JPH0635686B2 - Flame resistant polyester fiber structure - Google Patents

Flame resistant polyester fiber structure

Info

Publication number
JPH0635686B2
JPH0635686B2 JP60144258A JP14425885A JPH0635686B2 JP H0635686 B2 JPH0635686 B2 JP H0635686B2 JP 60144258 A JP60144258 A JP 60144258A JP 14425885 A JP14425885 A JP 14425885A JP H0635686 B2 JPH0635686 B2 JP H0635686B2
Authority
JP
Japan
Prior art keywords
polyester
phosphorus
fiber structure
intrinsic viscosity
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60144258A
Other languages
Japanese (ja)
Other versions
JPS626910A (en
Inventor
哲夫 松本
瑛司 市橋
欣史 香川
好治 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP60144258A priority Critical patent/JPH0635686B2/en
Publication of JPS626910A publication Critical patent/JPS626910A/en
Publication of JPH0635686B2 publication Critical patent/JPH0635686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,耐炎性を有するポリエステル繊維構造物に関
するものである。
TECHNICAL FIELD The present invention relates to a flame-resistant polyester fiber structure.

(従来の技術) 一般に,ポリエステル,特にポリエチレンテレフタレー
トは優れた機械的特性及び化学的特性を有し,衣料用,
産業用等の繊維として広く利用されている。
(Prior Art) Generally, polyester, especially polyethylene terephthalate, has excellent mechanical and chemical properties,
Widely used as a fiber for industrial use.

ところで,近年,火災予防の観点から合成繊維の耐炎性
への要請が強まっており、特にポリエステル繊維は,衣
類やカーペット,カーテン,車両用座席シート等に大量
に使用されているので,対応策の確立が急がれている。
By the way, in recent years, there has been an increasing demand for flame resistance of synthetic fibers from the viewpoint of fire prevention. In particular, polyester fibers are used in large amounts in clothes, carpets, curtains, vehicle seats, etc. The establishment is urgent.

従来,ポリエステルに耐炎性を付与する方法は種々提案
されており,ポリエステルにリン化合物を含有させる方
法が有効であるとされている。
Heretofore, various methods for imparting flame resistance to polyester have been proposed, and it is said that the method of incorporating a phosphorus compound into the polyester is effective.

なかでも,リン化合物としてホスフィン酸化合物を用い
る方法は好ましい方法とされており,例えば,特開昭53
-128175号公報には、ホスフィン酸化合物を用いた分子
量,1,000 〜8,000 の線状高分子化合物が,ポリエステ
ルを含む熱可塑性樹脂に対する難燃剤として有効である
とされている。
Among them, the method of using a phosphinic acid compound as the phosphorus compound is considered to be a preferable method, and is disclosed in, for example, JP-A-53
-128175 discloses that a linear polymer compound using a phosphinic acid compound and having a molecular weight of 1,000 to 8,000 is effective as a flame retardant for a thermoplastic resin containing polyester.

(発明が解決しようとする問題点) しかしながら,上記公報で提案されている難燃剤は,単
独では繊維形性能がなく,また,ポリエステルに添加し
て繊維を製造すると物性を大きく低下させるという問題
があり,繊維を製造するための難燃剤としては適してい
なかった。
(Problems to be Solved by the Invention) However, the flame retardant proposed in the above publication does not have fiber-forming performance by itself, and when it is added to polyester to produce fibers, there is a problem that physical properties are significantly deteriorated. However, it was not suitable as a flame retardant for producing fibers.

本発明は,良好な耐炎性を有し,かつ物性の優れたポリ
エステル繊維構造物を提供しようとするものである。
The present invention is intended to provide a polyester fiber structure having good flame resistance and excellent physical properties.

(問題点を解決するための手段) 本発明は,上記目的を達成するもので,その要旨は次の
とおりである。
(Means for Solving Problems) The present invention achieves the above object, and its gist is as follows.

ポリエチレンテレフタレート又はこれを主成分とするポ
リエステル(A)と下記の式で表されるリン化合物をジ
オール成分の少なくとも一部として用いたポリエステル
であって,リン原子を重量で50,000ppm以上含有し,極
限粘度が0.4以上のポリエステル(B)とからなり,リ
ン原子を重量で 500〜35,000ppm含有し,極限粘度が0.5
以上であることを特徴とする耐炎性ポリエステル繊維構
造物。
A polyester using polyethylene terephthalate or a polyester (A) containing the same as a main component and a phosphorus compound represented by the following formula as at least a part of a diol component, containing 50,000 ppm or more by weight of a phosphorus atom, Consists of polyester (B) with a viscosity of 0.4 or more, contains phosphorus atoms of 500 to 35,000 ppm by weight, and has an intrinsic viscosity of 0.5.
A flame-resistant polyester fiber structure characterized by the above.

(Arは芳香族基,X,Xはエステル形成性官能基
を示し,ベンゼン環は低級アルキル基又はハロゲンで置
換されていてもよい。) 本発明においてポリエステル(A)はポリエチレンテレ
フタレート及びこれを主体とする共重合ポリエステルで
あり,共重合成分としては,イソフタル酸,4−オキシ
安息香酸,5−ナトリウムスルホイソフタル酸,アジピ
ン酸,トリメリット酸,ジエチレングリコール,プロピ
レングリコール,1,4−シクロヘキサンジメタノール,
1,4−ブタンジオール,ペンタエリスリトール等が挙げ
られる。
(Ar is an aromatic group, X 1 and X 2 are ester-forming functional groups, and the benzene ring may be substituted with a lower alkyl group or halogen.) In the present invention, the polyester (A) is polyethylene terephthalate and It is a copolyester mainly composed of, and as the copolymerization component, isophthalic acid, 4-oxybenzoic acid, 5-sodium sulfoisophthalic acid, adipic acid, trimellitic acid, diethylene glycol, propylene glycol, 1,4-cyclohexanediene methanol,
Examples include 1,4-butanediol and pentaerythritol.

本発明において,ポリエステル(B)のリン化合物の含
有量は,リン原子の重量として50,000ppm以上とする必
要があり,リン化合物の含有量がこれより少ないもので
は,繊維構造物中に耐炎性を付与するに十分なリン原子
を含有させようとすると,相対的にポリエステル(A)
の量が少なくなり,ポリエステル繊維構造物の物性が低
下することになり,不適当である。
In the present invention, the content of the phosphorus compound in the polyester (B) is required to be 50,000 ppm or more as the weight of the phosphorus atom, and if the content of the phosphorus compound is less than this, the flame resistance in the fiber structure is improved. When it is attempted to contain sufficient phosphorus atom to impart the polyester (A),
It is not appropriate because the amount of styrene will decrease and the physical properties of the polyester fiber structure will deteriorate.

また,ポリエステル(B)は0.4 以上の極限粘度を有す
ることが必要であり,0.4 未満では,単独では繊維形成
が困難であるとともに,十分高い極限粘度のポリエステ
ル(A)と混合使用する場合にもポリエステル(A)の
極限粘度低下をもたらし,耐炎性を低下させることな
く,強度等の物性の優れた繊維構造物を得ることができ
ない。
In addition, the polyester (B) must have an intrinsic viscosity of 0.4 or more. If it is less than 0.4, it is difficult to form fibers by itself, and when it is mixed with the polyester (A) having a sufficiently high intrinsic viscosity, it is used. It is not possible to obtain a fiber structure having excellent physical properties such as strength without lowering the intrinsic viscosity of the polyester (A) and reducing flame resistance.

また,繊維構造物のリン化合物の含有量が,リン原子の
重量と500 〜35,000ppm となるようにすることが必要
で,この範囲より少量では耐炎性が不十分となり,多す
ぎると物性が低下したり,製糸性が損なわれたりして好
ましくない。
In addition, it is necessary that the phosphorus compound content of the fiber structure is 500 to 35,000 ppm with the weight of phosphorus atoms. If it is less than this range, the flame resistance becomes insufficient, and if it is too large, the physical properties decrease. Undesirably, or the yarn formability is impaired.

さらに,繊維構造物に優れた強度等の物性を与えるため
に,繊維構造物の極限粘度が0.5 以上となるようにする
ことが必要であり,この要件を満足するように,ポリエ
ステル(A)及び(B)の極限粘度及び使用割合が選定
される。しかし,ポリエステル(B)の極限粘度をあま
り高くしすぎると溶融粘度が高くなって製糸性が悪化す
るので,ポリエステル(A)の極限粘度の方を高くし,
ポリエステル(B)の極限粘度はあまり高くしない方が
よい。
Further, in order to give the fiber structure excellent physical properties such as strength, it is necessary that the intrinsic viscosity of the fiber structure be 0.5 or more. To satisfy this requirement, polyester (A) and The intrinsic viscosity and the usage ratio of (B) are selected. However, if the intrinsic viscosity of the polyester (B) is made too high, the melt viscosity becomes high and the spinnability deteriorates. Therefore, the intrinsic viscosity of the polyester (A) should be made higher.
The intrinsic viscosity of polyester (B) should not be too high.

本発明においてリン化合物は,単一繊維中に含有されて
いる必要はなく,ポリエステル繊維構造(マルチフィラ
メント,トウ,ステープル,紡績糸,織物,編物,不織
布等をいう)全体として前記の含有量となるように含有
していればよい。
In the present invention, the phosphorus compound does not need to be contained in a single fiber, and has the above content as a whole in the polyester fiber structure (multifilament, tow, staple, spun yarn, woven fabric, knitted fabric, nonwoven fabric, etc.). So long as it is contained.

ポリエステル(B)は,前記のリン化合物とテレフタル
酸及び/又はイソフタル酸のようなジカルボン酸成分並
びに必要に応じてエチレングリコールのようなジオール
成分を,エステル化法,工交換法,酸交換法,エステル
付加法,重縮合法等により反応させて極限粘度 0.4以上
のポリエステルとすることにより得られる。
The polyester (B) comprises the above-mentioned phosphorus compound and a dicarboxylic acid component such as terephthalic acid and / or isophthalic acid and, if necessary, a diol component such as ethylene glycol, by an esterification method, an industrial exchange method, an acid exchange method, It can be obtained by reacting by ester addition method, polycondensation method, etc. to obtain a polyester having an intrinsic viscosity of 0.4 or more.

,Xのエステル形成性官能基の具体例としては,
次のようなものが挙げられる。
Specific examples of the ester-forming functional group of X 1 and X 2 include:
Some examples are as follows.

(Rは水素原子又は低級アルキル基,Rは低級アル
キレン基,m は 1〜20,n は 0〜20の整数。) 上記のようなリン化合物は,9,10−ジヒドロ−9−オキ
サ−10−フォスファフェナントレン−10−オキサイ
ド(HCAと略称)とp−ベンゾキノン,1,4 −ナフトキノ
ン,o−ベンゾキノン,2,6 −ナフトキノン,4,4 −ジ
フェノキノン等のキノン類とをエチルセロソルブ等の溶
媒中で加熱反応させることにより,前記X,XがH
となった化合物を得,必要に応じてこの部分にエステル
形成性基を導入することに得られる。
(R 1 is a hydrogen atom or a lower alkyl group, R 2 is a lower alkylene group, m is an integer of 1 to 20, and n is an integer of 0 to 20.) The phosphorus compound as described above is represented by 9,10-dihydro-9-oxa. -10-phosphaphenanthrene-10-oxide (abbreviated as HCA) and quinones such as p-benzoquinone, 1,4-naphthoquinone, o-benzoquinone, 2,6-naphthoquinone, 4,4-diphenoquinone and ethyl cellosolve by reaction heated in a solvent, wherein X 1, X 2 is H
To obtain an ester-forming group in this portion, if necessary.

例えば,HCA とキノン類との反応物と相当するカルボン
酸無水物とを加熱反応させたり,HCA とキノン類との反
応物のアルカリ金属塩とアルキレンカーボネート,アル
キレンオキサイド,ポリアルキレンオキサイドあるいは
そのモノ又はジグリシジルエーテルやエピハロヒドリン
とを反応させることにより,前記のようなエステル形成
性基を導入することができる。
For example, a reaction product of HCA and a quinone and a corresponding carboxylic acid anhydride are heated to react with each other, or an alkali metal salt of a reaction product of HCA and a quinone and an alkylene carbonate, an alkylene oxide, a polyalkylene oxide or a mono or The ester-forming group as described above can be introduced by reacting with diglycidyl ether or epihalohydrin.

本発明においてポリエステル繊維構造物を製造する方法
は特に制約されないが,具体例を示せば次のような方法
がある。
In the present invention, the method for producing the polyester fiber structure is not particularly limited, but the following method may be mentioned as a specific example.

ポリエステル(A)の繊維に,適当な溶剤に溶解した
ポリエステル(B)をコーティングする方法。
A method of coating fibers of polyester (A) with polyester (B) dissolved in a suitable solvent.

ポリエステル(A)と(B)とを紡糸完結までの任意
の時期に混合して紡糸し,延伸する紡糸時混合法。
A mixing method during spinning in which polyesters (A) and (B) are mixed and spun at an arbitrary time until completion of spinning and then stretched.

ポリエステル(A)と(B)とをいわゆるサイドバイ
サイド型,海島型,芯鞘型に複合紡糸し,延伸する複合
紡糸法。
A composite spinning method in which polyesters (A) and (B) are composite-spun into so-called side-by-side type, sea-island type, core-sheath type, and stretched.

ポリエステル(A)と(B)とを別々に紡出し,合糸
して巻取る紡糸時混繊法。
Polyester (A) and (B) are spun separately, spun together and wound up.

ポリエステル(A)の繊維とポリエステル(B)の繊
維とを延伸時に混繊する延伸混繊法。
A drawing and mixing method in which fibers of polyester (A) and fibers of polyester (B) are mixed during drawing.

ポリエステル(A)の繊維とポリエステル(B)の繊
維とを製織,編成時に混織,混編する方法。
A method in which fibers of polyester (A) and fibers of polyester (B) are woven and knitted during knitting and knitting.

ポリエステル(A)のステープルとポリエステル
(B)のステープルとを紡績時に混合する混合紡績法。
A mixed spinning method in which staples of polyester (A) and staples of polyester (B) are mixed during spinning.

本発明において,ポリエステル繊維構造物の製造に用い
るポリエステルを製造する際の重縮合反応は,0.01 〜1
0mmHg程度の減圧下で,260 〜310℃,好ましくは 275〜
290 ℃の温度で,所定の重合度のものが得られるまで行
えばよい。
In the present invention, the polycondensation reaction in producing the polyester used for producing the polyester fiber structure is 0.01 to 1
260 ~ 310 ℃, preferably 275 ~ under reduced pressure of 0mmHg
It may be carried out at a temperature of 290 ° C until a desired degree of polymerization is obtained.

また,重縮合反応は触媒の存在下に行われ,触媒として
は従来一般に用いられているアンチモン,チタン,ゲル
マニウム,亜鉛,スズ,コバルト等の金属化合物やスル
ホサリチル酸,o−スルホ安息香酸無水物等の有機スル
ホン酸化合物が好ましく用いられる。なお,スズ化合物
はエステル化反応と重縮合反応の双方の触媒となるの
で,エステル化反応の工程で添加してもよい。触媒の添
加量はポリエステルを構成する酸成分1モルに対して1
×10-5〜1×10-3モル,好ましくは5×10-5〜5×10-4
モル,より好ましくは1×10-4〜3×10-4モルとするの
が適当である。
The polycondensation reaction is carried out in the presence of a catalyst, and as the catalyst, metal compounds such as antimony, titanium, germanium, zinc, tin, and cobalt, which have been conventionally used, sulfosalicylic acid, o-sulfobenzoic anhydride, etc. The organic sulfonic acid compound of is preferably used. Since the tin compound serves as a catalyst for both the esterification reaction and the polycondensation reaction, it may be added in the step of the esterification reaction. The amount of the catalyst added is 1 for 1 mol of the acid component constituting the polyester.
× 10 -5 to 1 × 10 -3 mol, preferably 5 × 10 -5 to 5 × 10 -4
It is suitable that the amount is more preferably 1 × 10 −4 to 3 × 10 −4 mol.

なお,本発明においてヒンダードフェノール化合物のよ
うな安定剤,コバルト化合物,蛍光剤,染料のような色
調改良剤,二酸化チタンのような顔料等の添加物を共存
させてもさしつかえない。
In the present invention, additives such as stabilizers such as hindered phenol compounds, cobalt compounds, fluorescent agents, color improving agents such as dyes, and pigments such as titanium dioxide may coexist.

紡出された繊維は必要に応じて,連続的に又は別工程で
延伸,熱処理されるが,捲縮加工,薬液による処理等の
高次加工に付してもよい。
The spun fiber is drawn or heat-treated continuously or in another step, if necessary, but may be subjected to higher-order processing such as crimping or treatment with a chemical solution.

(作 用) 本発明のポリエステル繊維構造物が優れた耐炎性と良好
な物性を示す理由は明らかではないが,接炎時にホスフ
ィン酸残基を有するリン化合物がポリエステルの熱分解
を促進して,溶融落下を助長すると同時に,単にリン化
合物を共重合したポリエステルからなるものではないた
め,融点や強度の低下がなく,ゲル化等の好ましくない
現象を極小化できるためと考えられる。
(Operation) Although the reason why the polyester fiber structure of the present invention exhibits excellent flame resistance and good physical properties is not clear, a phosphorus compound having a phosphinic acid residue promotes thermal decomposition of polyester during flame contact, It is thought that this is because the melt-fall is promoted, and at the same time, the polyester does not consist of a polyester copolymerized with a phosphorus compound, so that the melting point and the strength are not deteriorated, and undesirable phenomena such as gelation can be minimized.

(実施例) 次に実施例をあげて本発明を記述する。EXAMPLES Next, the present invention will be described with reference to examples.

なお,実施例において特性値等は次のようにして測定又
は評価したものである。
The characteristic values and the like in the examples are measured or evaluated as follows.

極限粘度〔η〕 フェノールと四塩化エタンとの等重量混合物を溶媒とし
て,温度20.0℃で測定した。
Intrinsic viscosity [η] Using an equal weight mixture of phenol and ethane tetrachloride as a solvent, the temperature was measured at 20.0 ° C.

融点 パーキンエルマー社製DSC− 2型差動熱量計を用い,昇
温速度20℃/分で測定した。
Melting point Using a DSC-2 type differential calorimeter manufactured by Perkin Elmer, the temperature was measured at a temperature rising rate of 20 ° C / min.

軟化点 メトラー社製自動融点測定装置を用い,顕微鏡下でホッ
トステージ上に2本の繊維を互いに交差させて置き,2
℃/分の割合で昇温し,繊維の交点が変形して融着する
温度を求めた。
Softening point Using an automatic melting point measuring device manufactured by METTLER, place two fibers on a hot stage under a microscope so that they cross each other.
The temperature was raised at a rate of ° C / min, and the temperature at which the fiber intersection was deformed and fused was determined.

リン原子の含有量 ケイ光X線法により定量した。(「リン含量」はリン原
子の重量としての量を示す。) 耐炎性 常法に従って紡糸,延伸して得た糸を筒編地にし,その
1gを長さ10.0cmに丸めて10.0mm径の針金コイル中に挿
入し,45度の角度に保持して,下端からミクロバーナー
(口径0.64mm)で点火し,火源を遠ざけて消火した場合
は再び点火を繰り返し,全試料が燃焼しつくすまでに要
する点火回数を求め,5個の試料についての点火回数
(接炎回数と記す)で表した。
Phosphorus atom content Quantitatively determined by fluorescent X-ray method. (“Phosphorus content” refers to the amount of phosphorus atoms by weight.) Flame resistance A yarn obtained by spinning and drawing according to a conventional method is made into a tubular knitted fabric, and 1 g of the yarn is rolled into a length of 10.0 cm to obtain a 10.0 mm diameter. Insert into wire coil, hold at 45 degree angle, ignite with micro burner (caliber 0.64mm) from the lower end, repeat ignition when extinguishing by moving away from the fire source until all samples burn out The number of ignitions required for was calculated and expressed as the number of ignitions (referred to as the number of flame contact) for 5 samples.

着火性 次の4段階で評価した。Ignition property The following four grades were evaluated.

◎:接炎後30秒以上しないと着火しない。⊚: Ignition does not occur until 30 seconds or more after flame contact.

○:接炎後15〜30秒で着火する。○: Ignition occurs 15 to 30 seconds after flame contact.

△:接炎後5〜15秒で着火する。Δ: Ignition occurs 5 to 15 seconds after flame contact.

×:接炎後5秒以内で着火する。X: Ignition occurs within 5 seconds after flame contact.

実施例1 テレフタル酸とエチレングリコールとのエステル化反応
物(BHET)の存在するエステル化反応槽にテレフタル酸と
エチレングリコールとのモル比1:1.6 のスラリーを連
続的に供給し,250 ℃,0.05kg/cm2Gで滞留時間を8
時間として反応させ,反応率95%のBHETを連続的に得,
これに触媒として三酸化アンチモンをポリエステルを構
成する酸成分1モルに対し2×10-4モル添加し,280 ℃
に昇温し,減圧下に重縮合して〔η〕0.75のポリエチレ
ンテレフタレート(PET)を得た。
Example 1 A slurry having a molar ratio of terephthalic acid and ethylene glycol of 1: 1.6 was continuously fed to an esterification reaction tank containing an esterification reaction product (BHET) of terephthalic acid and ethylene glycol at 250 ° C., 0.05. Dwell time of 8 in kg / cm 2 G
BHET with a reaction rate of 95% is continuously obtained by reacting as time,
2 × 10 -4 mol of antimony trioxide as a catalyst was added to 1 mol of the acid component constituting the polyester, and the mixture was added at 280 ° C.
The temperature was raised to 1, and polycondensation was performed under reduced pressure to obtain [η] 0.75 polyethylene terephthalate (PET).

一方,HCA とp−ベンゾキノンとをエチルセロソルブ溶
媒中で90℃の温度で反応させた反応物(PBQ・HCA)とやや
過剰の無水酢酸を反応させてPBQ ・HCA のジアセテート
体のリン化合物(融点147.6 〜148.9 ℃を得た。
On the other hand, HCA and p-benzoquinone were reacted in an ethyl cellosolve solvent at a temperature of 90 ° C (PBQ · HCA) and a slight excess of acetic anhydride was reacted to react with the phosphorus compound of the diacetate form of PBQ · HCA ( A melting point of 147.6-148.9 ° C. was obtained.

このリン化合物と 0.5倍モルのテレフタル酸及び 0.5倍
モルのイソフタルを触媒としてジメチルスズマレエート
を酸成分1モルに対して3×10-4モル使用して 270℃の
窒素気流下で4時間反応させた後,さらに30トルで1.5
時間,1トルで4時間反応させて,リン含量が70,500pp
mで,〔η〕が0.58の含リンポリエステルを得た。
This phosphorus compound was reacted with 0.5 times mole terephthalic acid and 0.5 times mole isophthal as a catalyst and dimethyltin maleate was used in an amount of 3 × 10 -4 moles per 1 mole of the acid component, and reacted for 4 hours under a nitrogen stream at 270 ° C. After an additional 30 torr, 1.5
The reaction time is 1 torr for 4 hours and the phosphorus content is 70,500 pp
A phosphorus-containing polyester having an [η] of 0.58 at m was obtained.

上記のPETと含リンポリエステルとをリン含量が約7,000
ppmとなるように混合して溶融紡糸し,延伸してポリエ
ステル繊維を得た。
The above PET and phosphorus-containing polyester have a phosphorus content of about 7,000
The mixture was mixed so as to be ppm, melt-spun, and stretched to obtain a polyester fiber.

得られた繊維の特性値を第1表に示す。The characteristic values of the obtained fiber are shown in Table 1.

実施例2〜4,比較例1〜3 リン化合物の種類及び添加量,PET〔η〕を変えたこと
以外は実施例1と同様に行った結果を第1表に示す。
(第1表において, OBQ・HCA 及びNQ・HCA は,それぞ
れp−ベンキノンの代わりにo−ベンゾキノン及び1,4
−ナフトキノンを用いたものを示す。) 比較例4 実施例1に記載したのと同様な方法で得たPBQ・HCAとや
や過剰のエチレンカーボネートとを反応させた後,前記
BHETとともに重合槽に仕込み,触媒としてジメチルスズ
マレエートを酸成分1モルに対して2×10-4モル添加し
て 280℃に昇温し,減圧下に反応させて,リン含量7,05
0ppm,〔η〕0.49の含リンポリエステルを得た。
Examples 2 to 4, Comparative Examples 1 to 3 Table 1 shows the results obtained in the same manner as in Example 1 except that the type and addition amount of the phosphorus compound and PET [η] were changed.
(In Table 1, OBQ · HCA and NQ · HCA are o-benzoquinone and 1,4 instead of p-benquinone, respectively.
-Indicates using naphthoquinone. Comparative Example 4 After reacting PBQ · HCA obtained by the same method as described in Example 1 with a slight excess of ethylene carbonate,
It was charged into a polymerization tank together with BHET, and 2 × 10 -4 mol of dimethyltin maleate as a catalyst was added to 1 mol of the acid component, the temperature was raised to 280 ° C, and the reaction was conducted under reduced pressure to obtain a phosphorus content of 7,05
A phosphorus-containing polyester containing 0 ppm and [η] 0.49 was obtained.

この含リンポリエステルを溶融紡糸し,延伸して得られ
たポリエステル繊維の特性値を第1表に示す。
Table 1 shows the characteristic values of the polyester fiber obtained by melt spinning this phosphorus-containing polyester and stretching it.

実施例5 実施例1のPET と含リンポリエステルとを重量比で4:
1の割合で混合したものを芯部とし,PETを鞘部とた複
合繊維(芯/鞘の重量比1/1)を常法により製造し
た。
Example 5 The PET of Example 1 and the phosphorus-containing polyester were mixed in a weight ratio of 4:
A composite fiber (core / sheath weight ratio 1/1) in which a mixture of 1 was used as a core and PET was used as a sheath was produced by a conventional method.

得られた繊維の特性値を第2表に示す。The characteristic values of the fibers obtained are shown in Table 2.

実施例6 実施例1のPET と含リンポリエステルとを重量比で4:
1の割合で混合したものからなるマルチフイラメントと
PET からなるマルチフイラメントとが等量混繊された70
d/36f の混繊糸を延伸混繊法により得た。
Example 6 The PET of Example 1 and the phosphorus-containing polyester were used in a weight ratio of 4:
Multifilament consisting of a mixture of 1
70 mixed with equal amount of multifilament made of PET
A mixed fiber of d / 36f was obtained by the stretch mixing method.

得られた混繊糸の特性値を第2表に示す。Table 2 shows the characteristic values of the obtained mixed fiber.

実施例7 実施例1のPET と含リンポリエステルとを重量比で4:
1の割合で混合したものからなるステープルとPET から
なるステープルとを等量で練条混紡し,次いで粗紡機,
精紡機を通して紡績糸を得た。
Example 7 The PET of Example 1 and the phosphorus-containing polyester were used in a weight ratio of 4:
The staples made of a mixture of 1 and the staples made of PET are kneaded and mixed in an equal amount, and then a roving machine,
A spun yarn was obtained through a spinning machine.

得られた紡績糸の特性値を第2表に示す。The characteristic values of the obtained spun yarn are shown in Table 2.

(発明の効果) 本発明によれば,ポリエステルの物性や製糸性を悪化さ
せることがなく,優れた耐炎性を示すという高性能のポ
リエステル繊維構造物を安定して製造することが可能と
なる。
(Effects of the Invention) According to the present invention, it is possible to stably produce a high-performance polyester fiber structure that exhibits excellent flame resistance without deteriorating the physical properties and yarn-forming properties of polyester.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D01F 8/14 B 7199−3B D02G 3/02 (56)参考文献 特開 昭59−59916(JP,A) 特開 昭55−60524(JP,A) 特公 昭44−2111(JP,B1) 特公 昭58−18447(JP,B2) 特公 昭56−27610(JP,B2)Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location D01F 8/14 B 7199-3B D02G 3/02 (56) Reference JP-A-59-59916 (JP, A) JP-A-55-60524 (JP, A) JP-B 44-2111 (JP, B1) JP-B 58-18447 (JP, B2) JP-B 56-27610 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ポリエチレンテレフタレート又はこれを主
成分とするポリエステル(A)と下記の式で表されるリ
ン化合物をジオール成分の少なくとも一部として用いた
ポリエステルであって,リン原子を重量で50,000ppm以
上含有し,極限粘度が0.4以上のポリエステル(B)と
からなり,リン原子を重量で500〜35,000ppm含有し,極
限粘度が0.5以上であることを特徴とする耐炎性ポリエ
ステル繊維構造物。 (Arは芳香族基,X,Xはエステル形成性官能基
を示し,ベンゼン環は低級アルキル基又はハロゲンで置
換されていてもよい。)
1. A polyester comprising polyethylene terephthalate or a polyester (A) containing the same as a main component and a phosphorus compound represented by the following formula as at least a part of a diol component, wherein the phosphorus atom is 50,000 ppm by weight. A flame-resistant polyester fiber structure comprising the above-mentioned polyester (B) having an intrinsic viscosity of 0.4 or more, containing phosphorus atoms in an amount of 500 to 35,000 ppm by weight, and having an intrinsic viscosity of 0.5 or more. (Ar is an aromatic group, X 1 and X 2 are ester-forming functional groups, and the benzene ring may be substituted with a lower alkyl group or halogen.)
JP60144258A 1985-07-01 1985-07-01 Flame resistant polyester fiber structure Expired - Lifetime JPH0635686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60144258A JPH0635686B2 (en) 1985-07-01 1985-07-01 Flame resistant polyester fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60144258A JPH0635686B2 (en) 1985-07-01 1985-07-01 Flame resistant polyester fiber structure

Publications (2)

Publication Number Publication Date
JPS626910A JPS626910A (en) 1987-01-13
JPH0635686B2 true JPH0635686B2 (en) 1994-05-11

Family

ID=15357913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60144258A Expired - Lifetime JPH0635686B2 (en) 1985-07-01 1985-07-01 Flame resistant polyester fiber structure

Country Status (1)

Country Link
JP (1) JPH0635686B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926032A (en) * 2012-11-09 2013-02-13 张守运 High-intensity and high-elongation and easy-dyeing and abrasion-resistant dacron polyester and preparation method thereof
JP2015127376A (en) * 2013-12-28 2015-07-09 三菱樹脂株式会社 White flame-retardant polyester film
CN109112688B (en) * 2018-08-24 2020-12-22 浙江蓝天海纺织服饰科技有限公司 Ultraviolet-proof moisture-absorbing quick-drying yarn and production process and application thereof
CN110923841B (en) * 2019-11-13 2022-05-31 上海力道新材料科技股份有限公司 Flame-retardant polyester fiber and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560524A (en) * 1978-10-30 1980-05-07 Toyobo Co Ltd Water-dispersible polyester
JPS5627610A (en) * 1979-08-13 1981-03-18 Marantz Japan Inc Controlling circuit having multiple display functions
JPS6017861B2 (en) * 1981-07-27 1985-05-07 株式会社豊田自動織機製作所 Weft insertion device in air jet trum
JPS5959916A (en) * 1982-09-24 1984-04-05 Kuraray Co Ltd Flame-retardant polyester fiber and its manufacture

Also Published As

Publication number Publication date
JPS626910A (en) 1987-01-13

Similar Documents

Publication Publication Date Title
US3558557A (en) Copolyesters,their production and uses
IE920015A1 (en) Flame resistant, low pilling polyester fiber
JPH05230345A (en) Flame-resistant polyester
JP2009074088A (en) Flame-retardant cationically dyeable copolyester polymer, and method for manufacturing the same, and fiber thereof
JPH0641512B2 (en) Method for producing flame resistant polyester
JPH0635686B2 (en) Flame resistant polyester fiber structure
JP2573979B2 (en) Method for producing modified polyester moldings
JPH07258520A (en) Light-resistant flame-retardant polyester composition
JPS6253415A (en) Flame-resistant polyester fiber structure
JP3150211B2 (en) Method for producing flame-retardant polyester
JP4076413B2 (en) Polyester resin and polyester fiber
JP2533159B2 (en) Flame resistant polyester composite fiber
JP2007084648A (en) Stabilized polyetherester elastomer and elastic fiber
JPH05140432A (en) Flame-retardant polyester composition
JPH045047B2 (en)
JPH08170223A (en) Polyester resin composition for fiber and fiber comprising the same
JPH0376816A (en) Flame-resistant polyester conjugate fiber
JP2007119571A (en) Polyether ester elastomer and elastic fiber
JPH051141A (en) Flame-resistant polyester
KR0152762B1 (en) Method of manufacturing polyester fiber with fire retardant and anti-pilling properties
JPH06322245A (en) Light-resistant flame-retardant polyester composition
KR950000724B1 (en) Method for preparation of sea-island type conjugated fiber
JPH0362808B2 (en)
JPS6241317A (en) Fire-resistant polyester conjugated yarn
JPH06173115A (en) Flame-retardant polyether-ester elastic fiber