアンモニアを流量制御し、該排ガス
中に供給することを特徴とするディーゼルエンジン排ガ
ス中の窒素酸化物除去方法。
1. When reducing and removing nitrogen oxides in exhaust gas of a diesel engine using a catalyst in the presence of ammonia, engine output, exhaust gas temperature, and intake air humidity are measured to determine engine output and exhaust gas temperature. A method for removing nitrogen oxides from exhaust gas of a diesel engine, wherein the flow rate of ammonia is controlled based on the measured value and the relationship between the humidity of intake air and the amount of nitrogen oxides, and the ammonia is supplied into the exhaust gas.
【請求項2】ディーゼルエンジン排ガス中の窒素酸化物
をアンモニアの存在下に触媒を用いて還元除去するにあ
たり、エンジン出力,排気ガス温度,エンジン給気温度
そして吸入空気の湿度をそれぞれ測定し、エンジン出力
及び排気ガス温度及びエンジン給気温度の測定値並びに
吸入空気の湿度と窒素酸化物量がほぼ比例する関係に基
づいてアンモニアを流量制御し、該排ガス中に供給する
ことを特徴とするディーゼルエンジン排ガス中の窒素酸
化物除去方法。
2. The engine output, the exhaust gas temperature, the engine supply air temperature, and the intake air humidity are measured for reducing and removing nitrogen oxides in the exhaust gas of a diesel engine using a catalyst in the presence of ammonia. Diesel engine exhaust gas characterized in that the flow rate of ammonia is controlled based on the measured values of output, exhaust gas temperature, engine supply air temperature, and intake air humidity and the amount of nitrogen oxides, and the ammonia is supplied into the exhaust gas. Method for removing nitrogen oxides from inside.
JP1025209A 1989-02-02 1989-02-02 Method for removing nitrogen oxides from diesel engine exhaust gas Expired - Lifetime JPH0635817B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1025209A JPH0635817B2 (en) 1989-02-02 1989-02-02 Method for removing nitrogen oxides from diesel engine exhaust gas
KR1019900001186A KR950012137B1 (en) 1989-02-02 1990-02-01 Method of removing nitrogen oxides in exhaust gases from a diesel engine
US07/474,274 US5021227A (en) 1989-02-02 1990-02-02 Method of removing nitrogen oxides in exhaust gases from a diesel engine
EP90102103A EP0381236B2 (en) 1989-02-02 1990-02-02 Method of removing nitrogen oxides in exhaust gases from a diesel engine
DE69005322T DE69005322T3 (en) 1989-02-02 1990-02-02 Process for reducing nitrogen oxides from diesel engine exhaust.
US07/678,119 US5116579A (en) 1989-02-02 1991-04-01 Removing nitrogen oxides in exhaust gases from a diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025209A JPH0635817B2 (en) 1989-02-02 1989-02-02 Method for removing nitrogen oxides from diesel engine exhaust gas

Publications (2)

Publication Number Publication Date
JPH02204614A JPH02204614A (en) 1990-08-14
JPH0635817B2 true JPH0635817B2 (en) 1994-05-11

Family

ID=12159567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025209A Expired - Lifetime JPH0635817B2 (en) 1989-02-02 1989-02-02 Method for removing nitrogen oxides from diesel engine exhaust gas

Country Status (1)

Country Link
JP (1) JPH0635817B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551173B2 (en) * 1989-12-05 1996-11-06 株式会社新潟鐵工所 Denitrification method for internal combustion engine exhaust gas
SE516624C2 (en) * 2000-06-14 2002-02-05 Volvo Lastvagnar Ab Apparatus for injecting urea into a turbine housing in an exhaust system
JP2003065037A (en) * 2001-08-30 2003-03-05 Miura Co Ltd Control method for denitration device
JP5398372B2 (en) * 2009-06-18 2014-01-29 Udトラックス株式会社 Engine exhaust purification system
JP2012047094A (en) * 2010-08-26 2012-03-08 Mitsubishi Heavy Ind Ltd Marine denitration system and marine vessel comprising the same, and control method for marine denitration system
JP2014005745A (en) * 2012-06-21 2014-01-16 Yanmar Co Ltd Urea water injection device
JP6032985B2 (en) * 2012-07-18 2016-11-30 大阪瓦斯株式会社 Reducing agent injection device and denitration device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248722A (en) * 1975-10-17 1977-04-19 Niigata Eng Co Ltd Reduction gas quantity controller in the exhaust gas denitriation devi ce of an internal combustion engine such as a diesel engine and the li ke
US4473536A (en) * 1982-12-27 1984-09-25 General Electric Company Catalytic pollution control system for gas turbine exhaust
JPH0612174Y2 (en) * 1987-03-13 1994-03-30 日野自動車工業株式会社 Nisel oxide removal mechanism of diesel engine

Also Published As

Publication number Publication date
JPH02204614A (en) 1990-08-14

Similar Documents

Publication Publication Date Title
KR950012137B1 (en) Method of removing nitrogen oxides in exhaust gases from a diesel engine
KR101659788B1 (en) Denox of diesel engine exhaust gases using a temperature-controlled precatalyst for providing no2 in accordance with the requirements
JP2011027102A (en) Model-based tuning of ammonia distribution and control for reduced operating cost of selective catalytic reduction
CN101915146A (en) The NO that is used for the hydrocarbon fuels power source XEmission control systems
JP6067848B2 (en) Exhaust gas purification device and method for reducing nitrogen oxides from fossil fuel combustion power plant exhaust
CN105114158B (en) A kind of selective-catalytic-reduction denitrified system and method suitable for medium and small-scale vessel
JPH0635817B2 (en) Method for removing nitrogen oxides from diesel engine exhaust gas
JP2006046289A (en) Method for controlling exhaust emission control device
JPH0635820B2 (en) Method for removing nitrogen oxides from diesel engine exhaust gas
US6737033B1 (en) Method and device for the catalytic removal of a pollutant contained in an exhaust gas of a combustion system
CN113544365A (en) Method for regulating the loading of a particle filter
JPS63302120A (en) Method for removing nitrogen oxide contained in diesel engine exhaust gas
CN110026082A (en) A kind of ozone injects the kiln gas denitrification apparatus and method of auxiliary SCR before ammonia
JPH0635818B2 (en) Method for removing nitrogen oxides from diesel engine exhaust gas
JPH0635819B2 (en) Method for removing nitrogen oxides from diesel engine exhaust gas
CN112774432B (en) Heat exchange system and process for SCR-RTO outlet flue gas
JP3002452B1 (en) High efficiency flue gas denitration system
CN207377629U (en) Marine exhaust denitration urea automatic adding device
JP2001234735A (en) Flow control device
CN206054060U (en) A kind of gaseous ammonia for exhaust gas cleaner peculiar to vessel generates system
CN114790956B (en) Marine ammonia fuel engine emission reduction device and control method
CN219848977U (en) Denitration device of ship power plant flue gas
CN220849815U (en) Marine ammonia fuel diesel engine exhaust gas aftertreatment system
KR102490746B1 (en) Active exhaust gas treatment system
US11725555B1 (en) Aftertreatment system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 15