JP2551173B2 - Denitrification method for internal combustion engine exhaust gas - Google Patents
Denitrification method for internal combustion engine exhaust gasInfo
- Publication number
- JP2551173B2 JP2551173B2 JP1316090A JP31609089A JP2551173B2 JP 2551173 B2 JP2551173 B2 JP 2551173B2 JP 1316090 A JP1316090 A JP 1316090A JP 31609089 A JP31609089 A JP 31609089A JP 2551173 B2 JP2551173 B2 JP 2551173B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- internal combustion
- combustion engine
- intake air
- reducing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
この発明は、内燃機関の排ガス中に含まれる窒素酸化
物を除去するための脱硝方法に関するものである。The present invention relates to a denitration method for removing nitrogen oxides contained in exhaust gas of an internal combustion engine.
ディーセルエンジンのごとき内燃機関からの排ガス中
には環境汚染の原因となるNOX(窒素酸化物)が含まれ
ているため、大気へ放出する前に排ガス中のNOXを分解
する脱硝処理を施す必要がある。かような脱硝処理のた
めに従来から慣用されている代表的な脱硝装置を第2図
を参照して説明する。 内燃機関例えばディーゼルエンジン1の排ガス出口か
ら排出される排ガスは、煙道2を介して排ガス消音器
3、さらには脱硝反応器4へ導かれ、最終的に煙突5か
ら大気へ放出される。煙道2には煙道バイパス6が設け
られ、必要に応じてバルブ7,8を操作することにより消
音器3から出た排ガスをバイパス6を通して煙突5へ直
接導けるようになっている。消音器3と脱硝反応器4と
の間でかつ脱硝反応器4の近傍の煙道2には、還元剤注
入装置30の還元剤注入口10が設けられている。還元剤注
入装置30は、流量測定器11、流量制御弁12およびこれら
の配管系から構成され、還元剤発生装置9からの還元剤
を流量測定器11および流量制御弁12を介して煙道中を流
れる排ガスに注入するようになっている。煙道中の排ガ
ス量および排ガス中のNOX濃度は、上記還元剤注入口10
上流に検出端がそれぞれ設けられた排ガス流量測定器14
およびNOX濃度計13により測定され、これらの測定値を
基にして制御信号が制御装置15から還元剤流量制御弁12
へ送られ、還元剤注入口10からの還元剤注入量が制御さ
れる。 還元剤としてはアンモニアガスのごとき気体還元剤
や、アンモニア水、尿素水のごとき液体還元剤が使用さ
れており、かような還元剤を注入された排ガスは、脱硝
反応器4内で触媒と接触し、排ガス中のNOXは還元反応
により無害なN2とH2Oに転換されたのち、排ガスととも
に煙突5から大気へ放出されることになる。 気体還元剤を用いる場合には、第2図に示したよう
に、送風機16により気体還元剤を予混合することによっ
て排ガスとの混合を完全にする工夫を還元剤注入装置を
施すことも多い。 第2図に示した脱硝装置では、還元剤注入装置30から
注入された還元剤と排ガスとが均一に混合された後に脱
硝反応器4へ送られる必要があるため、還元剤注入口10
の形状や配置などに種々の工夫を施すことが提案されて
いる。 また第3図に示した脱硝装置のように、還元剤注入口
10をディーゼルエンジン1と排ガス消音器3との間の排
ガス通路2に設け、還元剤と排ガスとの混合を消音器3
内で行うようにすることも提案されている(特開昭63−
279530号)。なおこの場合には、NOX濃度計13の検出端
は還元剤注入口10の上流に設けられることになる。Since the exhaust gas from such an internal combustion engine of a diesel engine NO X (nitrogen oxides) that cause environmental pollution are included, subjected to decomposing denitration of NO X in the exhaust gas prior to release to the atmosphere There is a need. A typical denitration apparatus conventionally used for such denitration processing will be described with reference to FIG. Exhaust gas discharged from the exhaust gas outlet of an internal combustion engine, such as a diesel engine 1, is guided to an exhaust gas silencer 3 and further to a denitration reactor 4 via a flue 2, and finally discharged from a chimney 5 to the atmosphere. A flue bypass 6 is provided in the flue 2, and the exhaust gas emitted from the silencer 3 can be directly guided to the chimney 5 through the bypass 6 by operating the valves 7 and 8 as necessary. A reducing agent injection port 10 of a reducing agent injection device 30 is provided in the flue 2 between the silencer 3 and the denitration reactor 4 and near the denitration reactor 4. The reducing agent injection device 30 is composed of a flow rate measuring device 11, a flow rate control valve 12 and a piping system for these, and passes the reducing agent from the reducing agent generation device 9 through the flow rate measuring device 11 and the flow rate control valve 12 through the flue. It is designed to be injected into flowing exhaust gas. The amount of exhaust gas in the flue and the NO X concentration in the exhaust gas are determined by the reducing agent injection port 10
Exhaust gas flow rate measuring device 14 with each detecting end upstream
And the NO X concentration meter 13, and based on these measured values, a control signal is sent from the controller 15 to the reducing agent flow control valve 12
And the amount of reducing agent injected from the reducing agent inlet 10 is controlled. A gaseous reducing agent such as ammonia gas or a liquid reducing agent such as ammonia water or urea water is used as the reducing agent, and the exhaust gas injected with such a reducing agent contacts the catalyst in the denitration reactor 4. Then, NO X in the exhaust gas is converted into harmless N 2 and H 2 O by the reduction reaction, and then released from the chimney 5 to the atmosphere together with the exhaust gas. When a gas reducing agent is used, as shown in FIG. 2, a reducing agent injection device is often provided with a device for premixing the gas reducing agent by the blower 16 to complete mixing with the exhaust gas. In the denitration device shown in FIG. 2, the reducing agent injected from the reducing agent injection device 30 and the exhaust gas need to be uniformly mixed and then sent to the denitration reactor 4. Therefore, the reducing agent injection port 10
It has been proposed to make various improvements in the shape and arrangement of the. Also, as in the denitration device shown in FIG.
10 is provided in the exhaust gas passage 2 between the diesel engine 1 and the exhaust gas silencer 3 to mix the reducing agent and the exhaust gas with the silencer 3
It has also been proposed to do this in-house (Japanese Patent Laid-Open No. 63-
279530). In this case, the detection end of the NO X concentration meter 13 will be provided upstream of the reducing agent injection port 10.
上述したように、排ガス中に注入する適性還元剤注入
量は、排ガス流量測定器14により測定された排ガス流量
とNOX濃度計13により測定された排ガス中のNOX濃度から
決定することができる。 しかしながらNOX濃度計は、(1)排ガス中の煤塵や
水分によってサンプリングプローブが汚れたりサンプリ
ング管が閉塞しやすく、測定値が不正確になりやすい、
(2)そのためしばしば測定を止めて清掃やメンテナン
スが必要となる、(3)機構が複雑で高価である、とい
った問題を有している。 同様に、排ガスの流量測定においても、排ガス中の煤
塵は水分によってピトー管が汚れたり閉塞しやすく、測
定が不正確になりやすいといった問題を有している。こ
の排ガスの流量測定の問題を解決するものとして、内燃
機関の出力から排ガス量を検出することが、例えば特開
昭55−93917号公報に開示されている。しかしながら、
この方法では内燃機関が使用する燃料組成が変わった場
合のことが考慮されておらず、運転状況が変わった場合
でも排ガス中のNOX量に応じて正確に還元剤注入量を制
御できないといった不満がある。 そこでこの発明の第1の目的は、上述したNOX濃度計
や排ガス流量測定器等の計測器を排ガス配管系に一切使
用しないで、従来より一層適切に運転状況の変化に対応
でき、排ガス中のNOX量に応じて適正量の還元剤を排ガ
ス中に注入することができる内燃機関排ガスの脱硝方法
を提供することである。 また、この発明の第2の目的は、上述したNOX濃度計
を使用せず、また従来の計測対象であった排ガス流量に
代えて、排ガス中の煤塵や水分による計器の閉塞等が生
じにくくかつ計測そのものも比較的正確に測定しやすい
計測対象を設定し、従来より一層適切に運転状況の変化
に対応でき、排ガス中のNOX量に応じて適正量の還元剤
を排ガス中に注入することができる内燃機関排ガスの脱
硝方法を提供することである。 そして本発明者らは、内燃機関のプロセスデータによ
って排ガス中のNOX濃度や排ガス量を算出すれば、NOX濃
度計や排ガス流量計の使用に伴う上記のごとき問題点を
解消できるという想定の基に、この発明を完成させたも
のである。As described above, suitability reducing agent injection amount to be injected into the exhaust gas can be determined from the concentration of NO X measured in the exhaust gas by the exhaust gas flowmeter 14 exhaust gas flow rate and the NO X concentration meter 13 as measured by . However, in the NO X concentration meter, (1) the sampling probe is easily contaminated by soot and water in the exhaust gas and the sampling tube is easily clogged, and the measured value tends to be inaccurate.
(2) Therefore, there are problems that the measurement is often stopped and cleaning and maintenance are required, and (3) the mechanism is complicated and expensive. Similarly, in the measurement of the flow rate of exhaust gas, the dust in the exhaust gas has a problem that the pitot tube is easily contaminated or clogged with water, and the measurement tends to be inaccurate. As a solution to the problem of measuring the flow rate of exhaust gas, detecting the amount of exhaust gas from the output of an internal combustion engine is disclosed in, for example, Japanese Patent Laid-Open No. 55-93917. However,
This method does not take into account the case where the fuel composition used by the internal combustion engine changes, and even if the operating conditions change, it is not possible to accurately control the reducing agent injection amount according to the NO X amount in the exhaust gas. There is. Therefore a first object of this invention is not an instrument of the NO X concentration meter or exhaust flow meter such as described above used at all in the exhaust gas piping system can respond to changes in the more conventionally proper operating conditions, the exhaust gas (EN) A method for denitrifying exhaust gas of an internal combustion engine capable of injecting an appropriate amount of a reducing agent into the exhaust gas in accordance with the amount of NO X. A second object of the present invention is not to use the above-mentioned NO X concentration meter, and instead of the exhaust gas flow rate, which has been the object of measurement in the related art, it is difficult for the instrument to be blocked by soot dust or water in the exhaust gas. In addition, the measurement itself is set so that it can be measured relatively accurately, and it is possible to respond to changes in operating conditions more appropriately than before, and inject an appropriate amount of reducing agent into the exhaust gas according to the amount of NO X in the exhaust gas. It is intended to provide a denitration method for exhaust gas of an internal combustion engine which can be performed. Then, the present inventors assume that if the NO X concentration and the amount of exhaust gas in the exhaust gas are calculated from the process data of the internal combustion engine, the above problems associated with the use of the NO X concentration meter and the exhaust gas flow meter can be solved. Based on this, the present invention has been completed.
すなわち請求項1の発明は、内燃機関の排ガス中に還
元剤を注入したのち、脱硝反応器に送って脱硝処理を行
う脱硝方法において、内燃機関の吸入空気相対湿度と吸
入空気温度と吸入空気量と燃料組成とその燃料使用量の
データに基づいて、還元剤注入量を制御することを特徴
とする内燃機関排ガスの脱硝方法である。 また請求項2の発明は、内燃機関の排ガス中に還元剤
を注入したのち、脱硝反応器に送って脱硝処理を行う脱
硝方法において、内燃機関の吸入空気相対湿度と吸入空
気温度と燃料組成とその燃料使用量と排ガス中の残留酸
素濃度のデータに基づいて、または内燃機関の吸入空気
相対湿度と吸入空気温度と吸入空気量と燃料組成と、排
ガス中の残留酸素濃度のデータに基づいて、還元剤注入
量を制御することを特徴とする内燃機関排ガスの脱硝方
法である。That is, the invention of claim 1 is a denitration method in which a reducing agent is injected into the exhaust gas of an internal combustion engine and then sent to a denitration reactor to perform denitration treatment. A method for denitration of exhaust gas from an internal combustion engine is characterized in that the reducing agent injection amount is controlled based on the data of the fuel composition and the fuel usage amount. According to the invention of claim 2, in a denitration method in which a reducing agent is injected into exhaust gas of an internal combustion engine and then sent to a denitration reactor to perform denitration treatment, relative humidity of intake air, intake air temperature, and fuel composition of the internal combustion engine are set. Based on the data of the fuel usage and the residual oxygen concentration in the exhaust gas, or based on the data of the intake air relative humidity, the intake air temperature, the intake air amount and the fuel composition of the internal combustion engine, and the residual oxygen concentration in the exhaust gas, A method for denitrifying exhaust gas from an internal combustion engine, which is characterized by controlling the injection amount of a reducing agent.
排ガスのNOX濃度は、内燃機関の吸入空気相対湿度お
よび吸入空気温度と相関関係がある。従って、これらの
間の相関関係を実際に使用する内燃機関について予め実
測して求めておけば、吸入空気相対湿度および吸入空気
温度のデータから排ガス中のNOX濃度を算出することが
できる。 一方、排ガス量は、内燃機関の燃料組成とその使用
量と吸入空気量との相関関係から、または内燃機関の
燃料組成とその使用量と排ガス中の残留酸素濃度との相
関関係から、もしくは内燃機関の燃料組成と吸入空気
量と排ガスの残留酸素濃度との相関関係から、算出する
ことができる。 従って、内燃機関の吸入空気相対湿度と吸入空気温度
と吸入空気量と燃料組成とその燃料使用量のデータに基
づいて、適正還元剤注入量を求めることができ、これに
よって、高価で排ガス中の煤塵等により影響を受けやす
いNOX濃度計や、脈動が生じており測定そのものが難し
く同様に排ガス中の煤塵等により影響を受けやすい排ガ
ス流量測定器等の計測器を排ガス配管系に使用する必要
が一切なく、燃料変更等の運転状況の変化に一層適切に
対応することができる。 さらに、内燃機関の吸入空気相対湿度と吸入空気温度
と燃料組成とその燃料使用量と排ガスの残留酸素濃度の
データに基づいて、または内燃機関の吸入空気相対湿度
と吸入空気温度と吸入空気量と燃料組成と排ガス中の残
留酸素濃度のデータに基づいても、適正還元剤注入量を
求めることができ、これによって、高価で排ガス中の煤
塵等により影響を受けやすいNOX濃度計を使用する必要
がなく、さらに脈動が生じており測定そのものが難しく
同様に排ガス中の煤塵等により影響を受けやすい排ガス
流量を計測対象とせずに、例えばジルコニア式酸素濃度
計の如く単に排ガス中にセンサーを出しておくだけでよ
く、排ガス中の煤塵や水分による計器の閉塞等が生じに
くく、計測そのものも比較的正確に測定しやすい酸素濃
度を計測対象として設定でき、燃料変更等の運転状況の
変化に一層適切に対応することができる。The NO X concentration of exhaust gas is correlated with the relative humidity of intake air and the temperature of intake air of the internal combustion engine. Therefore, the NO X concentration in the exhaust gas can be calculated from the data of the relative humidity of intake air and the temperature of intake air if the correlation between them is actually measured in advance for an actually used internal combustion engine. On the other hand, the exhaust gas amount is obtained from the correlation between the fuel composition of the internal combustion engine and its usage amount and the intake air amount, or from the correlation between the fuel composition of the internal combustion engine and its usage amount and the residual oxygen concentration in the exhaust gas, or It can be calculated from the correlation between the fuel composition of the engine, the intake air amount, and the residual oxygen concentration of the exhaust gas. Therefore, the appropriate reducing agent injection amount can be obtained based on the data of the intake air relative humidity of the internal combustion engine, the intake air temperature, the intake air amount, the fuel composition, and the fuel usage amount thereof. It is necessary to use a NO X concentration meter that is easily affected by soot and dust, and a measuring instrument such as an exhaust gas flow rate measuring instrument that is also easily affected by soot and dust in exhaust gas for the exhaust gas piping system. Therefore, it is possible to respond more appropriately to changes in operating conditions such as fuel changes. Further, based on the data of the intake air relative humidity of the internal combustion engine, the intake air temperature, the fuel composition, the amount of fuel used, and the residual oxygen concentration of the exhaust gas, or the intake air relative humidity of the internal combustion engine, the intake air temperature, and the intake air amount. It is necessary to use an NO X concentration meter that is expensive and easily affected by soot and dust in the exhaust gas, because it is possible to obtain the appropriate amount of reducing agent injection based on the data of the fuel composition and the residual oxygen concentration in the exhaust gas. In addition, there is no pulsation, and the measurement itself is difficult because the exhaust gas flow rate, which is also easily affected by soot and dust in the exhaust gas, is not measured, and a sensor is simply put in the exhaust gas, such as a zirconia oxygen concentration meter. It is only necessary to set the oxygen concentration as the measurement target, which is unlikely to cause instrument clogging due to dust and water in the exhaust gas, and the measurement itself is relatively easy to measure. Therefore, it is possible to more appropriately respond to changes in operating conditions such as fuel changes.
内燃機関の吸入空気相対湿度と吸入空気温度との相関
関係から排ガス中のNOX濃度を算出するための式は種々
存在し、例えば次式によって求めることができる。 NOX=N・NOX(0) …(A) N=a・T.H+b・T+c …(B) ただし、 NOX:排ガス中のNOX濃度 (ppm[13%O2濃度換算]) NOX(0):その内燃機関が排出するNOX濃度範囲を考慮
して適宜選定した基準濃度で、単に計算上の便宜のため
に設けたものである。 (ppm[13%O2濃度換算]) N:排ガス中のNOX濃度に対する基準濃度NOX(0)の濃度
倍率変数で、温度と相対湿度の関数である。 T:吸入空気温度(℃) H:吸入空気相対湿度(%) a〜c:当該内燃機関固有の定数 上記(A)および(B)式のNOX(0)と定数a〜c
を定める過程をディーゼルエンジンを例に挙げて説明す
ると、まずディーゼルエンジンに供給する空気の相対湿
度、温度を変化させてディーゼルエンジンを運転し、各
相対湿度、温度のときの排ガス中のNOX濃度(ppm[13%
O2濃度換算])を実測する。 実測したデータから第1図の如き相対湿度、温度、排
ガス中のNOX濃度の相関データを得る。これは、例えば
実測したデータを外捜または内捜することにより所定の
温度における所定相対湿度のNOX濃度を求め、これをプ
ロットすることによて容易に得ることができる。 第1図は、実測データから温度基準に外捜または内捜
することにより各所定の温度における各実測相対湿度の
ときのNOX濃度を求め、さらにこの求めたデータから相
対湿度を基準に外捜または内捜することにより各所定の
温度における相対湿度40%、60%、80%のNOX濃度を求
めたものである。 第1図から明らかなように、通常使用される範囲内に
おいて内燃機関の負荷にほとんど関係なく、排ガス中の
NOX濃度は、ほぼ空気温度と空気相対湿度の関数とな
り、温度が一定ならNOX濃度は相対湿度に比例し、同じ
相対湿度なら温度が低い方がNOX濃度が高くなる傾向に
あることがわかる。すなわち、排ガス中のNOX濃度に対
するある基準濃度NOX(0)(第1図では1000ppm)の濃
度倍率変数Nが温度と相対湿度の関数であることがわか
る。 上記(B)式の定数a,b,cは、例えば第1図からデー
タを読み取り、(B)式に関する最低3個の連立方程式
をたてることによって算出することができる。濃度倍率
変数Nを求める関係式は、本来上記(B)式に代えて下
記(C)式を使用しその定数を上述のごとく数学的に求
めるべきであるが、実務上はその簡便式である上記
(B)式でも差し支えない。 N=d・T・H+e・T+f・H+g …(C) (d〜g:定数) なお、上記(B)式、(C)式においては、定数を求
めるために採用したデータ値によって上記定数a〜gの
値が多少異なるので、できるだけ多くのデータから複数
の各定数値を求め、それらを平均した各定数値を用いる
のが好ましい。 また、第1図から明らかなように各温度における相対
湿度と排ガス中のNOX濃度は比例関係にあるので、各温
度における相対湿度と排ガス中のNOX濃度との関係式を
それぞれ求め、コンピュータ等で該当する温度の関係式
をその都度使用するようにしてもよい。いずれにして
も、内燃機関の吸入空気相対湿度と吸入空気温度との相
関関係から排ガス中のNOX濃度を推算する式は種々存在
する。 内燃機関からの排ガス量は、排ガス流路測定器を使用
せずに、例えば化学量論的に求める。すなわち、内燃
機関の燃料組成とその使用量および吸入空気量から、
内燃機関の燃料組成とその使用量および排ガス中の残留
酸素濃度から、または内燃機関の燃料組成と吸入空気
量と排ガス中の残留酸素濃度からそれぞれ下記式によっ
て、化学量論的に排ガス量を算出することができる。 内燃機管の燃料組成とその使用量および吸入空気量か
らの場合、 内燃機関の燃料組成とその使用量および排ガス中の残
留酸素濃度からの場合、 内燃機関の燃料組成と吸入空気量と排ガス中の残留酸
素濃度からの場合、 ただし、 G:排ガス量 (Nm3/H] A:吸入空気量 [Nm3/H] Q:燃料使用量 [Kg/H] A02:吸入空気中の酸素濃度 [容積分率]2 :排ガス中の残留酸素濃度 [容積分率] V0:気体標準分子容量 [/mol] c:燃料中の炭素濃度 [重量分率] h:燃料中の水素濃度 [重量分率] o:燃料中の酸素濃度 [重量分率] s:燃料中の硫黄濃度 [重量分率] n:燃料中の窒素濃度 [重量分率] MC:炭素の原子量 MH:水素の原子量 MO:酸素の原子量 MS:硫黄の原子量 MN:窒素の原子量 【発明の効果] 以上説明したように請求項1の発明の排ガス脱硝方法
においては、内ガス中のNOX量を、内燃機関の吸入空気
相対湿度と吸入空気温度と吸入空気量と燃料組成とその
燃料使用量のプロセスデータによって算出して還元剤注
入量を制御するため、高価なNOX濃度計や排ガス中の煤
塵等により影響を受けやすい排ガス流量測定器等の計測
器を排ガス配管系に一切使用せずにすむ。そのため、NO
X濃度計の使用に伴う問題点、すなわち排ガス中の煤塵
や水分によってNOX濃度計のサンプリングプローブは排
ガス流量測定器のピトー管が汚れたり閉塞しやすく、測
定値が不正確になること、そのためにしばしば測定を止
めて清掃やメンテナンスが必要となること等の問題点を
解消できる。さらに、この方法においては、燃料組成も
データ対象になっているので、燃料変更等の運転状況の
変化に対応して適正還元剤注入量を求めることができ
る。 また、請求項2の発明の排ガス脱硝方法においては、
排ガス中のNOX量を、内燃機関の吸入空気相対湿度と吸
入空気温度と燃料組成とその燃料使用量と排ガス中の残
留酸素濃度のプロセスデータによって、または内燃機関
の吸入空気相対湿度と吸入空気温度と吸入空気量と燃料
組成と排ガス中の残留酸素濃度のプロセスデータによっ
て算出して還元剤注入量を制御するため、高価なNOX濃
度計や排ガス中の煤塵等により影響を受けやすい排ガス
流量測定器を使用せずにすむ。そのため、NOX濃度計の
使用に伴う前述の問題点を解消できると共に、排ガス流
量測定に代えて酸素濃度を測定対象としたので、例えば
ジルコニア式酸素濃度計の如く単に排ガス中のセンサー
を出しておくだけでよく、排ガス中の煤塵や水分による
計器の閉塞等が生じにくい。その上、燃料組成もデータ
対象になっているので、燃料変更等の運転状況の変化に
対応して適正還元剤注入量を求めることができる。There are various formulas for calculating the NO X concentration in the exhaust gas from the correlation between the intake air relative humidity of the internal combustion engine and the intake air temperature. For example, the formula can be obtained by the following formula. NO X = N ・ NO X (0) (A) N = a ・ T.H + b ・ T + c (B) where NO X : NO X concentration in exhaust gas (ppm [13% O 2 concentration conversion]) NO X (0): A reference concentration appropriately selected in consideration of the NO X concentration range emitted by the internal combustion engine, which is provided merely for convenience of calculation. (Ppm [13% O 2 concentration conversion]) N: Concentration multiplication variable of reference concentration NO X (0) with respect to NO X concentration in exhaust gas, which is a function of temperature and relative humidity. T: Intake air temperature (° C) H: Intake air relative humidity (%) a to c: Constants specific to the internal combustion engine NO x (0) and constants a to c in the above formulas (A) and (B)
The process of determining the temperature will be explained by taking a diesel engine as an example.First, the diesel engine is operated by changing the relative humidity and temperature of the air supplied to the diesel engine, and the NO X concentration in the exhaust gas at each relative humidity and temperature. (Ppm [13%
Measure O 2 concentration]). Obtaining the relative humidity, such as FIG. 1 from the measured data, the temperature, the correlation data of the NO X concentration in the exhaust gas. This can be easily obtained by, for example, searching the inside or outside of the actually measured data to find the NO X concentration at a given relative humidity at a given temperature, and plotting this. Figure 1 calculates the concentration of NO X when the actual relative humidity at the predetermined temperature by the outer Investigation or inner Sagasuru the temperature reference from the measured data, further external search-based relative humidity from the obtained data or 40% relative humidity at each predetermined temperature by the inner Sagasuru, 60%, in which to determine the 80% of the NO X concentration. As is clear from FIG. 1, the exhaust gas in the exhaust gas has almost no relation to the load of the internal combustion engine within the normally used range.
The NO X concentration is almost a function of the air temperature and the air relative humidity, and if the temperature is constant, the NO X concentration is proportional to the relative humidity, and if the relative humidity is the same, the lower the temperature, the higher the NO X concentration tends to be. Recognize. That is, it is understood that the concentration multiplication variable N of a certain reference concentration NO X (0) (1000 ppm in FIG. 1) with respect to the NO X concentration in the exhaust gas is a function of temperature and relative humidity. The constants a, b, and c in the equation (B) can be calculated by, for example, reading the data from FIG. 1 and establishing at least three simultaneous equations relating to the equation (B). The relational expression for obtaining the density multiplying variable N should originally use the following equation (C) instead of the above equation (B), and its constant should be obtained mathematically as described above, but in practice it is a simple equation. The above formula (B) may also be used. N = d · T · H + e · T + f · H + g (C) (d to g: constant) In the above formulas (B) and (C), the above constant a depending on the data value adopted to obtain the constant. Since the values of ~ g are slightly different, it is preferable to obtain a plurality of constant values from as much data as possible and use each constant value obtained by averaging them. Further, as is clear from FIG. 1, since the relative humidity at each temperature and the NO X concentration in the exhaust gas are in a proportional relationship, the relational expression between the relative humidity at each temperature and the NO X concentration in the exhaust gas is obtained, and the computer The relevant temperature relational expression may be used each time. In any case, there are various formulas for estimating the NO X concentration in the exhaust gas from the correlation between the relative humidity of intake air of the internal combustion engine and the intake air temperature. The amount of exhaust gas from the internal combustion engine is obtained, for example, stoichiometrically without using an exhaust gas flow path measuring device. That is, from the fuel composition of the internal combustion engine and its usage amount and intake air amount,
The stoichiometric amount of exhaust gas is calculated from the fuel composition of the internal combustion engine and its usage amount and the residual oxygen concentration in the exhaust gas, or from the fuel composition of the internal combustion engine, the intake air amount and the residual oxygen concentration in the exhaust gas by the following formulas. can do. From the fuel composition of the internal combustion engine pipe and its usage and intake air amount, From the fuel composition of the internal combustion engine and its usage and the residual oxygen concentration in the exhaust gas, From the fuel composition of the internal combustion engine, the intake air amount, and the residual oxygen concentration in the exhaust gas, However, G: Exhaust gas amount (Nm 3 / H) A: Intake air amount [Nm 3 / H] Q: Fuel usage amount [Kg / H] A 02 : Oxygen concentration in intake air [Volume fraction] 2 : Exhaust gas Residual oxygen concentration [Volume fraction] V 0 : Gas standard molecular capacity [/ mol] c: Carbon concentration in fuel [Weight fraction] h: Hydrogen concentration in fuel [Weight fraction] o: In fuel Oxygen concentration [weight fraction] s: Sulfur concentration in fuel [weight fraction] n: Nitrogen concentration in fuel [weight fraction] M C : Atomic weight of carbon MH : Atomic weight of hydrogen M O : Atomic weight of oxygen M S : Sulfur atomic weight M N : Nitrogen atomic weight [Effect of the invention] As described above, in the exhaust gas denitration method of the invention of claim 1, the NO X amount in the internal gas is compared with the intake air relative humidity of the internal combustion engine. to control the reducing agent injection amount is calculated as an intake air temperature of intake air quantity and the fuel composition as the process data of the fuel consumption, soot expensive NO X densitometer and the exhaust gas The instrument susceptible flue gas flow rate meter, such as the effect need not be used at all in the exhaust gas pipe system by. Therefore, NO
The problem with the use of the X concentration meter, that is, the sampling probe of the NO X concentration meter due to the dust and water in the exhaust gas, tends to contaminate or block the pitot tube of the exhaust gas flow rate measuring instrument, which makes the measured value inaccurate. It is possible to solve the problem that the measurement is often stopped and cleaning and maintenance are required. Further, in this method, since the fuel composition is also a data object, it is possible to obtain the appropriate reducing agent injection amount in response to changes in the operating conditions such as fuel changes. Further, in the exhaust gas denitration method of the invention of claim 2,
The amount of NO X in the exhaust gas can be determined by the process data of the intake air relative humidity of the internal combustion engine, the intake air temperature, the fuel composition, the amount of the fuel used, and the residual oxygen concentration in the exhaust gas, or the intake air relative humidity and the intake air of the internal combustion engine. because calculated by the process data of the temperature and the residual oxygen concentration in the intake air amount and the fuel composition and in the exhaust gas controls the reducing agent injection amount, susceptible exhaust gas flow rate affected by dust or the like of expensive NO X densitometer and the exhaust gas Avoid using a measuring instrument. Therefore, it is possible to eliminate the above-mentioned problems associated with the use of the NO X concentration meter, and the oxygen concentration is measured instead of the exhaust gas flow rate measurement, so that a sensor in the exhaust gas such as a zirconia oxygen concentration meter is simply put out. It only needs to be placed, and the instrument is unlikely to be blocked by soot and water in the exhaust gas. In addition, since the fuel composition is also a data target, it is possible to determine the appropriate reducing agent injection amount in response to changes in operating conditions such as fuel changes.
第1図は内燃機関の吸入空気の相対湿度および温度と排
ガス中のNOX濃度との相関を示すグラフ、第2図は従来
の排ガス脱硝装置の例を示す説明図、第3図は従来の排
ガス脱硝装置の別な例を示す説明図である。 1……内燃機関、2……煙道、 3……排ガス消音器、4……脱硝反応器、 5……煙突、10……還元剤注入口、 13……NOX濃度計、 14……排ガス流量測定器。FIG. 1 is a graph showing the correlation between the relative humidity and temperature of intake air of an internal combustion engine and the NO X concentration in exhaust gas, FIG. 2 is an explanatory view showing an example of a conventional exhaust gas denitration device, and FIG. It is explanatory drawing which shows another example of an exhaust gas denitration apparatus. 1 ... Internal combustion engine, 2 ... Flue, 3 ... Exhaust gas silencer, 4 ... Denitration reactor, 5 ... Chimney, 10 ... Reductant inlet, 13 ... NO X concentration meter, 14 ... Exhaust gas flow rate measuring device.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−204614(JP,A) 特開 平3−36409(JP,A) 特開 平2−259223(JP,A) 特開 昭55−93917(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-2-204614 (JP, A) JP-A-3-36409 (JP, A) JP-A-2-259223 (JP, A) JP-A-55- 93917 (JP, A)
Claims (2)
ち、脱硝反応器に送って脱硝処理を行う脱硝方法におい
て、内燃機関の吸入空気相対湿度と吸入空気温度と吸入
空気量と燃料組成とその燃料使用量のデータに基づい
て、還元剤注入量を制御することを特徴とする内燃機関
排ガスの脱硝方法。1. A denitrification method in which a reducing agent is injected into exhaust gas of an internal combustion engine and then sent to a denitrification reactor to perform denitrification treatment. In the denitrification method, the relative humidity of intake air, the temperature of intake air, the amount of intake air, and the fuel composition. And a denitrification method for exhaust gas from an internal combustion engine, characterized in that the reducing agent injection amount is controlled based on the fuel consumption data.
ち、脱硝反応器に送って脱硝処理を行う脱硝方法におい
て、内燃機関の吸入空気相対湿度と吸入空気温度と燃料
組成とその燃料使用量と排ガス中の残留酸素濃度のデー
タに基づいて、または内燃機関の吸入空気相対湿度と吸
入空気温度と吸入空気量と燃料組成と、排ガス中の残留
酸素濃度のデータに基づいて、還元剤注入量を制御する
ことを特徴とする内燃機関排ガスの脱硝方法。2. A denitrification method in which a reducing agent is injected into exhaust gas of an internal combustion engine and then sent to a denitrification reactor to perform denitrification treatment. In the denitrification method, a relative humidity of intake air of an internal combustion engine, an intake air temperature, a fuel composition and use of the fuel. Of the reducing agent based on the amount and the data of the residual oxygen concentration in the exhaust gas, or based on the data of the relative humidity of the intake air of the internal combustion engine, the intake air temperature, the intake air amount, the fuel composition, and the residual oxygen concentration of the exhaust gas. A method for denitrifying exhaust gas from an internal combustion engine, which comprises controlling the amount of the exhaust gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1316090A JP2551173B2 (en) | 1989-12-05 | 1989-12-05 | Denitrification method for internal combustion engine exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1316090A JP2551173B2 (en) | 1989-12-05 | 1989-12-05 | Denitrification method for internal combustion engine exhaust gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03175112A JPH03175112A (en) | 1991-07-30 |
JP2551173B2 true JP2551173B2 (en) | 1996-11-06 |
Family
ID=18073132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1316090A Expired - Lifetime JP2551173B2 (en) | 1989-12-05 | 1989-12-05 | Denitrification method for internal combustion engine exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2551173B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05103951A (en) * | 1991-10-14 | 1993-04-27 | Ebara Corp | Exhaust gas-denitrating method and device therefor |
NZ286943A (en) * | 1995-07-12 | 1998-07-28 | Kureha Chemical Ind Co Ltd | Fly fishing leader of vinylidene fluoride resin |
JP3903977B2 (en) * | 2003-10-17 | 2007-04-11 | トヨタ自動車株式会社 | Exhaust purification device for internal combustion engine and exhaust purification method for internal combustion engine |
US7067319B2 (en) * | 2004-06-24 | 2006-06-27 | Cummins, Inc. | System for diagnosing reagent solution quality and emissions catalyst degradation |
US8424292B2 (en) * | 2009-12-31 | 2013-04-23 | General Electric Company | Systems and apparatus relating to the monitoring and/or controlling of selective catalytic reduction processes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5593917A (en) * | 1979-01-08 | 1980-07-16 | Unitika Ltd | Method of purifying exhaust gas of internal combustion engine |
JPH0712415B2 (en) * | 1987-04-17 | 1995-02-15 | 三菱重工業株式会社 | Exhaust gas denitration equipment for diesel engines |
JPH0635817B2 (en) * | 1989-02-02 | 1994-05-11 | 株式会社日本触媒 | Method for removing nitrogen oxides from diesel engine exhaust gas |
-
1989
- 1989-12-05 JP JP1316090A patent/JP2551173B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03175112A (en) | 1991-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5950422A (en) | Method and device for converting a pollutant in an exhaust gas in a catalytic converter | |
JP4682035B2 (en) | Method for controlling injection of reducing agent in exhaust gas from a combustion engine | |
US6422005B2 (en) | Process and apparatus for the catalytic elimination of a pollutant from the exhaust gas from a combustion installation | |
CN108915827B (en) | Method for improving NOx emission of engine based on SCR chemical reaction mathematical model | |
CN110637148B (en) | System and method for controlling flow distribution in an aftertreatment system | |
US6378508B1 (en) | Process and system for automatically controlling the fraction of the exhaust gas quantity returned to an internal-combustion engine | |
KR100220447B1 (en) | Exhaust gas denitration method and apparatus therefor | |
JP2551173B2 (en) | Denitrification method for internal combustion engine exhaust gas | |
CN102235219A (en) | Method to estimate NO2 concentration in an exhaust gas of an internal combustion engine | |
JP2004225695A (en) | Method and apparatus for operating metering unit of catalyst | |
JP3631899B2 (en) | NOx analyzer in flue gas | |
US11408317B2 (en) | Method and device for determining the efficiency of an SCR catalyst | |
JP2002162393A (en) | Method and device for simultaneously analyzing nox and nh3 | |
US11396836B1 (en) | Reductant dosing control system | |
ES2200287T3 (en) | PROCEDURE FOR THE SURVEILLANCE OF THE OPERATION AND AGING OF A CATALYTIC CONVERTER FOR A MOTOR THAT OPERATES WITH POOR MIXTURE AND SYSTEM FOR PUTTING INTO PRACTICE. | |
US20010014298A1 (en) | Exhaust-gas cleaning installation and process for the catalytic reduction of the level of pollutant in exhaust gas from a combustion system | |
JPH01242127A (en) | Apparatus for controlling performance of stack gas denitrification plant | |
JPS6242352Y2 (en) | ||
JP3058479B2 (en) | Exhaust gas flow measurement device | |
JPH0645617Y2 (en) | Reducing agent control device for denitration equipment | |
RU2821292C1 (en) | Method of measuring fuel consumption in diesel internal combustion engines and device for its implementation | |
US11725555B1 (en) | Aftertreatment system | |
JP3189448B2 (en) | NH3 / NOx concentration measuring device for exhaust gas | |
Gupta | AN EXPERIMENTAL INVESTIGATION INTO THE EFFECT OF PARTICULATE MATTER ON NOx REDUCTION IN A SCR CATALYST ON A DPF | |
Petrow et al. | Vehicle and Engine Dynamometer Studies of H₂S Emissions Using a Semi-Continuous Analytical Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |