JPH0635818B2 - Method for removing nitrogen oxides from diesel engine exhaust gas - Google Patents

Method for removing nitrogen oxides from diesel engine exhaust gas

Info

Publication number
JPH0635818B2
JPH0635818B2 JP1025210A JP2521089A JPH0635818B2 JP H0635818 B2 JPH0635818 B2 JP H0635818B2 JP 1025210 A JP1025210 A JP 1025210A JP 2521089 A JP2521089 A JP 2521089A JP H0635818 B2 JPH0635818 B2 JP H0635818B2
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
nitrogen oxides
engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1025210A
Other languages
Japanese (ja)
Other versions
JPH02204615A (en
Inventor
基伸 小林
昭維 宇野
太 木下
光晴 萩
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Yanmar Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd, Yanmar Diesel Engine Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP1025210A priority Critical patent/JPH0635818B2/en
Priority to KR1019900001186A priority patent/KR950012137B1/en
Priority to DE69005322T priority patent/DE69005322T3/en
Priority to EP90102103A priority patent/EP0381236B2/en
Priority to US07/474,274 priority patent/US5021227A/en
Publication of JPH02204615A publication Critical patent/JPH02204615A/en
Priority to US07/678,119 priority patent/US5116579A/en
Publication of JPH0635818B2 publication Critical patent/JPH0635818B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はディーゼルエンジン排ガス中の窒素酸化物除去
方法に関するものである。詳しく述べると、ディーゼル
エンジンから排出される排ガスの性状の変動に対して、
窒素酸化物を除去できると同時に、窒素酸化物除去後の
排ガス中に含まれるアンモニアを極力制御することがで
きる窒素酸化物の除去方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for removing nitrogen oxides from a diesel engine exhaust gas. In detail, with respect to changes in the properties of the exhaust gas emitted from the diesel engine,
The present invention relates to a method for removing nitrogen oxides, which can remove nitrogen oxides and at the same time control the ammonia contained in the exhaust gas after the nitrogen oxides are removed.

(従来の技術) 従来、酸化雰囲気下における窒素酸化物除去方法として
はアンモニアを還元剤として用いる選択還元脱硝法が、
排ガス中の酸素濃度の影響を受けずに窒素酸化物とアン
モニアが選択的に反応するために、酸化雰囲気下におい
ても効果的な方法とされ、火力発電プラントのボイラ及
び加熱炉等の固定発生源の排気ガス浄化に広く適用され
てきた。
(Prior Art) Conventionally, a selective reduction denitration method using ammonia as a reducing agent has been used as a method for removing nitrogen oxides in an oxidizing atmosphere.
Since nitrogen oxides and ammonia react selectively without being affected by the oxygen concentration in the exhaust gas, it is an effective method even in an oxidizing atmosphere, and is a fixed source for boilers and heating furnaces of thermal power plants. It has been widely applied to exhaust gas purification.

一方、内燃機関からの排ガス中の窒素酸化物の低減につ
いても、アンモニア選択還元法が適用された例が種々開
示されている。例えば、燃料消費量に比例させて、アン
モニアを排ガス中に供給し、得られる混合ガスをペレッ
ト状触媒を充填した反応器に通過させて、窒素酸化物を
除去する方法(特公昭58−501001号公報参照)等が開示
されている。
On the other hand, various examples of applying the ammonia selective reduction method have also been disclosed for reducing nitrogen oxides in exhaust gas from an internal combustion engine. For example, a method of supplying ammonia into exhaust gas in proportion to the amount of fuel consumption and passing the resulting mixed gas through a reactor filled with a pellet catalyst to remove nitrogen oxides (Japanese Patent Publication No. 58-501001). (See gazette) and the like are disclosed.

しかし、ディーゼルエンジンの場合、ボイラーに比べて
エンジン負荷の変動が著しく、それに伴って排ガス量お
よび窒素酸化物濃度が急激に変化するために、この変化
に連動させて、過不足なくアンモニアを厳密に制御する
ことは、前記の従来の技術では十分といえず、それ故排
ガス中の窒素酸化物を高い効率で除去すると同時に、排
出アンモニアを極力制御するという点において問題が残
されているといえる。
However, in the case of a diesel engine, the engine load fluctuates significantly compared to a boiler, and the exhaust gas amount and nitrogen oxide concentration change rapidly with it. Controlling cannot be said to be sufficient with the above-mentioned conventional techniques, and therefore, it can be said that there remains a problem in that nitrogen oxides in exhaust gas are removed with high efficiency and, at the same time, exhaust ammonia is controlled as much as possible.

(発明が解決しようとする問題点) 本発明の目的はディーゼルエンジン排ガス中の窒素酸化
物をアンモニアの存在下で触媒と接触させて、排ガス性
状の急激な変動に対しても窒素酸化物を効率良く除去で
き且つエンジン燃焼性能の変化による窒素酸化物量の変
化にも対応できると同時に窒素酸化物除去後に含まれる
アンモニアを極力制御する窒素酸化物除去方法を提供す
ることにある。
(Problems to be Solved by the Invention) An object of the present invention is to bring nitrogen oxides in diesel engine exhaust gas into contact with a catalyst in the presence of ammonia so that the nitrogen oxides can be efficiently treated even when the exhaust gas properties change rapidly. It is an object of the present invention to provide a nitrogen oxide removing method which can remove well and can cope with a change in the amount of nitrogen oxide due to a change in engine combustion performance, and at the same time, control the ammonia contained after removing the nitrogen oxide as much as possible.

(問題点を解決するための手段) 本発明は上記目的の達成のため、第一発明では、 ディーゼルエンジン排ガス中の窒素酸化物をアンモニア
の存在下に触媒を用いて還元除去するにあたり、エンジ
ンの燃料消費量(単位時間当りの燃料の消費量)そして
吸入空気の湿度をそれぞれ測定し、エンジンの燃料消費
量の測定値並びに吸入空気の湿度と窒素酸化物量がほぼ
比例する関係に基づいてアンモニアを流量制御し、該排
ガス中に供給することを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for reducing nitrogen oxides in a diesel engine exhaust gas by using a catalyst in the presence of ammonia to remove nitrogen oxides from an engine. The fuel consumption (fuel consumption per unit time) and the humidity of the intake air were measured, and ammonia was measured based on the measured fuel consumption of the engine and the relationship between the intake air humidity and the amount of nitrogen oxides. It is characterized in that the flow rate is controlled and the gas is supplied into the exhaust gas.

そして第二発明では、ディーゼルエンジン排ガス中の窒
素酸化物をアンモニアの存在下に触媒を用いて還元除去
するにあたり、エンジンの燃料消費量,エンジン給気温
度そして吸入空気の湿度をそれぞれ測定し、エンジンの
燃料消費量及びエンジン給気温度の測定値並びに吸入空
気の湿度と窒素酸化物量がほぼ比例する関係に基づいて
アンモニアを流量制御し、該排ガス中に供給することを
特徴とする。
Then, in the second invention, in reducing and removing nitrogen oxides in the exhaust gas of a diesel engine using a catalyst in the presence of ammonia, the fuel consumption of the engine, the engine supply air temperature, and the humidity of the intake air are measured, respectively. The flow rate of ammonia is controlled on the basis of the measured values of the fuel consumption amount and the engine supply air temperature, and the relationship between the intake air humidity and the amount of nitrogen oxides, and the ammonia is supplied into the exhaust gas.

本発明者等が検討したところによると、ディーゼルエン
ジンから排出される窒素酸化物の総量は第1および第2
図に示す如く、燃料消費量及びエンジンの給気温度にほ
ぼ比例して増減するが、更に、第3図に示す如く吸入空
気の湿度にも比例してそれぞれ減少及び増加することが
知見された。
According to a study made by the present inventors, the total amount of nitrogen oxides discharged from the diesel engine is the first and the second.
As shown in the figure, it was found that the fuel consumption increases and decreases almost in proportion to the air supply temperature of the engine, but further decreases and increases in proportion to the humidity of the intake air as shown in FIG. .

すなわち、第1図に示す如く窒素酸化物の排出量は燃料
消費量に比例するために、燃料消費量に対応してアンモ
ニアを供給することによりアンモニア供給量を制御する
ことが可能であるが、窒素酸化物濃度は大気条件すなわ
ちエンジンの給気温度のみならず吸入空気の湿度等によ
っても大きく影響を受けるために、これ等の給気温度及
び吸入空気の湿度を測定して、その測定値に基づいて、
窒素酸化物排出量をさらに補正することが重要である。
That is, as shown in FIG. 1, since the emission amount of nitrogen oxides is proportional to the fuel consumption amount, it is possible to control the ammonia supply amount by supplying ammonia corresponding to the fuel consumption amount. The nitrogen oxide concentration is greatly affected not only by the atmospheric conditions, that is, the intake air temperature of the engine, but also by the humidity of the intake air, etc. On the basis of,
Further correction of nitrogen oxide emissions is important.

したがって、エンジンから排出される窒素酸化物の総量
は燃料消費量,給気温度そして吸入空気の湿度を測定し
て直接に求め得た窒素酸化物総排出量に比例してアンモ
ニア供給量を決定する。
Therefore, the total amount of nitrogen oxides discharged from the engine determines the ammonia supply amount in proportion to the total amount of nitrogen oxides emission that can be directly obtained by measuring the fuel consumption amount, the supply temperature and the humidity of the intake air. .

それにより、窒素酸化物の排出量および濃度が急激に変
化しても、その排出量および濃度に比例して、時間的な
遅れがなく最適量のアンモニアを正確に供給し、排ガス
中の窒素酸化物を効果的に除去できること、および窒素
酸化物除去後の排ガス中における残留アンモニアを極力
抑止できることを確認したものである。
As a result, even if the amount and concentration of nitrogen oxides change drastically, the optimum amount of ammonia can be accurately supplied with no time delay in proportion to the amount and concentration of nitrogen oxides, and It was confirmed that the substances can be effectively removed and that the residual ammonia in the exhaust gas after removing the nitrogen oxides can be suppressed as much as possible.

(作用) アンモニアの供給量が、エンジンの燃料消費量と吸入空
気の湿度とさらには給気温度の測定値に基づいて求めた
排ガス中の窒素酸化物の量および濃度に比例して決定さ
れて、排ガス中における窒素酸化物の総量に対してより
正確な最適量のアンモニアが応答性良く供給され、エン
ジン負荷に対応して常時効率的に窒素酸化物の除去が行
なわれ且つ同除去後におけるアンモニアの残留が極力抑
止されていることになる。
(Function) The supply amount of ammonia is determined in proportion to the amount and concentration of nitrogen oxides in the exhaust gas obtained based on the fuel consumption of the engine, the humidity of the intake air and the measured value of the supply air temperature. A more accurate and optimal amount of ammonia is supplied with good responsiveness to the total amount of nitrogen oxides in the exhaust gas, and nitrogen oxides are constantly and efficiently removed according to the engine load, and ammonia after the removal is performed. It means that the remaining of is suppressed as much as possible.

(実施例) 以下、本発明を詳細に説明する。(Example) Hereinafter, the present invention will be described in detail.

第4図に示しているエンジン本体(1)に備えた排ガス
浄化装置(A)は本発明の第1発明を実施するのに開発
したものを例示しており、エンジン本体(1)のマニホ
ールド(2)と連通状の排気管(3)には排気管ガスタ
ービン(4)と反応器(5)とが設けられている。又、
排気管(3)における反応器(5)の上流側に設置され
たアンモニア注入ノズル(6)にはアンモニア輸送管
(7)が接続され、このアンモニア輸送管(7)にはア
ンモニア調整弁(8)およびアンモニア流量計(9)が
設けられていると共にアンモニア容器(10)が接続され
ている。
The exhaust gas purifying apparatus (A) provided in the engine body (1) shown in FIG. 4 is exemplified as one developed to carry out the first invention of the present invention. The exhaust pipe (3) communicating with 2) is provided with an exhaust pipe gas turbine (4) and a reactor (5). or,
An ammonia transfer pipe (7) is connected to an ammonia injection nozzle (6) installed upstream of the reactor (5) in the exhaust pipe (3), and an ammonia regulating valve (8) is connected to the ammonia transfer pipe (7). ) And an ammonia flow meter (9) are provided, and an ammonia container (10) is connected.

そして、エンジン本体(1)に供給される燃料の消費量
を測定する燃料流量計(11)とエンジン本体(1)の吸
入空気の湿度を測定する湿度検出器(12)演算器(13)
に連絡され、この演算器(13)は比率設定器(14)およ
びアンモニア流量制御器(15)を通じてアンモニア調整
弁(8)と連絡している。
Then, a fuel flow meter (11) for measuring the consumption of fuel supplied to the engine body (1) and a humidity detector (12) and a calculator (13) for measuring the humidity of intake air of the engine body (1).
The arithmetic unit (13) communicates with the ammonia adjusting valve (8) through the ratio setting unit (14) and the ammonia flow rate controller (15).

すなわち、エンジン本体(1)の負荷量に応答して、燃
料流量計(11)と吸入空気の湿度検出器(12)からの各
信号を演算器(13)に入力する。演算器(13)におい
て、窒素酸化物の総排出量を算出し、この信号を比率設
定器(14)に入出し、比率設定器(14)で予め設定され
たアンモニア/窒素酸化物比により供給するアンモニア
量を決定する。
That is, each signal from the fuel flow meter (11) and the intake air humidity detector (12) is input to the calculator (13) in response to the load amount of the engine body (1). The calculator (13) calculates the total amount of nitrogen oxides discharged, and outputs this signal to and from the ratio setter (14) and supplies it at the ammonia / nitrogen oxide ratio preset by the ratio setter (14). Determine the amount of ammonia to use.

そして、該比率設定器(14)の出力はアンモニア流量信
号として、アンモニア流量制御器(15)に入力され、ア
ンモニア調整弁(8)の開閉を制御し、反応器(5)に
流れ込む排ガスに混入されるアンモニア量を制御する。
The output of the ratio setter (14) is input to the ammonia flow rate controller (15) as an ammonia flow rate signal to control the opening / closing of the ammonia adjusting valve (8) and mix with the exhaust gas flowing into the reactor (5). Controls the amount of ammonia produced.

排ガスはマニホールド(2)から排気管(3)を経て、
触媒(16)を充填した反応器(5)に流れる。
The exhaust gas passes from the manifold (2) through the exhaust pipe (3),
It flows into the reactor (5) filled with the catalyst (16).

アンモニアはアンモニア容器(10)よりアンモニア輸送
管(7)を経て、アンモニア調整弁(8)で最適な流量
に制御されて、排気管(3)において、アンモニア注入
ノズル(6)により排ガス中に混入され、必要によりガ
ス分散板(17)により、混合分散された後、触媒(16)
を通過して、排ガス中の窒素酸化物を還元除去する。
Ammonia is controlled from the ammonia container (10) through the ammonia transport pipe (7) to the optimum flow rate by the ammonia adjusting valve (8), and is mixed into the exhaust gas by the ammonia injection nozzle (6) in the exhaust pipe (3). And, if necessary, mixed and dispersed by the gas dispersion plate (17), and then the catalyst (16)
To reduce and remove nitrogen oxides in the exhaust gas.

第5図に示しているエンジン本体(1)に備えた排ガス
浄化装置(A)は本発明の第2発明を実施するのに開
発したものを例示しており、その構成は第5図に例示し
た排ガス浄化装置(A)と基本的に同構成のものである
ため、共通する構成については説明を省略し、相違する
構成について以下に説明する。
The exhaust gas purifying apparatus (A 1 ) provided in the engine body (1) shown in FIG. 5 exemplifies the one developed for carrying out the second invention of the present invention, and its configuration is shown in FIG. Since the exhaust gas purifying apparatus (A) has the basically same configuration, the description of the common configuration will be omitted and the different configuration will be described below.

排気管ガスタービン(4)をエンジン本体(1)と連絡
する給気管(18)には給気温度検出器(19)が設けら
れ、この給気温度検出器(19)は燃料流量計(11)およ
び湿度検出器(12)と同様に演算器(13)に連絡されて
いる。
An air supply temperature detector (19) is provided in an air supply pipe (18) that connects the exhaust pipe gas turbine (4) to the engine body (1). The air supply temperature detector (19) is a fuel flow meter (11). ) And the humidity detector (12) as well as the calculator (13).

この排ガス浄化装置(A)はエンジン本体(1)の負
荷量に応答して、燃料流量計(11)と湿度検出器(12)
と給気温度検出器(19)からの各信号を演算器(13)に
入力する。演算器(13)は窒素酸化物の総排出量を演算
しこの信号を比率設定器(14)に入力し、比率設定器
(14)で予め設定されたアンモニア/窒素酸化物比によ
り供給するアンモニア量を決定する。この比率設定器
(14)の出力はアンモニア流量信号としてアンモニア流
量制御器(15)に入力され、アンモニア調整弁(8)の
開閉を制御し、反応器(5)に流れ込む排ガスに混入さ
れるアンモニア量を制御する。それにより、アンモニア
はアンモニア調整弁(8)で最適な流量に制御されて、
排気管(3)において、アンモニア注入ノズル(6)に
より排ガス中に混入され、必要によりガス分散板(17)
により、混合分散された後、触媒(16)を通過して、排
ガス中の窒素酸化物を還元除去する。
This exhaust gas purifying device (A 1 ) responds to the load amount of the engine body (1) by responding to the fuel flow meter (11) and the humidity detector (12).
And each signal from the supply air temperature detector (19) is input to the calculator (13). The calculator (13) calculates the total emission of nitrogen oxides, inputs this signal to the ratio setter (14), and supplies ammonia according to the ammonia / nitrogen oxide ratio preset by the ratio setter (14). Determine the amount. The output of the ratio setter (14) is input to the ammonia flow rate controller (15) as an ammonia flow rate signal, controls the opening and closing of the ammonia adjusting valve (8), and is mixed with the exhaust gas flowing into the reactor (5). Control the amount. As a result, ammonia is controlled to an optimum flow rate by the ammonia adjusting valve (8),
In the exhaust pipe (3), it is mixed into the exhaust gas by the ammonia injection nozzle (6) and, if necessary, the gas dispersion plate (17)
Thus, after being mixed and dispersed, the nitrogen oxide in the exhaust gas is reduced and removed by passing through the catalyst (16).

又、本発明において、用いられる触媒の形状としては、
ペレット状,球状,粒状,板状,パイプ状及びハニカム
状等が挙げられる。
Further, in the present invention, the shape of the catalyst used is
Examples include pellets, spheres, granules, plates, pipes and honeycombs.

特に、幾何学的表面積が大きいため必要触媒量が少なく
て済み、又触媒層の圧力損失が小さいという理由でハニ
カム状が好ましい。
In particular, the honeycomb shape is preferable because the required catalyst amount is small because the geometric surface area is large and the pressure loss of the catalyst layer is small.

本発明の対象となる触媒組成については、特に限定すべ
き理由はないが、チタンを主成分とする触媒やゼオライ
ト系触媒が好ましい。
The catalyst composition to be the subject of the present invention is not particularly limited, but a catalyst containing titanium as a main component or a zeolite-based catalyst is preferable.

特に、チタンを含む酸化物をA成分とし、これが60〜9
9.5重量%含まれ、バナジウム,タングステン,モリブ
デン,マンガン,銅,鉄,コバルト,セリウム、及びス
ズよりなる群から選ばれた少なくとも一種の元素の酸化
物をB成分とし、これが0.5〜40重量%の範囲に含ま
れてなる触媒が好ましい結果を与える。
In particular, the oxide containing titanium is used as the A component, and this is 60 to 9
9.5 wt%, vanadium, tungsten, molybdenum, manganese, copper, iron, cobalt, cerium, and oxide of at least one element selected from the group consisting of tin as the B component, which is 0.5 to 40 wt% Catalysts comprised in the range of% give favorable results.

触媒A成分はチタンを含む酸化物であれば好ましい結果
を与え、例えば酸化チタン、チタンとケイ素の二元系複
合酸化物(以下、TiO−SiOとする)。チタンとジ
ルコニウムの二元系複合酸化物、チタン、ケイ素及びジ
ルコニウムからなる三元系複合酸化物等が挙げられる。
A成分の比表面積は10m2/g以上、特に20m2/g以上が
好ましい結果を与える。
The catalyst A component gives preferable results if it is an oxide containing titanium, for example, titanium oxide or a binary complex oxide of titanium and silicon (hereinafter referred to as TiO 2 —SiO 2 ). Examples thereof include binary complex oxides of titanium and zirconium, and ternary complex oxides of titanium, silicon and zirconium.
The specific surface area of the component A is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more.

本発明に使用される還元剤としては、アンモニアガス,
アンモニア水、その他の尿素やショウ酸アンモニウムの
ように熱分解してアンモニアになるアンモニウム塩等が
用いられる。
The reducing agent used in the present invention includes ammonia gas,
Ammonia water, other ammonium salts such as urea and ammonium oxalate that are thermally decomposed to ammonia are used.

本発明の対象となるディーゼルエンジンから排出される
排ガスの組成としては、通常、アンモニア10〜1,000pp
m、酸素2〜21容量%、炭酸ガス5〜15容量%、水分5
〜15容量%、煤塵0.02〜1g/Nm3、及び窒素酸化
物 200〜3,000ppm程度に含有するものであるが、ディー
ゼルエンジンやガスエンジン等の内燃機関から排出され
る排ガスであれば良く、特に組成範囲を限定するもので
はない。
The composition of the exhaust gas emitted from the diesel engine that is the subject of the present invention is usually 10 to 1,000 pp of ammonia.
m, oxygen 2-21% by volume, carbon dioxide 5-15% by volume, moisture 5
˜15% by volume, soot and dust 0.02 to 1 g / Nm 3 , and nitrogen oxides 200 to 3,000 ppm, but any exhaust gas emitted from an internal combustion engine such as a diesel engine or a gas engine may be used. The composition range is not particularly limited.

処理条件としては、反応温度が 150℃〜 650℃、特に 2
00℃〜 600℃が好ましい。
The processing conditions include a reaction temperature of 150 ° C to 650 ° C, especially 2
00 ° C to 600 ° C is preferable.

空間速度は2,000〜100,000hr-1 、特に5,000〜50,000hr
-1の範囲が好ましい。
Space velocity is 2,000-100,000hr-1, especially 5,000-50,000hr
A range of -1 is preferred.

アンモニアの添加量は窒素酸化物1容量部に対して0.
3〜1.2容量部が好ましいが、通常、未反応アンモニ
アを極力抑制する必要があるためにアンモニア/窒素酸
化物のモル比を1以下として使用されることが特に好ま
しい。
The amount of ammonia added was 0.
3 to 1.2 parts by volume is preferable, but since it is usually necessary to suppress unreacted ammonia as much as possible, it is particularly preferable to use an ammonia / nitrogen oxide molar ratio of 1 or less.

以下に具体例を挙げて本発明をさらに詳細に説明する
が、本発明はこれら具体例のみに限定されるものではな
い。
Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these specific examples.

具体例I 第4図に例示した排ガス浄化装置(A)を用い、発電用
のディーゼルエンジンの排気管(3)と連通状の反応器
(5)にはV2重量%、WO7重量%を含有す
るTiO系ハニカム触媒( 150mm角相当直径3.2mm、
セル肉厚0.5mm、長さ 450mm)を6×6本2層に充填
した。
Specific Example I Using the exhaust gas purifying apparatus (A) illustrated in FIG. 4, V 2 O 5 2 wt% and WO 3 were used in the reactor (5) communicating with the exhaust pipe (3) of the diesel engine for power generation. TiO 2 honeycomb catalyst containing 7% by weight (diameter equivalent to 150 mm square 3.2 mm,
A cell wall thickness of 0.5 mm and a length of 450 mm) was filled in 2 layers of 6 × 6 pieces.

同装置(A)により、アンモニア/窒素酸化物モル比が
0.85になるように演算器(13)、及び比率設定器
(14)を作動させてアンモニアを排気管内の排ガス中に
注入し、排ガス処理量3500〜5500Nm3/hr、排ガス温度
380〜 430℃入口窒素酸化物濃度 700〜950ppm、の範囲
に変動させてエンジンを運転した。
With the device (A), the calculator (13) and the ratio setter (14) are operated so that the ammonia / nitrogen oxide molar ratio becomes 0.85, and ammonia is injected into the exhaust gas in the exhaust pipe, Exhaust gas throughput 3500-5500 Nm 3 / hr, exhaust gas temperature
The engine was operated by changing the range of 380 to 430 ° C inlet nitrogen oxide concentration to 700 to 950ppm.

その時の脱硝率は83〜86%、反応器出口における排ガス
中のアンモニア濃度は0.5〜1.0ppmであった。
At that time, the denitration rate was 83 to 86%, and the ammonia concentration in the exhaust gas at the reactor outlet was 0.5 to 1.0 ppm.

具体例II 第5図に例示した排ガス浄化装置(A)を用い、具体
例Iと同様の方法で脱硝反応を行なった。
Specific Example II Using the exhaust gas purifying apparatus (A 1 ) illustrated in FIG. 5, the denitration reaction was performed in the same manner as in Specific Example I.

この時の脱硝率は82〜85%、反応器出口における排ガス
中のアンモニア濃度は0.4〜1.1ppmであった。
At this time, the denitration rate was 82 to 85%, and the ammonia concentration in the exhaust gas at the reactor outlet was 0.4 to 1.1 ppm.

比較例1 第4図に示した排ガス浄化装置(A)において湿度検出
器(12)を設置しないこと以外は全て具体例1と同様の方
法で脱硝試験を行った。
Comparative Example 1 A denitration test was conducted in the same manner as in Example 1 except that the humidity detector (12) was not installed in the exhaust gas purifying apparatus (A) shown in FIG.

この時の脱硝率は76〜82%、反応器出口における排ガス
中のアンモニア濃度は0.4〜4ppm であり、具体例1
に比較して、吸入空気中の湿度により補正を行わないた
めに、エンジンの負荷変動に対する応答性が悪く脱硝率
も低い値であった。
At this time, the denitration rate was 76 to 82%, and the ammonia concentration in the exhaust gas at the reactor outlet was 0.4 to 4 ppm.
Compared with the above, since the correction was not performed by the humidity in the intake air, the responsiveness to the load fluctuation of the engine was poor and the denitration rate was low.

具体例I及びII記載の脱硝方法は脱硝率の変動幅が少な
く窒素酸化物を高効率で除去できると同時に、二次公害
となり得るアンモニアの放出も極めて少なく優れた方法
である。
The denitration methods described in Examples I and II are excellent methods in which the fluctuation range of the denitration rate is small and nitrogen oxides can be removed with high efficiency, and at the same time, the emission of ammonia which may cause secondary pollution is extremely small.

(発明の効果) したがって、本発明によれば次の利点がある。(Effects of the Invention) Therefore, according to the present invention, there are the following advantages.

排ガス性状の急激な変化およびエンジンの負荷の変
動にともなう窒素酸化物量の急激な変化に迅速に応答し
て、窒素酸化物を高いレベルで効率よく除去することが
でき、しかも窒素酸化物除去後の排ガスとともに放出さ
れる同ガス中のアンモニア量を最小限に抑止できて二次
公害の心配もなく実用上の利益大である。
Nitrogen oxides can be efficiently removed at a high level in response to a rapid change in exhaust gas properties and a rapid change in the amount of nitrogen oxides accompanying changes in the load of the engine. The amount of ammonia released along with the exhaust gas can be suppressed to a minimum, and there is no concern about secondary pollution, which is a great practical benefit.

請求項1により、特に二項目の測定因子で前記の効
果を得ることができ、装置の省力化に有効である。
According to claim 1, the above-mentioned effects can be obtained with the two measurement factors, which is effective for labor saving of the apparatus.

【図面の簡単な説明】[Brief description of drawings]

第1図はディーゼルエンジンの燃料消費量と窒素酸化物
排出量の関係を示すグラフ。第2図はディーゼルエンジ
ンの吸入空気の温度と窒素酸化物濃度の関係を示すグラ
フ。第3図はディーゼルエンジンの吸入空気の絶対湿度
と窒素酸化物濃度の関係を示すグラフ。第4図および第
5図は本発明方法を行うための排ガス浄化装置を備えた
ディーゼルエンジンの概略図である。 図中 (1)はエンジン本体 (3)は排気管 (5)は反応器 (6)はアンモニア注入ノズル (7)はアンモニア輸送管 (8)はアンモニア調整弁 (9)はアンモニア流量計 (10)はアンモニア容器 (11)は燃料流量計 (12)は湿度検出器 (13)は演算器 (14)は比率設定器 (15)はアンモニア流量制御器 (16)は触媒 (18)は給気管 (19)は給気温度検出器
FIG. 1 is a graph showing the relationship between the fuel consumption amount of a diesel engine and the nitrogen oxide emission amount. FIG. 2 is a graph showing the relationship between the temperature of intake air of a diesel engine and the concentration of nitrogen oxides. FIG. 3 is a graph showing the relationship between the absolute humidity of intake air of a diesel engine and the nitrogen oxide concentration. 4 and 5 are schematic views of a diesel engine equipped with an exhaust gas purifying apparatus for carrying out the method of the present invention. In the figure, (1) is the engine body (3) is the exhaust pipe (5) is the reactor (6) is the ammonia injection nozzle (7) is the ammonia transport pipe (8) is the ammonia control valve (9) is the ammonia flow meter (10) ) Is an ammonia container (11) is a fuel flow meter (12) is a humidity detector (13) is a calculator (14) is a ratio setter (15) is an ammonia flow controller (16) is a catalyst (18) is an air supply pipe (19) is the supply air temperature detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木下 太 兵庫県姫路市網干区興浜字西沖992番地の 1 日本触媒化学工業株式会社触媒研究所 内 (72)発明者 萩 光晴 兵庫県姫路市網干区興浜字西沖992番地の 1 日本触媒化学工業株式会社触媒研究所 内 (72)発明者 井上 明 兵庫県姫路市網干区興浜字西沖992番地の 1 日本触媒化学工業株式会社触媒研究所 内 (56)参考文献 特開 昭52−48722(JP,A) 特開 昭59−134332(JP,A) 実開 昭63−146116(JP,U) 特表 昭58−501001(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Futoshi Kinoshita, 992, Nishioki, Nishihama, Aboshi-ku, Himeji-shi, Hyogo Pref., Catalytic Research Laboratory, Nippon Catalysis Chemical Industry Co., Ltd. No. 1 Japan Catalysts & Chemicals Industry Co., Ltd. Catalysis Research Institute (72) Inventor Akira Inoue No. 992 Nishikioki, Kamahama, Aboshi-ku, Himeji-shi, Hyogo No. 1 Japan Catalysts & Chemicals Industry Co., Ltd. (56) Reference JP-A-52 -48722 (JP, A) JP 59-134332 (JP, A) Actually opened 63-146116 (JP, U) Special table 58-501001 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ディーゼルエンジン排ガス中の窒素酸化物
をアンモニアの存在下に触媒を用いて還元除去するにあ
たり、エンジンの燃料消費量そして吸入空気の湿度をそ
れぞれ測定し、エンジンの燃料消費量の測定値並びに吸
入空気の湿度と窒素酸化物量がほぼ比例する関係に基づ
いてアンモニアを流量制御し、該排ガス中に供給するこ
とを特徴とするディーゼルエンジン排ガス中の窒素酸化
物除去方法。
1. When reducing and removing nitrogen oxides in diesel engine exhaust gas using a catalyst in the presence of ammonia, the fuel consumption of the engine and the humidity of intake air are measured to measure the fuel consumption of the engine. A method for removing nitrogen oxides from a diesel engine exhaust gas, wherein the flow rate of ammonia is controlled based on the value and the relationship between the humidity of intake air and the amount of nitrogen oxides, and the ammonia is supplied into the exhaust gas.
【請求項2】ディーゼルエンジン排ガス中の窒素酸化物
をアンモニアの存在下に触媒を用いて還元除去するにあ
たり、エンジンの燃料消費量,エンジン給気温度そして
吸入空気の湿度をそれぞれ測定し、エンジンの燃料消費
量及びエンジン給気温度の測定値並びに吸入空気の湿度
と窒素酸化物量がほぼ比例する関係に基づいてアンモニ
アを流量制御し、該排ガス中に供給することを特徴とす
るディーゼルエンジン排ガス中の窒素酸化物除去方法。
2. When reducing and removing nitrogen oxides in the exhaust gas of a diesel engine with a catalyst in the presence of ammonia, the fuel consumption of the engine, the engine supply air temperature, and the humidity of the intake air are measured to determine the engine The flow rate of ammonia is controlled on the basis of the relationship between the measured values of fuel consumption and engine supply air temperature and the intake air humidity and the amount of nitrogen oxides, and the ammonia is supplied into the exhaust gas. Method for removing nitrogen oxides.
JP1025210A 1989-02-02 1989-02-02 Method for removing nitrogen oxides from diesel engine exhaust gas Expired - Lifetime JPH0635818B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1025210A JPH0635818B2 (en) 1989-02-02 1989-02-02 Method for removing nitrogen oxides from diesel engine exhaust gas
KR1019900001186A KR950012137B1 (en) 1989-02-02 1990-02-01 Method of removing nitrogen oxides in exhaust gases from a diesel engine
DE69005322T DE69005322T3 (en) 1989-02-02 1990-02-02 Process for reducing nitrogen oxides from diesel engine exhaust.
EP90102103A EP0381236B2 (en) 1989-02-02 1990-02-02 Method of removing nitrogen oxides in exhaust gases from a diesel engine
US07/474,274 US5021227A (en) 1989-02-02 1990-02-02 Method of removing nitrogen oxides in exhaust gases from a diesel engine
US07/678,119 US5116579A (en) 1989-02-02 1991-04-01 Removing nitrogen oxides in exhaust gases from a diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025210A JPH0635818B2 (en) 1989-02-02 1989-02-02 Method for removing nitrogen oxides from diesel engine exhaust gas

Publications (2)

Publication Number Publication Date
JPH02204615A JPH02204615A (en) 1990-08-14
JPH0635818B2 true JPH0635818B2 (en) 1994-05-11

Family

ID=12159596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025210A Expired - Lifetime JPH0635818B2 (en) 1989-02-02 1989-02-02 Method for removing nitrogen oxides from diesel engine exhaust gas

Country Status (1)

Country Link
JP (1) JPH0635818B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005745A (en) * 2012-06-21 2014-01-16 Yanmar Co Ltd Urea water injection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248722A (en) * 1975-10-17 1977-04-19 Niigata Eng Co Ltd Reduction gas quantity controller in the exhaust gas denitriation devi ce of an internal combustion engine such as a diesel engine and the li ke
US4473536A (en) * 1982-12-27 1984-09-25 General Electric Company Catalytic pollution control system for gas turbine exhaust
JPH0612174Y2 (en) * 1987-03-13 1994-03-30 日野自動車工業株式会社 Nisel oxide removal mechanism of diesel engine

Also Published As

Publication number Publication date
JPH02204615A (en) 1990-08-14

Similar Documents

Publication Publication Date Title
KR950012137B1 (en) Method of removing nitrogen oxides in exhaust gases from a diesel engine
KR101659788B1 (en) Denox of diesel engine exhaust gases using a temperature-controlled precatalyst for providing no2 in accordance with the requirements
CN102472136B (en) For making the method and apparatus of the particulate filter regeneration be arranged on inside engine exhaust gas pipe
JP6067848B2 (en) Exhaust gas purification device and method for reducing nitrogen oxides from fossil fuel combustion power plant exhaust
JPH03221147A (en) Catalyst and method for purification of exhaust gas
JP2011027102A (en) Model-based tuning of ammonia distribution and control for reduced operating cost of selective catalytic reduction
BR112018013720B1 (en) EXHAUST GAS TREATMENT SYSTEM
JPH0635817B2 (en) Method for removing nitrogen oxides from diesel engine exhaust gas
JP2006046289A (en) Method for controlling exhaust emission control device
JPH0635820B2 (en) Method for removing nitrogen oxides from diesel engine exhaust gas
JPH0635818B2 (en) Method for removing nitrogen oxides from diesel engine exhaust gas
JPS63302120A (en) Method for removing nitrogen oxide contained in diesel engine exhaust gas
US5582802A (en) Catalytic sulfur trioxide flue gas conditioning
CN110026082A (en) A kind of ozone injects the kiln gas denitrification apparatus and method of auxiliary SCR before ammonia
JPH0635819B2 (en) Method for removing nitrogen oxides from diesel engine exhaust gas
CN112774432B (en) Heat exchange system and process for SCR-RTO outlet flue gas
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JPH0559933A (en) Reducing agent reforming reactor and exhaust gas purifying device
JP3002452B1 (en) High efficiency flue gas denitration system
JP2001234735A (en) Flow control device
CN114790956B (en) Marine ammonia fuel engine emission reduction device and control method
TWI796206B (en) Intelligent multifunctional environmental protection device
CN219848977U (en) Denitration device of ship power plant flue gas
KR102490746B1 (en) Active exhaust gas treatment system
JP7310730B2 (en) Purification control device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 15