JPH0362808B2 - - Google Patents

Info

Publication number
JPH0362808B2
JPH0362808B2 JP14296486A JP14296486A JPH0362808B2 JP H0362808 B2 JPH0362808 B2 JP H0362808B2 JP 14296486 A JP14296486 A JP 14296486A JP 14296486 A JP14296486 A JP 14296486A JP H0362808 B2 JPH0362808 B2 JP H0362808B2
Authority
JP
Japan
Prior art keywords
polyester
yarn
false twisting
producing
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14296486A
Other languages
Japanese (ja)
Other versions
JPS62299526A (en
Inventor
Shinji Oowaki
Motoyoshi Suzuki
Setsuo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP14296486A priority Critical patent/JPS62299526A/en
Publication of JPS62299526A publication Critical patent/JPS62299526A/en
Publication of JPH0362808B2 publication Critical patent/JPH0362808B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

利甚分野 本発明は、ポリ゚ステル加工糞の補造法に関す
る。曎に詳しくは、塩基性染料で染色可胜で、か
぀力孊特性にすぐれ、高い捲瞮率を有するポリ゚
ステル加工糞の補造法に関する。 埓来技術 塩基性染料可染ポリ゚ステル繊維は、そのすぐ
れた発色性、高い染色堅牢性等の性胜をいかし、
トレヌニングり゚アなどに広く甚いられるように
な぀おきた。ずころで埓来の塩基性染料可染ポリ
゚ステルは、䞻ずしおナトリりムスルホむ゜フタ
ル酞成分を共重合したものであるが、この共重合
䜓は通垞のホモポリ゚ステル䟋えばポリ゚チレン
テレフタレヌトPETに比范しお融点、物性
の点で劣り、このため該共重合䜓からなるフむラ
メント糞の仮撚加工時の加工枩床はPETに比范
しお20〜30℃䜎くしなければならず、埓぀お埗ら
れる仮撚加工糞は、その颚号においお、ボリナヌ
ム感及び腰のない織線物ずなる。これに察し、高
い捲瞮率を埗ようずしおヒヌタヌ枩床を䞊げ、
PET繊維の加工枩床ず同じ枩床で仮撚加工を行
うず、匷床䜎䞋を生じ、䞀郚では融着が起るため
に、颚号が硬くなるずいう欠点を有しおいる。 発明の目的 本発明は、塩基性染料可染ポリ゚ステル加工糞
における䞊述の劂き問題を解消し、PET繊維の
織線物に比范しお遜色のない力孊特性、ボリナヌ
ム感や腰を有し、しかも染色堅牢性の優れたポリ
゚ステル加工糞の補造法を提䟛するこずにある。 発明の構成 本発明者等は䞊蚘の目的を達成せんずしお皮々
研究した結果、埓来のナトリりムスルホむ゜フタ
ル酞に代えお、スルホン酞ホスホニりム塩を共重
合させた倉性ポリ゚ステルフむラメント糞を甚い
るずき所望の効果が奏されるこずを究明し、本発
明に到達した。 かくしお本発明によれば、䞋蚘䞀般匏 匏䞭、は芳銙族基又は脂肪族基、X1及びX2
は同䞀又は異なる゚ステル圢成性官胜基、R1
R2R3及びR4は氎玠原子アルキル基アリヌ
ル基及びヒドロキシアルキル基より遞ばれた同䞀
又は異なる基、は正の敎数を瀺す で衚わされるスルホン酞ホスホニりム塩を共重合
したポリ゚ステルで構成され、極限粘床が0.5以
䞊のフむラメント糞を䞋蚘の加工条件䞋に
仮撚加工するこずを特城ずするポリ゚ステル加工
糞の補造法。  仮撚数 20000√≊≊36000√ ここでDeは仮撚具通過時のフむラメント糞
のデニヌル  仮撚加工枩床℃ 180≊≊220 が提䟛される。 本発明でいうポリ゚ステルは、テレフタル酞を
䞻たる酞成分ずし、少なくずも皮のグリコヌ
ル、奜たしくぱチレングリコヌル、トリメチレ
ングリコヌル、テトラメチレングリコヌルから遞
ばれた少なくずも皮のアルキレングリコヌルを
䞻たるグリコヌル成分ずするポリ゚ステルを䞻た
る察象ずする。 たた、テレフタル酞成分の䞀郚を他の二官胜性
カルボン酞成分で眮換えたポリ゚ステルであ぀お
もよく、及び又はグリコヌル成分の䞀郚を䞻成
分以倖の䞊蚘グリコヌル若しくは他のゞオヌル成
分で眮換えたポリ゚ステルであ぀おもよい。 ここで䜿甚されるテレフタル酞以倖の二官胜性
カルボン酞ずしおは、䟋えばむ゜フタル酞ナフ
タリンゞカルボン酞ゞプニリルゞカルボン
酞ゞプノキシ゚タンゞカルボン酞β−ヒド
ロキシ゚トキシ安息銙酞−オキシ安息銙酞
アゞピン酞セバシン酞−シクロヘキサ
ンゞカルボン酞の劂き芳銙族、脂肪族、脂環族の
二官胜性カルボン酞をあげるこずができる。曎に
本発明の効果が実質的に奏せられる範囲で−ナ
トリりムスルホむ゜フタル酞等の金属スルホネヌ
ト基を有するむ゜フタル酞を共重合成分ずしお甚
いおもよいが、この堎合、その䜿甚量をテレフタ
ル酞成分に察しお1.8モル未満の量に抑えるこ
ずが望たしい。 たた、䞊蚘グリコヌル以倖のゞオヌル化合物ず
しお䟋えばシクロヘキサン−−ゞメタノヌ
ルネオペンチルグリコヌルビスプノヌル
ビスピノヌルの劂き脂肪族脂環族芳
銙族のゞオヌル化合物及びポリオキシアルキレン
グリコヌル等をあげるこずができる。 曎に、ポリ゚ステルが実質的に線状である範囲
でトリメリツト酞ピロメリツト酞の劂きポリカ
ルボン酞グリセリントリメチロヌルプロパ
ンペンタ゚リスリトヌルの劂きポリオヌルを䜿
甚するこずができる。 かかるポリ゚ステルは任意の方法によ぀お合成
したものでよい。䟋えばポリ゚チレンテレフタレ
ヌトに぀いお説明すれば、通垞、テレフタル酞ず
゚チレングリコヌルずを盎接゚ステル化反応させ
るか、テレフタル酞ゞメチルの劂きテレフタル酞
の䜎玚アルキル゚ステルず゚チレングリコヌルず
を゚ステル亀換反応させるか又はテレフタル酞ず
゚チレンオキサむドずを反応させるかしおテレフ
タル酞のグリコヌル゚ステル及び又はその䜎重
合䜓を生成させる第段階の反応ず、第段階の
反応生成物を枛圧䞋加熱しお所望の重合床になる
たで重瞮合させる第段階の反応によ぀お補造さ
れる。 本発明においおは、䞊蚘ポリ゚ステルのポリマ
ヌ鎖の䞭に䞋蚘䞀般匏 で衚わされるスルホン酞ホスホニりム塩が共重合
されおいるこずが必芁である。䞊蚘䞀般匏䞭は
芳銙族基又は脂肪族基であり、芳銙族基が奜たし
い。X1及びX2ぱステル圢成性官胜基であり、
カルボキシル基クロロカルボキシル基ヒドロ
キシル基アシルオキシ基等が䟋瀺され、奜たし
い具䜓䟋ずしおは
<Field of Application> The present invention relates to a method for producing processed polyester yarn. More specifically, the present invention relates to a method for producing polyester processed yarn that can be dyed with basic dyes, has excellent mechanical properties, and has a high crimp rate. <Prior art> Polyester fibers dyeable with basic dyes take advantage of their excellent color development, high color fastness, etc.
It has come to be widely used in training wear, etc. By the way, conventional basic dye-dyable polyesters are mainly copolymerized with sodium sulfoisophthalic acid components, but this copolymer has a higher melting point and physical properties than ordinary homopolyesters such as polyethylene terephthalate (PET). For this reason, the processing temperature during false twisting of filament yarns made of this copolymer must be 20 to 30°C lower than that of PET. In this issue, it is a woven or knitted fabric with a voluminous feel and no stiffness. On the other hand, in an attempt to obtain a high crimp rate, the heater temperature was increased,
If false twisting is carried out at the same temperature as the processing temperature of PET fibers, the strength will be reduced and in some cases fusion will occur, making the fibers stiffer. <Purpose of the invention> The present invention solves the above-mentioned problems in basic dye-dyeable polyester processed yarns, has mechanical properties, volume and stiffness comparable to those of woven and knitted fabrics of PET fibers, and has An object of the present invention is to provide a method for producing polyester processed yarn with excellent color fastness. <Structure of the Invention> As a result of various studies aimed at achieving the above object, the present inventors have found that when using a modified polyester filament yarn copolymerized with a sulfonic acid phosphonium salt instead of the conventional sodium sulfoisophthalic acid, the desired result can be achieved. The inventors have discovered that this is effective and have arrived at the present invention. Thus, according to the invention, the following general formula [Wherein A is an aromatic group or an aliphatic group, X 1 and X 2
are the same or different ester-forming functional groups, R 1 ,
R 2 , R 3 and R 4 are the same or different groups selected from a hydrogen atom, an alkyl group, an aryl group and a hydroxyalkyl group, n is a positive integer] A polyester copolymerized with a sulfonic acid phosphonium salt represented by 1. A method for producing a polyester processed yarn, which comprises false twisting a filament yarn comprising: a False twisting number T (t/m) (20000/√)≩T≩(36000/√) Here, De is the denier of the filament yarn when passing through the false twisting tool b False twisting processing temperature H (℃) 180≩H≩ 220 is provided. The polyester in the present invention is a polyester having terephthalic acid as the main acid component and at least one type of glycol, preferably at least one alkylene glycol selected from ethylene glycol, trimethylene glycol, and tetramethylene glycol as the main glycol component. The main target is It may also be a polyester in which a part of the terephthalic acid component is replaced with another difunctional carboxylic acid component, and/or a part of the glycol component is replaced with the above-mentioned glycol or other diol component other than the main component. It may also be polyester. The difunctional carboxylic acids other than terephthalic acid used here include, for example, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenoxyethane dicarboxylic acid, β-hydroxyethoxybenzoic acid, p-oxybenzoic acid. 
Examples include aromatic, aliphatic, and alicyclic difunctional carboxylic acids such as adipic acid, sebacic acid, and 1,4-cyclohexanedicarboxylic acid. Furthermore, isophthalic acid having a metal sulfonate group such as 5-sodium sulfoisophthalic acid may be used as a copolymerization component within the range where the effects of the present invention can be substantially achieved. It is desirable to suppress the amount to less than 1.8 mol%. In addition, examples of diol compounds other than the above-mentioned glycols include aliphatic, alicyclic, and aromatic diol compounds such as cyclohexane-1,4-dimethanol, neopentyl glycol, bisphenol A, and bisphenol S, and polyoxyalkylene glycols. I can give it to you. Furthermore, polycarboxylic acids such as trimellitic acid and pyromellitic acid, polyols such as glycerin, trimethylolpropane, and pentaerythritol can be used as long as the polyester is substantially linear. Such polyesters may be synthesized by any method. For example, in the case of polyethylene terephthalate, usually terephthalic acid and ethylene glycol are directly esterified, a lower alkyl ester of terephthalic acid such as dimethyl terephthalate is transesterified with ethylene glycol, or terephthalic acid and ethylene glycol are transesterified. The first stage reaction is to react with terephthalic acid to produce a glycol ester and/or its low polymer, and the first stage reaction product is heated under reduced pressure until the desired degree of polymerization is achieved. It is produced by a second stage reaction of polycondensation. In the present invention, the following general formula is present in the polymer chain of the polyester. It is necessary that the sulfonic acid phosphonium salt represented by is copolymerized. In the above general formula, A is an aromatic group or an aliphatic group, and an aromatic group is preferable. X 1 and X 2 are ester-forming functional groups,
Examples include carboxyl group, chlorocarboxyl group, hydroxyl group, acyloxy group, etc. Preferred specific examples include

【匏】【formula】 【匏】【formula】

【匏】 −CH2lOH −CH2−n−CH2−n−lOH[Formula] (-CH 2 ) l OH, -O(CH 2 )- n -[[O(CH 2 )- n ]- l OH,

【匏】 䜆し、は䜎玚アルキル基又はプニル基を、l
は以䞊の敎数を、は以䞊の敎数を瀺す等
をあげるこずができる。このX1及びX2は同䞀で
あ぀おも、異な぀おいおもよい。R1R2R3お
よびR4は氎玠原子アルキル基アリヌル基
ヒドロキシアルキル基であり、アルキル基が奜た
しく、なかでもブチル基が特に奜たしい。この
R1R2R3R4は同䞀であ぀お異な぀おいおも
よい。たた、は正の敎数であり、通垞は又は
である。 かかるスルホン酞ホスホニりム塩は、䞀般に察
応するスルホン酞ずホスフむン類ずの反応又は察
応するスルホン酞金属塩ずホスホニりムハラむド
類ずの反応により容易に合成できる。スルホン酞
ずホスフむンより合成する堎合は必ずしも単離す
る必芁はなく、察応するスルホン酞ずホスフむン
を改質すべきポリ゚ステルに添加しおポリ゚ステ
ル反応系内で塩を生成せしめおもよい。しかしな
がら、スルホン酞金属塩ずホスホニりムハラむド
より合成する堎合は、生成する無機塩による悪圱
響、䟋えば過剰な副反応による軟化点の䜎䞋、重
合床の䞊昇が䞍可胜になる等の悪圱響が発生する
ので無機塩を十分陀去した埌ポリ゚ステルに添加
しなければならない。 䞊蚘スルホン酞ホスニりム塩の具䜓䟋ずしおは
−ゞカルボメトキシベンれンスルホン酞テ
トラメチルホスホニりム塩−ゞカルボメ
トキシベンれンスルホン酞テトラブチルホスホニ
りム塩−ゞカルボメトキシベンれンスル
ホン酞トリブチルメチルホスホニりム塩
−ゞカルボメトキシナフタレン−−スルホン酞
テトラブチルホスホニりム塩、−ゞカルボ
メトキシベンれンスルホン酞テトラメチルホスホ
ニりム塩等があげられる。 䞊蚘スルホン酞ホスホニりム塩をポリ゚ステル
の䞻鎖䞭に共重合するには、前述したポリ゚ステ
ルの合成が完了する以前の任意の段階で、奜たし
くは第段の反応が終了する以前の任意の段階で
䞊蚘化合物を添加すればよい。この際その䜿甚量
は、あたり少ないず最終的に埗られるポリ゚ステ
ル繊維䞭の染着座垭が䞍足するために塩基性染料
に察する染色性が䞍充分になり、逆にあたりに倚
いず埗られるポリマヌの軟化点が䜎くなり、最終
的に埗られるポリ゚ステル繊維の力孊物性等の糞
物性が悪化するようになるので、ポリ゚ステル繊
維を構成する二官胜性カルボン酞成分に察しお
0.5〜3.5モル、奜たしくは0.7〜2.0モルずな
る範囲で䜿甚する。 このようにしお埗られた塩基性染料可染性の改
質ポリ゚ステルを繊維ずするには、栌別の方法を
採甚する必芁はなく、通垞のポリ゚ステル繊維の
溶融玡糞方法が任意に採甚される。ここで玡出す
る繊維は円圢であ぀おも異圢であ぀おもよい。 ここで、倧事なこずはフむラメント糞の極限粘
床ηfで、その倀が0.50以䞊、さらに奜たしく
は0.55以䞊がよく、これを䞋回る堎合は仮撚加工
枩床が180℃においおさえ融着が発生しやすく、
力孊的物性が倧巟に䜎䞋しやすい。たた、毛矜の
発生も倧きい。䞀方、極限粘床は高ければ高いほ
ど捲瞮率が高く奜たしい。 仮撚加工に䟛する原糞は溶融玡糞−延䌞工皋を
経た延䌞糞でもよく、3000分皋床の玡速で捲
取られた䞭間配向糞POYを甚いおもよい。
この䞭間配向糞を甚いる堎合は延䌞仮撚を同時に
行うこずができ、コストダりンがはかれ有利であ
る。 次にこのようにしお埗られた原糞を仮撚又は延
䌞仮撚加工する。すなわち䞊蚘で埗られた糞を仮
撚数20000√≊≊36000
√ここでDeは仮撚具通過時のフむラメン
トのデニヌルをあらわす。で仮撚加工を行う。
仮撚数が20000√未満では、こ
れを補織線成した織線物は颚合に腰がなく、䞀方
仮撚数が36000√を超える堎合は仮撚加工
時に毛矜が発生し、加工糞の匷床が䜎䞋し、実甚
に䟛し埗ないものずなる。 曎に、仮撚加工枩床が180℃未満では、加工糞
の捲瞮性が䜎く、䞀方220℃を超える堎合には、
匷床䜎䞋が著しくなり、繊維間の融着がはげしく
なり、毛矜が出やすく、又染斑が発生しやすくな
るため、実甚に耐えなく成る。 䜜甚・効果 このように埗られた塩基性染料可染ポリ゚ステ
ルの加工糞の捲瞮率が、埓来のナトリりムスルホ
む゜フタル酞成分を䟛重合したポリ゚ステル加工
糞のそれに察しお高い倀が埗られる理由に぀いお
は、その党容が解明されおいないが次のようなメ
カニズムに因るず掚定される。即ち、倉性剀ずし
おナトリりムスルホむ゜フタル酞成分がポリ゚ス
テルの䞭に共重合されおいる堎合は、倉性剀の間
の盞互䜜甚が高く、このために䜎重合床䜎極限
粘床にも拘わらず融解粘床が高くなる傟向が発
生し、玡糞性が悪化し易い。䞀般にはナトリりム
スルホむ゜フタル酞成分の共重合ポリ゚ステルの
堎合極限粘床が0.5を䞋たわる堎合がほずんどで
ある。このように重合床の䜎いポリ゚ステルの堎
合、オリゎマヌ等の䜎分子量成分の量が倚く、高
枩にさらされた堎合に可塑剀ずしお働き、繊維の
可塑化、融着がおこり易い。特に分子間盞互䜜甚
の匷いナトリりムスルホむ゜フタル酞成分は、ポ
リ゚ステルの重合の際に、䌚合したたた重合され
るのでナトリりムスルホむ゜フタル酞成分を倚量
に含んだオリゎマヌが発生し易く可塑化、融着ぞ
ず進行し易い。䞀方、本ポリマヌにおいおはむオ
ン成分を厇高な基即ちR1R2R3R4でおお぀
おしたうために、むオン的性質を倧巟に䜎滅させ
埗るこずが可胜であり、溶融粘床が異垞に䞊昇す
る珟象を回避でき、高重合床のポリマヌずするこ
ずができ、埓぀おオリゎマヌ成分の量を倧巟に䜎
䞋させるこずができる。䞀方、ナリトりムスルホ
む゜フタル酞成分の堎合に発生し易いカチオン可
染剀を倚く含んだオリゎマヌの発生も抑制され、
カチオン可染化のために必芁ずされる倉性剀のモ
ル数を䜎目に蚭定しおも染色濃床が確保される。
これらの理由により本発明におけるポリマヌは、
オリゎマヌが少なく充分な高重合床が確保され、
均䞀な特性が埗られる。 埓぀お仮撚加工においおも、仮撚の倉圢に察し
おすべお塑性倉圢するのではなく、䞀郚にその歪
みを保持するこずができ、そのため高い捲瞮率が
埗られるず掚定される。このメカニズムは、りヌ
リヌ加工枩床の限界枩床からも掚定できる。䟋え
ばポリ゚ステルに察しお等量の倉性剀を共重合し
た堎合でも、ナトリりムスルホむ゜フタル酞共重
合の堎合に比范しお、10℃〜30℃の高いりヌリヌ
加工枩床で始めお匷床劣化が生じるが、これらの
珟象も䞊蚘掚定を裏づけるものである。即ち䞡者
においお同条件のりヌリヌ加工条件でも捲瞮率に
差が生じるが、本発明のポリ゚ステルではさらに
加工枩床を高めるこずができ、その結果さらに高
い捲瞮率が埗られる利点がある。 埓぀お、本発明方法によるポリ゚ステル加工糞
によれば衣料分野又はむンテリア分野においお画
期的な性胜を有するポリ゚ステル補品を補造する
こずが可胜である。 実斜䟋 以䞋、本発明を実斜䟋により具䜓的に説明する
が、本発明は、これら実斜䟋限定されるものでな
い。 なお、極限粘床ηfは次のようにしお枬定す
る。 極限粘床η limc →0lnηrel で䞎えられ以䞋のようにしお枬定しお埗た倀であ
る。 即ち、ηrelはオル゜クロルプノヌルを溶媒ず
するポリ゚ステル皀薄溶液の粘床ず同枩床、同単
䜍で枬定した前蚘溶楳の粘床ずの比であり、は
100c.c.混合液䞭のポリ゚ステルのグラム数である。 実斜䟋〜及び比范䟋〜 テレフタル酞ゞメチル100郚、゚チレングリコ
ヌル66郚、第衚に蚘茉した量の−ゞカル
ボキシベンれンスルホン酞テトラブチルホスホニ
りム塩〜4.3郚の範囲で量を倉えお実斜した。
この量の範囲はテレフタル酞ゞメチルに察しお
〜3.5モルの範囲に盞圓する。、酢酞マンガン
氎塩0.03郚テレフタル酞ゞメチルに察しお
0.024モルを゚ステル亀換猶に仕蟌み、窒玠
ガス雰囲気䞋時間かけお140℃から230℃たで昇
枩しお生成するメタノヌルを系倖に留去しながら
゚ステル亀換反応させた。続いお埗られた生成物
に正リン酞の56氎溶液0.03郚テレフタル酞ゞ
メチルに察しお0.033モル及び䞉酞化アンチ
モン0.04郚0.027モルを添加しお重合猶に
移した。次いで時間かけお760mmHgからmm
Hgたで枛圧し、同時に時間30分かけお230℃か
ら280℃たで昇枩した。mmHg以䞋の枛圧䞋、重
合枩床280℃で第衚に蚘茉した極限粘床に達す
るたで重合した。埗られたポリマヌの極限粘床を
第衚に瀺す。 埗られたポリマヌを垞法により也燥し、孔経
0.25mmの円圢玡糞孔を24個穿蚭した玡糞口金を䜿
甚しお300℃で溶融し、匕取速床1500分で匕
取぀た埌、垞法で延䌞し、75デニヌル、24フむラ
メントの原糞を埗た。 次いで本原糞を仮撚機により仮撚数3380t、
仮撚具入偎匵力をほが20に調節し、仮撚加工枩
床を皮々倉曎しお仮撚加工した。 䞀方比范しお、ナトリりムスルホむ゜フタル酞
成分を共重合したポリマヌを甚い、䞊蚘ず同様の
方法で玡糞−延䌞−仮撚加工した。
[Formula] (However, R is a lower alkyl group or a phenyl group, l
is an integer of 1 or more, m is an integer of 2 or more), etc. X 1 and X 2 may be the same or different. R 1 , R 2 , R 3 and R 4 are hydrogen atoms, alkyl groups, aryl groups,
It is a hydroxyalkyl group, preferably an alkyl group, and particularly preferably a butyl group. this
R 1 , R 2 , R 3 and R 4 may be the same or different. Further, n is a positive integer, usually 1 or 2. Such sulfonic acid phosphonium salts can generally be easily synthesized by reacting the corresponding sulfonic acid with phosphines or by reacting the corresponding sulfonic acid metal salt with phosphonium halides. When synthesizing from sulfonic acid and phosphine, it is not necessarily necessary to isolate the salt, and the corresponding sulfonic acid and phosphine may be added to the polyester to be modified to generate a salt within the polyester reaction system. However, when synthesizing from a sulfonic acid metal salt and a phosphonium halide, the inorganic salts produced have negative effects, such as lowering the softening point due to excessive side reactions and making it impossible to increase the degree of polymerization. It must be added to the polyester after sufficient salt removal. Specific examples of the sulfonic acid phosnium salts include 3,5-dicarbomethoxybenzenesulfonic acid tetramethylphosphonium salt, 3,5-dicarbomethoxybenzenesulfonic acid tetrabutylphosphonium salt, and 3,5-dicarbomethoxybenzenesulfonic acid. Tributylmethylphosphonium salt, 2,6
-dicarbomethoxynaphthalene-4-sulfonic acid tetrabutylphosphonium salt, 2,6-dicarbomethoxybenzenesulfonic acid tetramethylphosphonium salt, and the like. In order to copolymerize the sulfonic acid phosphonium salt into the main chain of the polyester, the above-mentioned phosphonium salt can be copolymerized at any stage before the synthesis of the polyester described above is completed, preferably at any stage before the first stage reaction is completed. Just add the compound. In this case, if the amount used is too small, there will be insufficient dyeing seats in the final polyester fiber, resulting in insufficient dyeability with basic dyes, and conversely, if it is too large, the softening point of the resulting polymer will be As a result, the yarn physical properties such as the mechanical properties of the final polyester fiber will deteriorate.
It is used in a range of 0.5 to 3.5 mol%, preferably 0.7 to 2.0 mol%. In order to make fibers from the basic dye-dyeable modified polyester thus obtained, it is not necessary to employ any special method, and any ordinary melt-spinning method for polyester fibers may be employed. The fibers spun here may be circular or irregularly shaped. What is important here is the intrinsic viscosity [η] f of the filament yarn, which should be at least 0.50, more preferably at least 0.55; if it is below this, fusion will occur even at a false twisting temperature of 180°C. easy to do,
Mechanical properties tend to deteriorate significantly. Also, the occurrence of fuzz is large. On the other hand, the higher the intrinsic viscosity, the higher the crimp rate, which is preferable. The raw yarn to be subjected to the false twisting process may be a drawn yarn that has undergone a melt spinning-drawing process, or may be an intermediately oriented yarn (POY) wound at a spinning speed of about 3000 m/min.
When this intermediately oriented yarn is used, drawing and false twisting can be performed simultaneously, which is advantageous in reducing costs. Next, the yarn thus obtained is subjected to false twisting or stretching false twisting. In other words, the number of false twists of the yarn obtained above is T (t/m) (20000/√)≩T≩(36000/
√) (Here, De represents the denier of the filament when it passes through the false twister.) False twisting is performed.
If the number of false twists T (t/m) is less than 20,000/√, the woven or knitted fabric obtained by weaving and knitting this will not have firm texture, while if the number of false twists T exceeds 36,000/√, fuzz will occur during false twisting. This causes the strength of the processed yarn to decrease, making it unusable for practical use. Furthermore, if the false twisting temperature is less than 180℃, the crimpability of the processed yarn will be low, while if it exceeds 220℃,
The strength decreases significantly, the fusion between the fibers becomes severe, fluffing tends to occur, and dyeing spots tend to occur, making it unusable for practical use. <Action/Effect> The reason why the crimp rate of the basic dye-dyeable polyester yarn obtained in this manner is higher than that of the conventional polyester yarn copolymerized with a sodium sulfoisophthalic acid component. Although the full details have not been elucidated, it is presumed that this is due to the following mechanism. That is, when a sodium sulfoisophthalic acid component is copolymerized into polyester as a modifier, the interaction between the modifiers is high, and therefore the melt viscosity decreases despite the low degree of polymerization (low intrinsic viscosity). tends to increase, and spinnability tends to deteriorate. Generally, in most cases of copolyester polyester containing sodium sulfoisophthalic acid component, the intrinsic viscosity is less than 0.5. In the case of polyester with such a low degree of polymerization, there is a large amount of low molecular weight components such as oligomers, which act as plasticizers when exposed to high temperatures, and tend to cause plasticization and fusion of fibers. In particular, the sodium sulfoisophthalic acid component, which has strong intermolecular interactions, is polymerized while still associated during polyester polymerization, so oligomers containing a large amount of the sodium sulfoisophthalic acid component are likely to be generated, leading to plasticization and fusion. Easy to progress. On the other hand, in this polymer, since the ionic components are covered with sublime groups, namely R 1 , R 2 , R 3 , and R 4 , it is possible to greatly reduce the ionic properties, and the melt viscosity It is possible to avoid the phenomenon of an abnormal increase in the amount of the polymer, a polymer with a high degree of polymerization can be obtained, and therefore the amount of the oligomer component can be significantly reduced. On the other hand, the generation of oligomers containing a large amount of cationic dyes, which tends to occur with the sodium sulfoisophthalic acid component, is also suppressed.
Even if the number of moles of the modifier required for cationic dyeability is set to a low value, the dyeing density can be maintained.
For these reasons, the polymer in the present invention is
A sufficiently high degree of polymerization is ensured with few oligomers,
Uniform characteristics can be obtained. Therefore, even in the false twisting process, it is presumed that the deformation caused by false twisting does not undergo plastic deformation entirely, but that the deformation can be partially retained, resulting in a high crimp rate. This mechanism can also be estimated from the limit temperature of woolly processing temperature. For example, even when polyester is copolymerized with an equal amount of modifier, strength deterioration occurs only at a higher woolly processing temperature of 10°C to 30°C than when copolymerizing with sodium sulfoisophthalic acid. The phenomenon also supports the above estimation. That is, although there is a difference in the crimp rate between the two even under the same woolly processing conditions, the polyester of the present invention has the advantage that the processing temperature can be further increased, and as a result, a higher crimp rate can be obtained. Therefore, using the polyester processed yarn according to the method of the present invention, it is possible to produce polyester products having innovative performance in the clothing field or the interior decoration field. <Examples> Hereinafter, the present invention will be specifically explained using Examples, but the present invention is not limited to these Examples. Note that the intrinsic viscosity [η] f is measured as follows. The intrinsic viscosity [η] is given by lim c → 0 {ln(ηrel)}/c and is a value obtained by measuring as follows. That is, ηrel is the ratio of the viscosity of a dilute polyester solution using orthochlorophenol as a solvent to the viscosity of the above-mentioned molten resin measured at the same temperature and in the same units, and c is
100c.c. is the number of grams of polyester in the mixture. Examples 1 to 6 and Comparative Examples 1 to 7 100 parts of dimethyl terephthalate, 66 parts of ethylene glycol, 3,5-dicarboxybenzenesulfonic acid tetrabutylphosphonium salt in the amounts listed in Table 1 (range 0 to 4.3 parts) It was carried out by changing the amount.
The range of this amount is 0 for dimethyl terephthalate.
This corresponds to a range of ~3.5 mol%. ), 0.03 parts of manganese acetate tetrahydrate (based on dimethyl terephthalate)
0.024 mol %) was charged into a transesterification tank, and the temperature was raised from 140°C to 230°C over 4 hours under a nitrogen gas atmosphere, and the transesterification reaction was carried out while the methanol produced was distilled out of the system. Subsequently, 0.03 part of a 56% aqueous solution of orthophosphoric acid (0.033 mol% relative to dimethyl terephthalate) and 0.04 part of antimony trioxide (0.027 mol%) were added to the obtained product, and the mixture was transferred to a polymerization vessel. Then 1mm from 760mmHg over 1 hour
The pressure was reduced to Hg, and at the same time the temperature was raised from 230°C to 280°C over 1 hour and 30 minutes. Polymerization was carried out under reduced pressure of 1 mmHg or less at a polymerization temperature of 280° C. until the intrinsic viscosity shown in Table 1 was reached. Table 1 shows the intrinsic viscosity of the obtained polymer. The obtained polymer is dried by a conventional method, and the pore diameter is
The material was melted at 300°C using a spinneret with 24 circular spinning holes of 0.25 mm, drawn at a drawing speed of 1500 m/min, and drawn in a conventional manner to obtain a raw yarn of 75 denier and 24 filaments. Ta. Next, the original yarn was false-twisted at a number of 3380t/m using a false-twisting machine.
False twisting was carried out by adjusting the tension at the entrance of the false twisting tool to approximately 20 g and varying the false twisting temperature. On the other hand, for comparison, a polymer copolymerized with a sodium sulfoisophthalic acid component was used, and spinning-drawing-false twisting was performed in the same manner as above.

【衚】  単糞間融着あり
比范䟋は塩基性染料の染着座がなく、可染性
はない。比范䟋は剀の添加量がモルず高
く、単糞間に軜い融着があり、䞔぀捲瞮率も糞匷
床も䞍充分である。比范䟋は極限粘床が䜎く、
210℃のりヌリヌ加工枩床においおさえ単糞間の
融着が発生し、糞匷床も捲瞮率も倧巟に䜎䞋しお
いる。比范䟋は加工枩床䞍足のため捲瞮率が䞍
充分である。 䞀方、実斜䟋〜においおは加工糞の糞匷床
が高く、捲瞮率も20を越えるず共に塩基性染料
の染着性も充分である。 たた、埓来からカチオン可染剀ずしお甚いられ
おいるナトリりムスルホむ゜フタル酞ゞメチルを
共重合した䟋を比范䟋〜に瀺すが捲瞮率、糞
匷床が䞍充分である。
[Table] *Fusion between single yarns Comparative Example 1 has no basic dye deposition and is not dyeable. In Comparative Example 2, the amount of the agent added was as high as 4 mol %, there was slight fusion between the single yarns, and the crimp rate and yarn strength were insufficient. Comparative example 3 has a low intrinsic viscosity;
Even at the woolly processing temperature of 210°C, fusion between single yarns occurred, and both yarn strength and crimp rate were significantly reduced. Comparative Example 4 has an insufficient crimp rate due to insufficient processing temperature. On the other hand, in Examples 1 to 6, the yarn strength of the processed yarns is high, the crimp rate is over 20%, and the dyeability with basic dyes is also sufficient. Comparative Examples 5 to 7 show examples in which sodium dimethyl sulfoisophthalate, which has been conventionally used as a cationic dye agent, is copolymerized, but the crimp rate and yarn strength are insufficient.

Claims (1)

【特蚱請求の範囲】  䞋蚘䞀般匏 匏䞭、は芳銙族又は脂肪族基、X1及びX2は
同䞀又は異なる゚ステル圢成性官胜基、R1R2
R3及びR4は氎玠原子、アルキル基、アリヌル基
及びヒドロキシアルキル基より遞ばれた同䞀又は
異なる基、は正の敎数を瀺す で衚わされるスルホン酞ホスホニりム塩を共重合
したポリ゚ステルで構成され、極限粘床が0.5以
䞊のフむラメント糞を䞋蚘、の加工条件䞋に
仮撚加工するこずを特城ずするポリ゚ステル加工
糞の補造法。  仮撚数 2000√≊≊36000√ ここでDeは仮撚具通過時のフむラメント糞
のデニヌル  仮撚加工枩床℃ 180≊≊220  スルホン酞ホスホニりム塩の共重合量が、ポ
リ゚ステルを構成する二官胜性カルボン酞成分に
察しお0.5〜3.5モルである特蚱請求の範囲第
項蚘茉のポリ゚ステル加工糞の補造法。  スルホン酞ホスホニりム塩を衚わす䞀般匏䞭
のR1R2R3及びR4がブチル基である特蚱請求
の範囲第項又は第項蚘茉のポリ゚ステル加工
糞の補造法。  ポリ゚ステルが゚チレンテレフタレヌトを䞻
たる構成単䜍ずするポリ゚ステルである特蚱請求
の範囲第項〜第項のいずれか項蚘茉のポリ
゚ステル加工糞の補造法。
[Claims] 1. The following general formula [wherein A is an aromatic or aliphatic group, X 1 and X 2 are the same or different ester-forming functional groups, R 1 , R 2 ,
R 3 and R 4 are the same or different groups selected from a hydrogen atom, an alkyl group, an aryl group, and a hydroxyalkyl group, and n is a positive integer.] A method for producing a polyester processed yarn, which comprises false twisting a filament yarn having an intrinsic viscosity of 0.5 or more under the following processing conditions a and b. a False twisting number T (t/m) (2000/√)≩T≩(36000/√) Here, De is the denier of the filament yarn when passing through the false twisting tool b False twisting processing temperature H (℃) 180≩H≩ 220 2 Claim 1, wherein the copolymerized amount of the sulfonic acid phosphonium salt is 0.5 to 3.5 mol% based on the bifunctional carboxylic acid component constituting the polyester.
A method for producing polyester processed yarn as described in Section 1. 3. The method for producing a polyester textured yarn according to claim 1 or 2, wherein R 1 , R 2 , R 3 and R 4 in the general formula representing the sulfonic acid phosphonium salt are butyl groups. 4. The method for producing a processed polyester yarn according to any one of claims 1 to 3, wherein the polyester is a polyester whose main constituent unit is ethylene terephthalate.
JP14296486A 1986-06-20 1986-06-20 Production of polyester processed yarn Granted JPS62299526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14296486A JPS62299526A (en) 1986-06-20 1986-06-20 Production of polyester processed yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14296486A JPS62299526A (en) 1986-06-20 1986-06-20 Production of polyester processed yarn

Publications (2)

Publication Number Publication Date
JPS62299526A JPS62299526A (en) 1987-12-26
JPH0362808B2 true JPH0362808B2 (en) 1991-09-27

Family

ID=15327754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14296486A Granted JPS62299526A (en) 1986-06-20 1986-06-20 Production of polyester processed yarn

Country Status (1)

Country Link
JP (1) JPS62299526A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192875A (en) * 1988-01-25 1989-08-02 Teijin Ltd Fabric coated with resin
JP2593924B2 (en) * 1988-09-20 1997-03-26 株匏䌚瀟クラレ Easy-dyed polyester drawn yarn and false twist yarn
CA2309680C (en) * 1998-09-11 2005-07-26 Teijin Limited Biaxially oriented polyester film for thermal transfer ribbon, laminated film composed thereof and its production

Also Published As

Publication number Publication date
JPS62299526A (en) 1987-12-26

Similar Documents

Publication Publication Date Title
JP4064149B2 (en) Elastomer composition and fiber comprising the same
JPH0362808B2 (en)
JP2624409B2 (en) Elastic yarn
JP2573979B2 (en) Method for producing modified polyester moldings
JP2915045B2 (en) Method for producing cationic dyeable ultrafine false twisted yarn
JPH10331032A (en) Copolyester improved in heat resistance and hydrolysis resistance to alkali and highly shrinkable fiber comprising the same
EP1689801A2 (en) Modified polyethylene, terephthalate for low temperature dyeability, controlled shrinkage characteristcs and improved tensile properties
JPH0361767B2 (en)
JPH1129629A (en) Copolyester and elastic fiber comprising the same
JPH01103650A (en) Improved polyester composition
JPH0559616A (en) Conjugate fiber
JP2007119571A (en) Polyether ester elastomer and elastic fiber
JPH082956B2 (en) Method for producing modified polyester
JPS6132434B2 (en)
JPS61239080A (en) Production of modified polyester fiber
JP3132581B2 (en) Modified polyester fiber
JP2007084648A (en) Stabilized polyetherester elastomer and elastic fiber
JPH0219228B2 (en)
JPH06263855A (en) Modified polyester and fiber
JP2002220764A (en) Polyester woven or knitted fabric
JP2691855B2 (en) Polyester fiber and method for producing the same
JP2002227054A (en) Woven or knitted polyester fabric
JPS63159537A (en) Spun like false twisted two-layerd structural yarn
JPH11217729A (en) Production of pill-resistant polyester fiber
JPH0466255B2 (en)