JPS626910A - Flame-resistant polyester fiber structure - Google Patents

Flame-resistant polyester fiber structure

Info

Publication number
JPS626910A
JPS626910A JP14425885A JP14425885A JPS626910A JP S626910 A JPS626910 A JP S626910A JP 14425885 A JP14425885 A JP 14425885A JP 14425885 A JP14425885 A JP 14425885A JP S626910 A JPS626910 A JP S626910A
Authority
JP
Japan
Prior art keywords
polyester
fiber structure
phosphorus
intrinsic viscosity
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14425885A
Other languages
Japanese (ja)
Other versions
JPH0635686B2 (en
Inventor
Tetsuo Matsumoto
哲夫 松本
Eiji Ichihashi
市橋 瑛司
Yoshifumi Kagawa
香川 欣史
Koji Kameyama
亀山 好治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP60144258A priority Critical patent/JPH0635686B2/en
Publication of JPS626910A publication Critical patent/JPS626910A/en
Publication of JPH0635686B2 publication Critical patent/JPH0635686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:The titled fiber structure, consisting of a polyethylene terephthalate based polyester and polyester containing a specific phosphorus compound and having good flame resistance and improved mechanical physical properties. CONSTITUTION:A polyester fiber structure, consisting of (A) a polyester of polyethylene terephthalate or consisting essentially thereof and (B) a polyester, containing a phosphorus compound having a group expressed by the formula (R is trifunctional organic group; the benzene ring may be substituted by a lower alkyl group or halogen) in an amount of >=50,000ppm expressed in terms of the weight of phosphorus atom and having >=0.4 intrinsic viscosity, containing 500-35,000ppm expressed in terms of the weight of the phosphorus atom and having >=0.5 intrinsic viscosity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐炎性を有するポリエステル繊維構造物に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a polyester fiber structure having flame resistance.

(従来の技術) 一般に、ポリエステル、特にポリエチレンテレフタレー
トは優れた機械的特性及び化学的特性を有し、衣料用、
産業用等の繊維として広く利用されている。
(Prior Art) Generally, polyester, especially polyethylene terephthalate, has excellent mechanical and chemical properties, and is used for clothing,
It is widely used as a fiber for industrial purposes.

ところで、近年、火災予防の観点から合成繊維の耐炎性
への要請が強まっており、特にポリエステル繊維は、衣
類やカーベント、カーテン、車両用座席シート等に大量
に使用されているので、対応策の確立が急がれている。
Incidentally, in recent years, there has been an increasing demand for synthetic fibers to be flame resistant from the perspective of fire prevention, and polyester fibers in particular are used in large quantities for clothing, car vents, curtains, vehicle seats, etc., so there is a need for countermeasures. Establishment is urgently needed.

従来、ポリエステルに耐炎性を付与する方法は種々提案
されており、ポリエステルにリン化合物を含有させる方
法が有効であるとされている。
Conventionally, various methods for imparting flame resistance to polyester have been proposed, and a method of incorporating a phosphorus compound into polyester is said to be effective.

なかでも、リン化合物としてホスフィン酸化合物を用い
る方法は好ましい方法とされており2例えば、特開昭5
3−128175号公報には、ホスフィン酸化合物を用
いた分子量1,000〜e 、 oooの綿状高分子化
合物が、ポリエステルを含む熱可塑性樹脂に対する難燃
剤として有効であるとされている。
Among these, a method using a phosphinic acid compound as a phosphorus compound is considered to be a preferable method2.
Publication No. 3-128175 states that a flocculent polymer compound using a phosphinic acid compound and having a molecular weight of 1,000 to e, ooo is effective as a flame retardant for thermoplastic resins containing polyester.

(発明が解決しようとする問題点) しかしながら、上記公報で提案されている難燃剤は、単
独では繊維形成能がなく、また、ポリエステルに添加し
て繊維を製造すると物性を大きく低下させるという問題
があり、繊維を製造するための難燃剤としては適してい
なかった。
(Problems to be Solved by the Invention) However, the flame retardant proposed in the above-mentioned publication does not have fiber-forming ability when used alone, and when added to polyester to produce fiber, there is a problem that the physical properties are significantly reduced. However, it was not suitable as a flame retardant for producing fibers.

本発明は、良好な耐炎性を有し、かつ物性の優れたポリ
エステル繊維構造物を提供しようとするものである。
The present invention aims to provide a polyester fiber structure that has good flame resistance and excellent physical properties.

(問題点を解決するための手段) 本発明は、上記目的を達成するもので、その要旨は次の
とおりである。
(Means for Solving the Problems) The present invention achieves the above objects, and the gist thereof is as follows.

ポリエチレンテレフタレート又はこれを主成分とするポ
リエステル(A)と下記の式で表される基を有するリン
化合物を、リン原子の重量として50、000pp++
+以上含有し、0.4以上の極限粘度を有するポリエス
テル(B)とからなり、リン原子を重量で500〜35
.0OOppo+含有し、0.5以上の極限粘度を有す
ることを特徴とする耐炎性ポリエステル繊維構造物。
Polyethylene terephthalate or a polyester (A) containing polyester as a main component and a phosphorus compound having a group represented by the following formula were added to 50,000 pp++ as the weight of phosphorus atoms.
polyester (B) containing 500 to 35 phosphorus atoms by weight and having an intrinsic viscosity of 0.4 or more.
.. A flame-resistant polyester fiber structure containing OOOppo+ and having an intrinsic viscosity of 0.5 or more.

÷占+ (Rは3価の有機基であり、ベンゼン環は低級アル士ル
基又はハロゲンで置換されていてもよい。)本発明にお
いてポリエステル(A)はポリエチレンテレフタレート
及びこれを主体とする共重合ポリエステルであり、共重
合成分としては、イソフタル酸、4−オキシ安息香酸、
5−ナトリウムスルホイソフタル酸、アジピン酸、トリ
メリット酸。
÷ Occupation + (R is a trivalent organic group, and the benzene ring may be substituted with a lower alkyl group or a halogen.) In the present invention, the polyester (A) is polyethylene terephthalate and a copolymer mainly composed of this. It is a polymerized polyester, and the copolymerized components include isophthalic acid, 4-oxybenzoic acid,
5-Sodium sulfoisophthalic acid, adipic acid, trimellitic acid.

ジエチレングリコール、プロピレングリコール。Diethylene glycol, propylene glycol.

1.4−シクロヘキサンジメタツール、1,4−ブタン
ジオール、ペンタエリスリトール等が挙げられる。
Examples include 1,4-cyclohexane dimetatool, 1,4-butanediol, and pentaerythritol.

本発明において、ポリエステル(B)のリン化合物の含
有量は、リン原子の重量として50.000ppm以上
とする必要があり、リン化合物の含有量がこれより少な
いものでは、繊維構造物中に耐炎性を付与するに十分な
リン原子を含有させようとすると、相対的にポリエステ
ル(A)の量が少なくなり、ポリエステル繊維構造物の
物性が低下することになり、不適当である。
In the present invention, the content of the phosphorus compound in the polyester (B) must be 50.000 ppm or more as the weight of phosphorus atoms. If an attempt is made to contain enough phosphorus atoms to provide the polyester (A), the amount of polyester (A) will be relatively small, and the physical properties of the polyester fiber structure will deteriorate, which is inappropriate.

また、ポリエステル(B)は0.4以上の極限粘度を有
することが必要であり、0.4未満では、単独では繊維
形成が困難であるとともに、十分高い極限粘度のポリエ
ステル(A)と混合使用する場合にもポリエステル(A
)の極限粘度低下をもたらし、耐炎性を低下させること
なく1強度等の物性の優れた繊維構造物を得ることがで
きない。
In addition, polyester (B) needs to have an intrinsic viscosity of 0.4 or more; if it is less than 0.4, fiber formation is difficult when used alone, and it is used in combination with polyester (A) having a sufficiently high intrinsic viscosity. Polyester (A
), and it is not possible to obtain a fiber structure with excellent physical properties such as 1 strength without reducing the flame resistance.

また、繊維構造物のリン化合物の含有量が、リン原子の
重量として500〜35.000ppmとなるようにす
ることが必要で、この範囲より少量では耐炎性が不十分
となり、多すぎると物性が低下したり。
In addition, it is necessary to adjust the content of the phosphorus compound in the fiber structure to 500 to 35,000 ppm as the weight of phosphorus atoms; if it is less than this range, the flame resistance will be insufficient, and if it is too much, the physical properties will deteriorate. or decrease.

製糸性が損なわれたりして好ましくない。This is undesirable because it may impair spinning properties.

さらに、WA維槽構造物優れた強度等の物性を与えるた
めに、繊維構造物の極限粘度が0.5以上となるように
することが必要であり、この要件を満足するように、ポ
リエステル(A)及び(B)の極限粘度及び使用割合が
選定される。しかし、ポリエステル(B)の極限粘度を
あまり高くしすぎると溶融粘度が高くなって製糸性が悪
化するので。
Furthermore, in order to provide the WA fibrous structure with excellent physical properties such as strength, it is necessary to ensure that the intrinsic viscosity of the fiber structure is 0.5 or more, and in order to satisfy this requirement, polyester ( The intrinsic viscosity and usage ratio of A) and (B) are selected. However, if the intrinsic viscosity of the polyester (B) is made too high, the melt viscosity will increase and the silk-spinning properties will deteriorate.

ポリエステル(A)の極限粘度の方を高くシ、ポリエス
テル(B)の極限粘度はあまり高くしない方がよい。
It is preferable that the intrinsic viscosity of the polyester (A) is higher than that of the polyester (B), but that the intrinsic viscosity of the polyester (B) is not too high.

本発明においてリン化合物は、単一繊維中に含有されて
いる必要はなく、ポリエステル繊維構造物(マルチフィ
ラメント、トウ、ステーブル、紡績糸、織物1編物、不
織布等をいう)全体として前記の含有量となるように含
有していればよい。
In the present invention, the phosphorus compound does not need to be contained in a single fiber, and the above-mentioned content does not need to be contained in a single fiber, but in the entire polyester fiber structure (referring to multifilament, tow, stable, spun yarn, woven fabric, nonwoven fabric, etc.). It suffices if the content is such that the amount is the same.

本発明においてポリエステル(B)の製造に用いられる
リン化合物としては1次式で表される化金物が好ましい
In the present invention, the phosphorus compound used in the production of polyester (B) is preferably a metal compound represented by a linear formula.

X’0−Ar −OX” (Arは芳香族基 y+、)(2は水素原子又はエステ
ル形成性官能基を示す。) ポリエステル(B)は、上記のようなリン化合物とテレ
フタル酸及び/又はイソフタル酸のようなジカルボン酸
成分とを、エステル化法、エステル交換法、酸交換法、
エステル付加法2重縮合法等により反応させて極限粘度
0.4以上のポリエステルとすることにより得られる。
X'0-Ar-OX" (Ar is an aromatic group y+) (2 represents a hydrogen atom or an ester-forming functional group) With a dicarboxylic acid component such as isophthalic acid, esterification method, transesterification method, acid exchange method,
It is obtained by reacting with an ester addition method, double condensation method, etc. to obtain a polyester having an intrinsic viscosity of 0.4 or more.

極限粘度0.4以上のポリエステルを得るには −、(
1,Xtがエステル形成性官能基の化合物を用いること
が好ましい。
To obtain polyester with an intrinsic viscosity of 0.4 or more -, (
It is preferable to use a compound in which 1,Xt is an ester-forming functional group.

Xl、Xlのエステル形成性官能基の具体例としては2
次のようなものが挙げられる。
Specific examples of the ester-forming functional group of Xl and Xl are 2
Examples include:

−CR’、  −(R”O)、H。-CR', -(R"O), H.

(R’は水素原子又は低級アルキル基 ptは低級アル
キレン基、mは1〜20.nはO〜20の整数。)上記
のようなリン化合物は、 9.10−ジヒドロ−9−オ
キサ−10−フォスノアフェナントレン−10−オキサ
イド(IC八と略称)とp−ベンゾキノン、1.4−ナ
フトキノン、0−ベンゾキノン。
(R' is a hydrogen atom or a lower alkyl group, pt is a lower alkylene group, m is an integer of 1 to 20, and n is an integer of O to 20.) The above phosphorus compound is 9.10-dihydro-9-oxa-10 - Phosnophenanthrene-10-oxide (abbreviated as IC8), p-benzoquinone, 1,4-naphthoquinone, 0-benzoquinone.

2.6−ナフトキノン、4,4−ジフェノキノン等のキ
ノン類とをエチルセロソルブ等の溶媒中で加熱反応させ
ることにより、前記xt、xzがHとなった化合物を得
、必要に応じてこの部分にエステル形成性基を導入する
ことにより得られる。
By heating and reacting quinones such as 2.6-naphthoquinone and 4,4-diphenoquinone in a solvent such as ethyl cellosolve, a compound in which xt and xz become H is obtained, and if necessary, this part can be added to Obtained by introducing an ester-forming group.

例えば、 HCAとキノン類との反応物と相当するカル
ボン酸無水物とを加熱反応させたり、 HCAとキノン
類との反応物のアルカリ金属塩とアルキレンカーボネー
ト、アルキレンオキサイド、ポリアルキレンオキサイド
あるいはそのモノ又はジグリシジルエーテルやエピハロ
ヒドリンとを反応させることにより、前記のようなエス
テル形成性基を導入することができる。
For example, a reaction product of HCA and quinones and a corresponding carboxylic acid anhydride may be heated to react, or an alkali metal salt of a reaction product of HCA and quinones may be reacted with alkylene carbonate, alkylene oxide, polyalkylene oxide, or their mono- or The above-mentioned ester-forming group can be introduced by reacting with diglycidyl ether or epihalohydrin.

本発明においてポリエステル繊維構造物を製造する方法
は特に制約されないが、具体例を示せば次のような方法
がある。
In the present invention, the method for producing the polyester fiber structure is not particularly limited, but specific examples include the following method.

■ポリエステル(A)の繊維に、適当な溶剤に溶解した
ポリエステル(B)をコーティングする方法。
■A method in which polyester (A) fibers are coated with polyester (B) dissolved in an appropriate solvent.

■ポリエステル(A)と(B)とを紡糸完結までの任意
の時期に混合して紡糸し、延伸する紡糸時混合法。
■ A mixing method during spinning, in which polyesters (A) and (B) are mixed at any time until the spinning is completed, the fibers are spun, and the polyesters are stretched.

■ポリエステル(A)と(B)とをいわゆるサイドバイ
サイド型、海島型、芯鞘型に複合紡糸し。
■Polyester (A) and (B) are composite-spun into so-called side-by-side, sea-island, and core-sheath types.

延伸する複合紡糸法。A composite spinning method that involves stretching.

■ポリエステル(A)と(B)とを別々に紡出し。■Polyester (A) and (B) are spun separately.

合糸して巻取る紡糸時混繊法。A blending method during spinning that involves doubling and winding the yarn.

■ポリエステル(A)の繊維とポリエステル(B)の繊
維とを延伸時に混繊する延伸混繊法。
■Stretch blending method in which polyester (A) fibers and polyester (B) fibers are blended during stretching.

■ポリエステル(A>の繊維とポリエステル(B)の繊
維とを製織9編成時に混繊、混編する方法。
■A method of mixing and knitting polyester (A> fibers) and polyester (B) fibers during 9 knitting operations.

■ポリエステル(A)のステープルとポリエステル(B
)のステーブルとを紡績時に混合する混合紡績法。
■Polyester (A) staples and polyester (B)
) is mixed with stable during spinning.

本発明において、ポリエステル繊維構造物の製造に用い
るポリエステルを製造する際の重縮合反応は、 0.0
1〜10mmHg程度の減圧下で、260〜310℃、
好ましくは275〜290℃の温度で、所定の重合度の
ものが得られるまで行えばよい。
In the present invention, the polycondensation reaction when producing the polyester used for producing the polyester fiber structure is 0.0
260-310℃ under reduced pressure of about 1-10mmHg,
Preferably, the reaction is carried out at a temperature of 275 to 290°C until a predetermined degree of polymerization is obtained.

また9重縮合反応は触媒の存在下に行われ、触媒として
は従来一般に用いられているアンチモン。
The 9-polycondensation reaction is carried out in the presence of a catalyst, and the catalyst is antimony, which has been commonly used in the past.

チタン、ゲルマニウム、亜鉛、スズ、コバルト等の金属
化合物やスルホサリチル酸、0−スルホ安息香酸無水物
等の有機スルホン酸化合物が好ましく用いられる。なお
、スズ化合物はエステル化反応と重縮合反応の双方の触
媒となるので、エステル化反応の工程で添加してもよい
。触媒の添加量はポリエステルを構成する酸成分1モル
に対してlXl0−5〜l×10−″モル、好ましくは
5X10−’〜5X10−’モル、より好ましくはlX
l0−’〜3X10−’モルとするのが適当である。
Metal compounds such as titanium, germanium, zinc, tin, and cobalt and organic sulfonic acid compounds such as sulfosalicylic acid and 0-sulfobenzoic anhydride are preferably used. In addition, since the tin compound serves as a catalyst for both the esterification reaction and the polycondensation reaction, it may be added in the step of the esterification reaction. The amount of the catalyst added is 1X10-5 to 1x10-'' mol, preferably 5X10-' to 5X10-' mol, more preferably 1X10-'' to 1 mol of acid component constituting the polyester.
A suitable range is 10-' to 3X10-' moles.

なお3本発明においてヒンダードフェノール化合物のよ
うな安定剤、コバルト化合物、蛍光剤。
Note that in the present invention, stabilizers such as hindered phenol compounds, cobalt compounds, and fluorescent agents are used.

染料のような色調改良剤、二酸化チタンのような顔料等
の添加物を共存させてもさしつかえない。
Additives such as color improvers such as dyes and pigments such as titanium dioxide may also be present.

紡出された繊維は必要に応じて、連続的に又は別工程で
延伸、熱処理されるが、t4!縮加工、薬液による処理
等の高次加工に付してもよい。
The spun fibers are drawn and heat treated as necessary, either continuously or in a separate process, but at t4! It may be subjected to higher-order processing such as shrinkage processing and treatment with a chemical solution.

(作 用) 本発明のポリエステル繊維構造物が優れた耐炎性と良好
な物性を示す理由は明らかではないが。
(Function) The reason why the polyester fiber structure of the present invention exhibits excellent flame resistance and good physical properties is not clear.

接炎時にホスフィン酸残基を有するリン化合物がポリエ
ステルの熱分解を促進して、溶融落下を助長すると同時
に、単にリン化合物を共重合したポリエステルからなる
ものではないため、融点や強度の低下がなく、ゲル化等
の好ましくない現象を極小化できるためと考えられる。
When in contact with flame, the phosphorus compound with phosphinic acid residues accelerates the thermal decomposition of the polyester, promoting melting and falling.At the same time, since it is not simply a polyester copolymerized with a phosphorus compound, there is no drop in melting point or strength. This is thought to be due to the fact that undesirable phenomena such as gelation can be minimized.

(実施例) 次に実施例をあげて本発明を記述する。(Example) Next, the present invention will be described with reference to examples.

なお、実施例において特性値等は次のようにして測定又
は評価したものでる。
In addition, the characteristic values etc. in the Examples were measured or evaluated as follows.

極限粘度〔η〕 フェノールと四塩化エタンとの等重置混合物を溶媒とし
て、温度20.0℃で測定した。
Intrinsic viscosity [η] Measured at a temperature of 20.0° C. using an isobaric mixture of phenol and tetrachloroethane as a solvent.

融点 パーキンエルマー社製DSC−2型差動熱量計を用い、
昇温速度20℃/分で測定した。
Melting point using a PerkinElmer DSC-2 differential calorimeter,
Measurement was performed at a heating rate of 20°C/min.

軟化点 メトラー社製自動融点測定′gtNを用い、顕微鏡下で
ホットステージ上に2本の繊維を互いに交差させて置き
、2℃/分の割合で昇温し、繊維の交点が変形して融着
する温度を求めた。
Softening point Using an automatic melting point measuring machine 'gtN' manufactured by Mettler, two fibers were placed across each other on a hot stage under a microscope, and the temperature was raised at a rate of 2°C/min, causing the intersection of the fibers to deform and melt. The temperature at which the temperature reached was determined.

リン原子の含有量 ゲイ光X綿法により定量した。([リン含量]はリン原
子の重量としての−を示す。)耐炎性 常法に従って紡糸、延伸して得た糸を筒編地にし、その
Igを長さ10 、0cmに丸めて10.On+m径の
針金コイル中に挿入し、45度の角度に保持して、下端
からミクロバーナー(口径0.64n+n+)で点火し
、火源を遠ざけて消火した場合は再び点火を繰り返し。
The content of phosphorus atoms was quantified by the Gay light X cotton method. ([Phosphorus content] indicates - as the weight of phosphorus atoms.) Flame resistance The yarn obtained by spinning and drawing according to the conventional method is made into a tubular knitted fabric, and the Ig is rolled into a length of 10.0 cm. Insert it into a wire coil with a diameter of On+m, hold it at a 45 degree angle, ignite it from the bottom end with a micro burner (caliber 0.64n+n+), and repeat the ignition if the fire is extinguished by moving the fire source away.

全試料が燃焼しつくすまでに要する点火回数を求め、5
個の試料についての点火回数(接炎回数と記す)で表し
た。
Find the number of ignitions required until all the samples burn out, and
It is expressed as the number of ignitions (denoted as the number of flame contacts) for each sample.

着火性 次の4段階で評価した。Ignitability Evaluation was made on the following four levels.

◎:接炎後30秒以にしないと着火しない。◎: Will not ignite until 30 seconds after contact with flame.

○:接炎後15〜30秒で着火する。○: Ignition occurs 15 to 30 seconds after flame contact.

△;接炎後5〜15秒で着火する。Δ: Ignition occurs 5 to 15 seconds after flame contact.

×:接炎後5秒以内で着火する。×: Ignition occurs within 5 seconds after contact with flame.

実施例1 テレフタJし酸とエチレングリコ2−ルとのエステル化
反応物(Blll!T)の存在するエステル化反応槽に
テレフタル酸とエチレングリコールとのモル比t:i、
6のスラリーを連続的に供給し、250℃。
Example 1 In an esterification reaction tank containing an esterification reaction product (Blll!T) of terephthalic acid and ethylene glycol, the molar ratio t:i of terephthalic acid and ethylene glycol was
6 slurry was continuously supplied at 250°C.

0.05kg/ cJ Gで滞留時間を8時間として反
応させ。
The reaction was carried out at 0.05 kg/cJ G with a residence time of 8 hours.

反応率95%のBHI!Tを連続的に得、これに触媒と
して三酸化アンチモンをポリエステルを構成する酸成分
1モルに対し2XlO−’モル添加し、280℃に昇温
し、減圧下に重縮合して[η] 0.75のポリエチレ
ンテレフタレート(PI!T)を得た。
BHI with 95% reaction rate! T was continuously obtained, 2XlO-' mol of antimony trioxide was added thereto as a catalyst per 1 mol of the acid component constituting the polyester, the temperature was raised to 280°C, and polycondensation was carried out under reduced pressure to obtain [η] 0 .75 of polyethylene terephthalate (PI!T) was obtained.

一方、  oc八とp−ヘンソ゛ギノンとをエチルセロ
ソルブ溶媒中で90℃の温度で反応させた反応物(PB
Q・1(CA )とやや過剰の無水酢酸を反応させてP
BQ ・HCへのジアセテート体のリン化合物(融点1
47.6〜148.9℃)を得た。
On the other hand, a reaction product (PB
By reacting Q・1(CA) with slightly excess acetic anhydride, P
BQ ・Diacetate phosphorus compound to HC (melting point 1
47.6-148.9°C).

このリン化合物と0.5倍モルのテレフタル酸及び0.
5倍モルのイソフタルを触媒としてジメチルスズマレエ
ートを酸成分1モルに対して3X10−’モル使用して
270℃の窒素気流下で4時間反応させた後、さらに3
0トルで1.5時間、lトルで4時間反応させて、リン
含量が70.500ppmで、〔η〕が0.58の含リ
ンポリエステルを得た。
This phosphorus compound, 0.5 times the mole of terephthalic acid, and 0.5 times the mole of terephthalic acid.
Using 5 times the mole of isophthal as a catalyst and using 3 x 10-' mol of dimethyltin maleate per 1 mol of the acid component, the reaction was carried out for 4 hours under a nitrogen stream at 270°C, and then an additional 3
The reaction was carried out for 1.5 hours at 0 Torr and for 4 hours at 1 Torr to obtain a phosphorus-containing polyester having a phosphorus content of 70.500 ppm and [η] of 0.58.

上記のPETと含リンポリエステルとをリン合計が約7
.OOOppmとなるように混合して溶融紡糸し。
The total phosphorus content of the above PET and phosphorus-containing polyester is approximately 7
.. Mix and melt-spun to give OOOppm.

延伸してポリエステル繊維を得た。Polyester fibers were obtained by stretching.

得られた繊維の特性値を第1表に示す。Table 1 shows the characteristic values of the obtained fibers.

実施例2〜4.比較例1〜3 リン化合物の種類及び添加量、 PI!Tの〔η〕を変
えたこと以外は実施例1と同様に行った結果を第1表に
示す。(第1表において、OBO・IICA及びN口・
HCAは、それぞれp−ベンキノンの代わりに0−ベン
ゾキノン及び1.4−ナフトキノンを用いたものを示す
。) 比較例4 実施例1に記載したのと同様な方法で得たPBQ・HC
Aとやや過剰のエチレンカーボネートとを反応させた後
、前記BIIETとともに重合槽に仕込み、触媒として
ジメチルスズマレエートを酸成分1モルに対して2X1
0−’モル添加して280℃に昇温し。
Examples 2-4. Comparative Examples 1 to 3 Type and amount of phosphorus compound added, PI! Table 1 shows the results obtained in the same manner as in Example 1 except that [η] of T was changed. (In Table 1, OBO・IICA and N-guchi・
HCA indicates those using 0-benzoquinone and 1,4-naphthoquinone in place of p-benquinone, respectively. ) Comparative Example 4 PBQ・HC obtained by the same method as described in Example 1
After reacting A with a slight excess of ethylene carbonate, it was charged into a polymerization tank together with the BIIET, and dimethyltin maleate was added as a catalyst at 2×1 per mole of acid component.
0-'mol was added and the temperature was raised to 280°C.

減圧下に反応させて、リン含量7,050ppm、  
(η〕0.49の含リンポリエステルを得た。
Reacted under reduced pressure, phosphorus content 7,050 ppm,
A phosphorus-containing polyester with (η) of 0.49 was obtained.

この含リンポリエステルを溶融紡糸し、延伸して得られ
たポリエステル繊維の特性値を第1表に示す。
Table 1 shows the characteristic values of the polyester fiber obtained by melt-spinning and drawing this phosphorus-containing polyester.

第1表 実施例5 実施例1のPUTと含リンポリエステルとを重量比で4
:lの割合で混合したものを芯部とし、 PETを鞘部
とた複合繊維(芯/鞘の重量比1/l)を常法により製
造した。
Table 1 Example 5 PUT of Example 1 and phosphorus-containing polyester in a weight ratio of 4
A composite fiber (core/sheath weight ratio of 1/l) was produced by a conventional method using a mixture of PET as a core and a PET as a sheath (weight ratio of core/sheath of 1/l).

得られた繊維の特性値を第2表に示す。Table 2 shows the characteristic values of the obtained fibers.

実施例6 実施例1のPliTと含リンポリエステルとを重量比で
4:lの割合で混合したものからなるマルチフィラメン
トとP[!Tからなるマルチフィラメントとが等鞭混繊
された75d/36fの混繊糸を延伸混繊法により得た
Example 6 A multifilament made of a mixture of PliT of Example 1 and phosphorus-containing polyester at a weight ratio of 4:1 and P[! A mixed fiber yarn of 75d/36f in which multifilament consisting of T was mixed equally was obtained by a drawing blending method.

得られた混繊糸の特性値を第2表に示す。Table 2 shows the characteristic values of the obtained mixed fiber yarn.

実施例7 実施例1のPliTと含リンポリエステルとを重量比で
4:1の割合で混合したものからなるステーブルとPE
Tからなるステーブルとを等量で線条混紡し1次いで粗
紡機、精紡機をinIして紡績糸を得た。
Example 7 Stable and PE made of a mixture of PliT of Example 1 and phosphorus-containing polyester at a weight ratio of 4:1
Stable consisting of T was mixed in equal amounts with filaments, and then a roving machine and a spinning machine were used in I to obtain a spun yarn.

得られた紡績糸の特性値を第2表に示す。Table 2 shows the characteristic values of the obtained spun yarn.

第2表 注ニリン含量は、いずれも約7,000ppmである。Table 2 Note: The Nilin content is approximately 7,000 ppm in all cases.

(発明の効果) 本発明によれば、ポリエステルの物性や製糸性を悪化さ
せることがなく、優れた耐炎性を示すという高性能のポ
リエステル繊維構造物を安定して製造することが可能と
なる。
(Effects of the Invention) According to the present invention, it is possible to stably produce a high-performance polyester fiber structure that exhibits excellent flame resistance without deteriorating the physical properties or spinning properties of polyester.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリエチレンテレフタレート又はこれを主成分と
するポリエステル(A)と下記の式で表される基を有す
るリン化合物を、リン原子の重量として50,000p
pm以上含有し、0.4以上の極限粘度を有するポリエ
ステル(B)とからなり、リン原子を重量で500〜3
5,000ppm含有し、0.5以上の極限粘度を有す
ることを特徴とする耐炎性ポリエステル繊維構造物。 ▲数式、化学式、表等があります▼ (Rは3価の有機基であり、ベンゼン環は低級アルキル
基又はハロゲンで置換されていてもよい。)
(1) Polyethylene terephthalate or a polyester (A) containing polyester as a main component and a phosphorus compound having a group represented by the following formula, in an amount of 50,000 p as the weight of phosphorus atoms.
pm or more and has an intrinsic viscosity of 0.4 or more, and contains 500 to 3 phosphorus atoms by weight.
A flame-resistant polyester fiber structure containing 5,000 ppm and having an intrinsic viscosity of 0.5 or more. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (R is a trivalent organic group, and the benzene ring may be substituted with a lower alkyl group or halogen.)
JP60144258A 1985-07-01 1985-07-01 Flame resistant polyester fiber structure Expired - Lifetime JPH0635686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60144258A JPH0635686B2 (en) 1985-07-01 1985-07-01 Flame resistant polyester fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60144258A JPH0635686B2 (en) 1985-07-01 1985-07-01 Flame resistant polyester fiber structure

Publications (2)

Publication Number Publication Date
JPS626910A true JPS626910A (en) 1987-01-13
JPH0635686B2 JPH0635686B2 (en) 1994-05-11

Family

ID=15357913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60144258A Expired - Lifetime JPH0635686B2 (en) 1985-07-01 1985-07-01 Flame resistant polyester fiber structure

Country Status (1)

Country Link
JP (1) JPH0635686B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926032A (en) * 2012-11-09 2013-02-13 张守运 High-intensity and high-elongation and easy-dyeing and abrasion-resistant dacron polyester and preparation method thereof
JP2015127376A (en) * 2013-12-28 2015-07-09 三菱樹脂株式会社 White flame-retardant polyester film
CN109112688A (en) * 2018-08-24 2019-01-01 浙江蓝天海纺织服饰科技有限公司 A kind of UV resistance and absorbing fast-drying yarn and its production technology and application
CN110923841A (en) * 2019-11-13 2020-03-27 上海力道新材料科技股份有限公司 Flame-retardant polyester fiber and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560524A (en) * 1978-10-30 1980-05-07 Toyobo Co Ltd Water-dispersible polyester
JPS5627610A (en) * 1979-08-13 1981-03-18 Marantz Japan Inc Controlling circuit having multiple display functions
JPS5818447A (en) * 1981-07-27 1983-02-03 株式会社豊田自動織機製作所 Wefting apparatus of air jet loom
JPS5959916A (en) * 1982-09-24 1984-04-05 Kuraray Co Ltd Flame-retardant polyester fiber and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560524A (en) * 1978-10-30 1980-05-07 Toyobo Co Ltd Water-dispersible polyester
JPS5627610A (en) * 1979-08-13 1981-03-18 Marantz Japan Inc Controlling circuit having multiple display functions
JPS5818447A (en) * 1981-07-27 1983-02-03 株式会社豊田自動織機製作所 Wefting apparatus of air jet loom
JPS5959916A (en) * 1982-09-24 1984-04-05 Kuraray Co Ltd Flame-retardant polyester fiber and its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926032A (en) * 2012-11-09 2013-02-13 张守运 High-intensity and high-elongation and easy-dyeing and abrasion-resistant dacron polyester and preparation method thereof
JP2015127376A (en) * 2013-12-28 2015-07-09 三菱樹脂株式会社 White flame-retardant polyester film
CN109112688A (en) * 2018-08-24 2019-01-01 浙江蓝天海纺织服饰科技有限公司 A kind of UV resistance and absorbing fast-drying yarn and its production technology and application
CN109112688B (en) * 2018-08-24 2020-12-22 浙江蓝天海纺织服饰科技有限公司 Ultraviolet-proof moisture-absorbing quick-drying yarn and production process and application thereof
CN110923841A (en) * 2019-11-13 2020-03-27 上海力道新材料科技股份有限公司 Flame-retardant polyester fiber and preparation method thereof
CN110923841B (en) * 2019-11-13 2022-05-31 上海力道新材料科技股份有限公司 Flame-retardant polyester fiber and preparation method thereof

Also Published As

Publication number Publication date
JPH0635686B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
IE920015A1 (en) Flame resistant, low pilling polyester fiber
KR20040017283A (en) Polyester based fiber and artificial hair using the same
US5145941A (en) Flame resistant, low pilling polyester fiber
JPS626910A (en) Flame-resistant polyester fiber structure
JPH0782359A (en) Low-pilling, low-combustible polyester, its production, and structure formed from same
JPH07258520A (en) Light-resistant flame-retardant polyester composition
JPS6253415A (en) Flame-resistant polyester fiber structure
JPS626912A (en) Flameproofing polyester fiber structure
US3705130A (en) Fiber forming polyester composition and fiber produced therefrom
JP2865910B2 (en) Flame retardant polyester copolymer
JP4076413B2 (en) Polyester resin and polyester fiber
JPS61266614A (en) Flame-resistant polyester fiber structure
JPH08170223A (en) Polyester resin composition for fiber and fiber comprising the same
EP0731124A1 (en) Flame retardant polyester
JP3150211B2 (en) Method for producing flame-retardant polyester
JP2533159B2 (en) Flame resistant polyester composite fiber
JPH051141A (en) Flame-resistant polyester
JP2007119571A (en) Polyether ester elastomer and elastic fiber
JP2007084648A (en) Stabilized polyetherester elastomer and elastic fiber
KR100341940B1 (en) Manufacturing process of nonflammable polyester
JPS6241317A (en) Fire-resistant polyester conjugated yarn
JPH06173115A (en) Flame-retardant polyether-ester elastic fiber
JPH06322245A (en) Light-resistant flame-retardant polyester composition
KR0166448B1 (en) Method of manufacturing high shrinkage fire retardant polyester fiber
JPH0376816A (en) Flame-resistant polyester conjugate fiber