JPH06350A - Production of separation membrane - Google Patents

Production of separation membrane

Info

Publication number
JPH06350A
JPH06350A JP16558492A JP16558492A JPH06350A JP H06350 A JPH06350 A JP H06350A JP 16558492 A JP16558492 A JP 16558492A JP 16558492 A JP16558492 A JP 16558492A JP H06350 A JPH06350 A JP H06350A
Authority
JP
Japan
Prior art keywords
membrane
sulfuric acid
polymer
film
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16558492A
Other languages
Japanese (ja)
Inventor
Fumito Kishimoto
文都 岸本
Toshikatsu Sada
俊勝 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP16558492A priority Critical patent/JPH06350A/en
Publication of JPH06350A publication Critical patent/JPH06350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain a separation membrane having heat resistance which can be used in an org. solvent by treating a polymer membrane having an asymmetric structure and a dense layer prepared by using polymers having haloalkyl groups with high concn. sulfuric acid. CONSTITUTION:A membrane of assymmetric structure having haloalkyl groups is dipped in a conq. sulfuric acid of >=80% concn., more preferably >=85% concn. at room temp., or by heating or cooling, to effect the reaction. The sulfuric acid acts as Lewis acid to give catalytic effect to form bonds between haloalkyl groups or between haloalkyl groups and aromatic rings to introduce three- dimensional crosslinked structure. Thereby, the membrane becomes insoluble in the solvent which dissolves the polymer which constitutes the separation membrane, nor causes swelling. Since heat resistance of the membrane is significantly improved, the membrane can be subjected to steam sterilization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、少なくとも一方の表層
部に緻密層を有する非対称構造の高分子膜状物であって
三次元架橋構造を形成した特に耐熱、耐有機溶剤性を有
する分離膜の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a polymer membrane having an asymmetric structure having a dense layer on at least one surface layer and having a three-dimensional cross-linking structure and having particularly heat resistance and organic solvent resistance. Manufacturing method.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】今
日、分離膜は、種々の産業分野で広く利用されている。
例えば、イオン交換膜を用いた電気透析、電解反応の隔
膜、拡散透析、逆浸透膜による純水の製造、限外ろ過膜
の各種分野への利用など枚挙にいとまがない。このよう
な分離膜の用途が多様化するとともに、膜に要求される
性能も多様となってきている。
2. Description of the Related Art Separation membranes are widely used in various industrial fields today.
For example, electrodialysis using an ion-exchange membrane, diaphragm for electrolytic reaction, diffusion dialysis, production of pure water by a reverse osmosis membrane, and use of ultrafiltration membranes in various fields can be enumerated. As the applications of such separation membranes are diversified, the performance required for the membranes is also diversified.

【0003】一般にイオン交換膜のような非対称構造で
ない高分子膜状物には、無架橋膜あるいは架橋膜と種々
あるが、特に架橋したイオン交換膜が用いられている。
即ち、架橋した膜は、可撓性などの点で若干問題がある
にしても、三次限架橋構造を形成することによる分離膜
としての耐溶剤、耐熱性などが著しく向上する。一方、
表層部に緻密層を有する非対称構造の高分子膜状物は、
一般に相転換法によって製造されているため、架橋構造
を形成することが難しい。例えば、製膜後にハロメチル
基を有する芳香族ポリエーテルイミド重合体の膜をポリ
アミン処理の方法により、アミン架橋と同時に第四級ア
ンモニウム塩基を導入する選択透過性膜(特開昭63-240
901号)などが提案されている。
Generally, there are various non-asymmetric polymer film materials such as ion exchange membranes, that is, non-crosslinked membranes and crosslinked membranes, but crosslinked ion exchange membranes are used.
That is, although the crosslinked membrane has some problems in terms of flexibility and the like, the solvent resistance and heat resistance of the separation membrane are remarkably improved by forming a tertiary crosslinked structure. on the other hand,
The polymer film having an asymmetric structure having a dense layer on the surface layer,
Since it is generally produced by a phase inversion method, it is difficult to form a crosslinked structure. For example, a selective permeable membrane in which a quaternary ammonium salt group is introduced simultaneously with amine crosslinking by a method of polyamine treatment of a membrane of an aromatic polyetherimide polymer having a halomethyl group after the membrane formation (JP-A-63-240
No. 901) has been proposed.

【0004】しかしながら、架橋構造を有し、かつ負の
電荷あるいは無電荷の表層部に緻密層を有する良好な分
離膜は開発されていず、そのために分離膜として限外ろ
過、逆浸透、精密ろ過、浸透気化などの用途が限られた
ものとなっている。
However, a good separation membrane having a crosslinked structure and a dense layer in the negative or uncharged surface layer has not been developed, and therefore, ultrafiltration, reverse osmosis or microfiltration is used as the separation membrane. However, its uses such as pervaporation are limited.

【0005】したがって、本発明の目的は、非対称構造
を有し、かつ負の電荷あるいは無電荷の表層部に緻密層
のある分離膜に三次限架橋構造を形成し、耐熱性、耐有
機溶剤性のある分離膜を製造することにある。
Therefore, an object of the present invention is to form a tertiary cross-linking structure in a separation membrane having an asymmetric structure and having a negative charge or non-charge surface layer portion with a dense layer, thereby providing heat resistance and organic solvent resistance. To produce separation membranes with

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題に鑑み、少なくとも一方の表層部に緻密層を有する非
対称構造の高分子分離膜で三次元の架橋構造が形成され
たものを鋭意研究した。
In view of the above problems, the inventors of the present invention have selected a polymer separation membrane having an asymmetric structure having a dense layer on at least one surface layer portion and having a three-dimensional crosslinked structure formed therein. I studied hard.

【0007】その結果、意外にもハロアルキル基を有す
る高分子を用いて作られた緻密層を有する非対称構造の
高分子膜を80%以上好ましくは85%以上の硫酸で処
理することによって、三次元の架橋構造が導入され、硫
酸濃度の選定によって架橋構造を主に導入することも、
また架橋構造の形成を同時にスリホン酸基を導入するこ
とも可能なことを見いだし、本発明を提供するに至った
ものである。
As a result, surprisingly, by treating a polymer film having an asymmetric structure having a dense layer made of a polymer having a haloalkyl group with 80% or more, preferably 85% or more of sulfuric acid, three-dimensional The cross-linking structure of is introduced, and the cross-linking structure can be mainly introduced by selecting the sulfuric acid concentration.
Further, they have found that it is possible to introduce a sulphonic acid group at the same time as forming a crosslinked structure, and thus have provided the present invention.

【0008】本発明にいう緻密層を有する非対称構造の
高分子膜上物とは、一般にポリマー溶液を貧溶媒中に入
れて製膜したとき、膜表層が緻密な薄膜状となり、内部
はスポンジ状となる、いわゆる相転換法により得られる
膜であり、該緻密層は完全に無孔の場合もあり、また限
外ろ過膜、精密ろ過膜に相当する程度の細孔を有する場
合がある。このような本発明の緻密層を有する非対称構
造の高分子膜状物に用いる素材としては、従来公知の非
対称構造の膜の製造に用いられている高分子が何ら制限
なく用いられる。例えば、ポリスルホン、ポリエーテル
スルホン、ポリフェニレンオキサイド、ポリエーテルイ
ミド、ポリエーテルエーテルケトン、ポリアミドイミド
樹脂などの一般にエンジニヤリングプラスチックスと称
されているものである。更に単一の高分子のみでなく、
上記高分子の混合物でもよく、重合系の高分子、例えば
ポリアクリロニトリルに上記エンジニヤリングプラスチ
ックスを混合したものであってもよい。
In the present invention, the term "asymmetric structure polymer film top product having a dense layer" generally means that when a polymer solution is put into a poor solvent to form a film, the film surface layer becomes a dense thin film, and the inside is sponge-like. Which is a membrane obtained by a so-called phase inversion method, the dense layer may be completely non-porous, and may have pores of a degree corresponding to an ultrafiltration membrane or a microfiltration membrane. As a material used for the polymer film having an asymmetric structure having the dense layer of the present invention, a polymer used in the production of a conventionally known film having an asymmetric structure can be used without any limitation. For example, polysulfone, polyether sulfone, polyphenylene oxide, polyetherimide, polyetheretherketone, polyamideimide resin and the like are generally called engineering plastics. In addition to a single polymer,
It may be a mixture of the above polymers, or may be a polymer of the polymerization system such as polyacrylonitrile mixed with the above-mentioned engineering plastics.

【0009】一般に表層部に緻密層を有する非対称構造
の膜は、上記したような高分子の一種以上をN−メチル
ピロリドン、ジメチルホルムアミド、ジメチルスルホキ
サイドなどの極性溶媒に均一に溶解し、これを平板上に
流延し、或いは紡糸して水、アルコールなどの上記した
高分子に対して貧溶媒である液中に入れて相転換法によ
って製造される。この際、高分子の溶液中に無機塩、有
機物、ポリビニルピロリドンなどの異種の高分子を混合
し、相転換の際に溶出させて表層部の緻密層に細孔を形
成することも目的に応じてできる。
Generally, a film having an asymmetric structure having a dense layer on the surface layer is obtained by uniformly dissolving one or more of the above-mentioned polymers in a polar solvent such as N-methylpyrrolidone, dimethylformamide or dimethylsulfoxide. Is cast on a flat plate or spun into a flat plate and placed in a liquid which is a poor solvent for the above-mentioned polymers such as water and alcohol, and is produced by the phase inversion method. At this time, it is also possible to mix different types of polymers such as an inorganic salt, an organic substance, and polyvinylpyrrolidone in a solution of the polymer, and elute them at the time of phase inversion to form pores in the dense layer of the surface layer portion according to the purpose. You can

【0010】このような表層部に緻密層を有する高分子
膜にハロアルキル基を導入する方法は、予め原料の高分
子に従来公知の方法がハロアルキル基を導入して、これ
を用いて製膜することが望ましい。例えばポリスルホン
を塩素系の溶媒に溶解し、これにクロルメチルメチルエ
ーテルと無水の四塩化スズ、四塩化チタン、塩化亜鉛、
塩化鉄、酸化錫などのルイス酸を加えてフリーデルクラ
フト反応によって導入される。勿論、膜状物としたの
ち、クロルメチルメチルエテール、ルイス酸の混合蒸気
中に放置してハロメチル基を導入することも出来るが、
表層部の緻密層の変形をともなう場合が多い。また、ハ
ロアルキル基を有する高分子とハロアルキル基を結合し
ていない高分子とを均一に混合し、共通の溶媒に溶解し
て相転換法によって製膜してもよい。ただ、ハロアルキ
ル基を導入した高分子は、ハロアルキル基の量にもよる
が、一般にハロアルキル基を導入していない高分子と共
通の溶媒に溶解し難くなってくる。好ましくは、予めハ
ロアルキル基を原料高分子に導入し、次いで、該高分子
を用いて相転換法によって、製膜した少なくとも一方の
表層部に緻密層を有する非対称構造の膜状物である。こ
の場合、ハロアルキル基の高分子膜中における割合は、
用いる高分子の構造によって異なり一概に決めることが
難しいが、ハロアルキル基が導入可能なベンゼン環など
の単位について5%から100%まで導入、好ましくは
10%から70%導入される。このハロアルキル基の定
量は、原則として元素分析によって確認できる。
As a method for introducing a haloalkyl group into a polymer film having a dense layer on the surface layer portion, a haloalkyl group is previously introduced into a polymer as a raw material by a conventionally known method, and a film is formed using this. Is desirable. For example, polysulfone is dissolved in a chlorine-based solvent, and chloromethyl methyl ether and anhydrous tin tetrachloride, titanium tetrachloride, zinc chloride,
It is introduced by the Friedel-Crafts reaction by adding a Lewis acid such as iron chloride or tin oxide. Of course, it is also possible to introduce a halomethyl group by leaving it in a mixed vapor of chloromethyl methyl ether and Lewis acid after making it into a film.
Often accompanied by deformation of the dense layer in the surface layer. Alternatively, a polymer having a haloalkyl group and a polymer not having a haloalkyl group bonded may be uniformly mixed, dissolved in a common solvent, and a film may be formed by a phase inversion method. However, a polymer introduced with a haloalkyl group generally becomes difficult to dissolve in a common solvent with a polymer not introduced with a haloalkyl group, depending on the amount of the haloalkyl group. Preferred is a film-like product having an asymmetric structure, in which a haloalkyl group is introduced into a starting polymer in advance, and then the polymer is used to form a film by a phase inversion method to have a dense layer on at least one surface layer portion. In this case, the ratio of the haloalkyl group in the polymer film is
It depends on the structure of the polymer to be used and is difficult to determine unconditionally, but 5% to 100% is introduced, preferably 10% to 70% is introduced into the unit such as a benzene ring into which a haloalkyl group can be introduced. In principle, the quantification of this haloalkyl group can be confirmed by elemental analysis.

【0011】次いで、本発明においては、上記のハロア
ルキル基を有する非対称構造の膜状物を、85%以上の
濃硫酸中に室温、加温下、または冷却下に浸漬して反応
処理する。処理温度は反応に供する高分子膜状物の構造
(高分子の種類)によって異なる。この場合、架橋反応
を主に行いたいときは比較的希簿な硫酸で処理するとよ
く、架橋反応と同時にスルホン化反応も行いたいときは
比較的高濃度の硫酸で処理することが望ましい。
Next, in the present invention, the above-mentioned asymmetric structure film-form material having a haloalkyl group is immersed in 85% or more concentrated sulfuric acid at room temperature, under heating, or under cooling to carry out a reaction treatment. The treatment temperature varies depending on the structure (type of polymer) of the polymer film material used in the reaction. In this case, if it is desired to mainly carry out the crosslinking reaction, it should be treated with a relatively dilute sulfuric acid, and if it is desired to carry out the sulfonation reaction simultaneously with the crosslinking reaction, it is desirable to treat it with a relatively high concentration of sulfuric acid.

【0012】このような本発明の処理により、硫酸が一
種のルイス酸であるため、触媒作用をしてハロアルキル
基の相互、ハロアルキル基と芳香環などの間に結合を形
成すると思われる。この際、硫酸の濃度が比較的高い
と、ルイス酸としての作用と同時にスルホン酸基の導入
試薬として作用することになる。ルイス酸としては硫酸
に限らず各種のものがあり、これらについて同様に架橋
反応の作用が考えられる。しかし、他のルイス酸は一般
に二硫化炭素、塩素系の溶媒を必要とする。したがっ
て、これらの溶媒は、ルイス酸の溶媒であると同時に、
ハロアルキル基を結合した非対称構造を有する高分子膜
の溶媒になるものであり、例えば二硫化炭素に触媒量の
四塩化スズを溶解したものに例えばクロルメチル化ポリ
スルホンで作った膜を浸漬すると、該膜は二硫化炭素に
よって著しく膨潤し、遂には非対称構造も失われてしま
う。また、例えばエチレンジクロライドなどを溶媒を用
いて上記の膜状物を処理すると、架橋反応の前に溶解し
てしまうことになる。従って、本発明においては、架橋
反応を行うあたり、特定された濃度の硫酸を用いること
に意味がある。硫酸との反応時間は処理する膜の原料と
なっているポリマーの種類、反応温度、硫酸濃度によっ
て全く異なるが、一般に30秒〜200時間の間で適宜
選定される。
By the treatment of the present invention, since sulfuric acid is a kind of Lewis acid, it is considered that it acts as a catalyst to form a bond between the haloalkyl groups and between the haloalkyl group and the aromatic ring. At this time, when the concentration of sulfuric acid is relatively high, it acts as a Lewis acid and at the same time acts as a sulfonic acid group-introducing reagent. The Lewis acid is not limited to sulfuric acid, and there are various kinds of Lewis acids, and the action of the crosslinking reaction can be similarly considered for these. However, other Lewis acids generally require a solvent of carbon disulfide or chlorine. Therefore, these solvents are at the same time Lewis solvents and
It becomes a solvent for a polymer film having an asymmetric structure in which a haloalkyl group is bonded. For example, when a film made of chloromethylated polysulfone is immersed in a solution of a catalytic amount of tin tetrachloride in carbon disulfide, the film is formed. Swells significantly with carbon disulfide and eventually loses its asymmetric structure. Further, for example, when the above film-like material is treated with a solvent such as ethylene dichloride, it will be dissolved before the crosslinking reaction. Therefore, in the present invention, it is significant to use sulfuric acid having a specified concentration when performing the crosslinking reaction. The reaction time with sulfuric acid is completely different depending on the type of polymer used as the raw material of the membrane to be treated, the reaction temperature, and the sulfuric acid concentration, but is generally appropriately selected from 30 seconds to 200 hours.

【0013】なお、本発明の80%以上の硫酸で適宜処
理された膜は、そのまま水に浸漬すると発熱して膜表層
部の緻密層の構造が変形するため、出来るだけ発熱しな
いような条件で処理した濃硫酸を除去する必要がある。
即ち、80%以上の濃硫酸と反応した膜は、例えば80
%,60%,40%,20%などと順次に希釈された硫
酸で洗浄し水洗して最後に希簿なアルカリで中和した
後、水洗する。
The film of the present invention, which has been appropriately treated with 80% or more sulfuric acid, is heated as it is soaked in water and the structure of the dense layer in the surface layer of the film is deformed. The treated concentrated sulfuric acid needs to be removed.
That is, a film reacted with 80% or more concentrated sulfuric acid has, for example, 80%
%, 60%, 40%, 20%, etc., and then washed with water, finally neutralized with a rare alkali, and then washed with water.

【0014】本発明の分離膜としては、特に形状を制限
するものでなく、例えば平膜、チューブ状の膜、中空糸
など各種の分離膜が挙げられる。
The separation membrane of the present invention is not particularly limited in shape, and examples thereof include various separation membranes such as flat membranes, tubular membranes and hollow fibers.

【0015】[0015]

【発明の作用と効果】本発明の得られる分離膜は、三次
元架橋構造を有するために、分離膜を構成している高分
子が溶解する溶媒にも不溶で膨潤も殆どない。従って、
有機溶媒中での分離膜の使用が可能である。また三次元
構造を有するため耐熱性も著しく向上し、蒸気殺菌をす
ることも可能となり、膜の利用分野を著しく拡大するこ
とに寄与する。さらに、荷電によりイオン性物質の分
離、分離膜における有機汚染の問題も解決できる。
Since the separation membrane of the present invention has a three-dimensional crosslinked structure, it is insoluble in the solvent in which the polymer constituting the separation membrane is dissolved and hardly swells. Therefore,
It is possible to use a separation membrane in an organic solvent. Further, since it has a three-dimensional structure, the heat resistance is remarkably improved, and steam sterilization can be performed, which contributes to remarkably expanding the field of use of the membrane. Furthermore, the problem of separation of ionic substances due to electric charges and organic contamination in the separation membrane can be solved.

【0016】[0016]

【実施例】本発明の内容を以下の実施例によって具体的
に示すが、本発明はこれらの実施例によって拘束される
ものではない。
EXAMPLES The contents of the present invention will be specifically illustrated by the following examples, but the present invention is not limited to these examples.

【0017】実施例1 ポリスルホン(アモウケミカルジャパン社製、重量平均
分子量35,000)である
Example 1 Polysulfone (manufactured by Amou Chemical Japan Co., weight average molecular weight 35,000)

【0018】[0018]

【化1】 [Chemical 1]

【0019】上記のくり返し単位を有する高分子350
0部をエチレンジクロライド3600部に均一に溶解
し、これに無水の塩化亜鉛31部とクロルメチルメチル
エーテル500部を加えて25.0℃で12時間攪拌し
たのち、純水100部を加えて反応を止め、次いで大過
剰のメタノール中に投入して高分子を析出させた。
Polymer 350 having the above repeating unit
0 part was uniformly dissolved in 3600 parts of ethylene dichloride, 31 parts of anhydrous zinc chloride and 500 parts of chloromethyl methyl ether were added thereto, and the mixture was stirred at 25.0 ° C. for 12 hours, and then 100 parts of pure water was added to react. Was stopped, and then the mixture was poured into a large excess of methanol to precipitate a polymer.

【0020】この高分子を乾燥後、再びクロロホルム中
に溶解し、次いで大過剰のメタノール中に投入して高分
子を析出させた。この操作を2回繰り返して高分子を精
製した。得られた高分子を減圧乾燥したのち、一部をと
り、元素分析によって塩素の含量を調べたところ6.2
%であった。また、赤外吸収スペクトルによってクロル
メチル基の存在が確認でき、そのクロルメチル基は上記
高分子の単位に大略1ヶの割合で入っていることが分か
った。
After drying this polymer, it was dissolved again in chloroform and then poured into a large excess of methanol to precipitate the polymer. This operation was repeated twice to purify the polymer. The polymer obtained was dried under reduced pressure, and then a part of the polymer was taken and the content of chlorine was examined by elemental analysis.
%Met. Further, the presence of a chloromethyl group was confirmed by the infrared absorption spectrum, and it was found that the chloromethyl group was contained in the polymer unit at a ratio of about one.

【0021】このクロルメチル基を導入したポリスルホ
ン20部を80部のN−メチルピロリドンに溶解し、メ
ッシュフィルターでろ過したのち、そのドープ液を二重
管ノズルを有する紡糸装置から水中に押出して、内径
0.8mm、外径1mmの中空糸を得た。この中空糸の
断面を走査型電子顕微鏡で観察したところ、両表層部に
緻密な層があり、中間部は指状の多孔質構造をしてい
た。
20 parts of this polysulfone having a chloromethyl group introduced therein was dissolved in 80 parts of N-methylpyrrolidone, filtered through a mesh filter, and the dope was extruded into water from a spinning device having a double tube nozzle to give an inner diameter of A hollow fiber having a diameter of 0.8 mm and an outer diameter of 1 mm was obtained. When the cross section of this hollow fiber was observed with a scanning electron microscope, there were dense layers on both surface layers, and the middle portion had a finger-like porous structure.

【0022】この中空糸を風乾した後、それぞれ80
%、90%、95%、98%の濃硫酸中に、それぞれ2
4時間、24時間、4時間、30分間浸漬して後、80
%、60%、40%、20%のそれぞれの硫酸に平衡に
したのち(70%の硫酸に浸漬した膜は60%から浸漬
した)、水洗し、次いで0.1規定の苛性ソーダ水溶液
中に平衡にした。得られた膜をそれぞれメチルオレンジ
の2%水溶液に4時間浸漬したのち、水洗して染色の度
合を見たところ、95%及び98%硫酸に浸漬した膜は
著しく染色されていたが、80%硫酸に浸漬した膜は殆
ど染色されなかった。
After air-drying this hollow fiber,
%, 90%, 95%, 98% concentrated sulfuric acid, 2 each
After soaking for 4 hours, 24 hours, 4 hours, 30 minutes, 80
%, 60%, 40%, and 20% sulfuric acid (equal to 70% sulfuric acid soaked membrane from 60%), washed with water, and then equilibrated in 0.1N caustic soda solution. I chose Each of the obtained films was dipped in a 2% aqueous solution of methyl orange for 4 hours, washed with water, and the degree of dyeing was examined. The films dipped in 95% and 98% sulfuric acid were markedly dyed, but 80% The membrane soaked in sulfuric acid was hardly stained.

【0023】また、そこで酸型にした中空糸膜を充分に
水洗後0.5規定の食塩水に浸漬平衡にして、イオン交
換して出た水素イオンを1/10規定NaOHでの滴定
によって求めた。指示薬はメチルオレンジを用いた。9
8%硫酸、95%硫酸に浸漬した膜は交換容量はそれぞ
れ0.74ミリ当量/グラム乾燥膜、0.36ミリ当量
/グラム乾燥膜であったが、80%硫酸に浸漬した膜は
0.05ミリ当量/グラム乾燥膜であった。また、膜を
クロロホルム、エチレンジクロライド中に浸漬したとこ
ろ、若干膨潤はしたがいづれの膜も溶解しなかった。
The acid type hollow fiber membrane was washed thoroughly with water, immersed in 0.5N saline to equilibrate, and the hydrogen ions produced by ion exchange were determined by titration with 1 / 10N NaOH. It was Methyl orange was used as the indicator. 9
The membranes soaked in 8% sulfuric acid and 95% sulfuric acid had exchange capacities of 0.74 meq / g dry membrane and 0.36 meq / g dry membrane, respectively. It was 05 meq / g dry film. When the membrane was immersed in chloroform or ethylene dichloride, it swelled slightly but neither membrane dissolved.

【0024】また、比較のために70%硫酸に24時間
浸漬した膜を作ったところ、メチルオレンジ系で染色さ
れず、クロロホルム、エチレンジクロライドのいづれに
も溶解した。
For comparison, when a film was prepared by immersing it in 70% sulfuric acid for 24 hours, it was not dyed with methyl orange and was dissolved in either chloroform or ethylene dichloride.

【0025】さらに、この中空糸5本(長さ20cm)
をエポキシ樹脂によってガラス管内に封入して、中空糸
内部へ液の供給と中空糸外へ透過してきたものを採取す
る取り出し口を付けて浸透気化装置をセットした。次い
で、中空糸の内側に90%の含水イソプロピルアルコー
ル(60℃)を流し、中空糸の外側を5torまで減圧
にした。中空糸を透過してきた蒸気は、ドライアイス−
メタノールで冷却したトラップに捕集して後、ガスクロ
マトグラフィーによって分析した。透過した量から単位
時間あたりの透過量を求めたところ1250g/hr・m
2で、透過液中のイソプロピルアルコールの濃度は1.
8%に過ぎなかった。
Further, 5 hollow fibers (length 20 cm)
Was sealed in a glass tube with an epoxy resin, and a permeation apparatus was set with a supply port for supplying a liquid into the hollow fiber and a take-out port for collecting the permeated material outside the hollow fiber. Next, 90% hydrous isopropyl alcohol (60 ° C.) was flown inside the hollow fiber, and the pressure outside the hollow fiber was reduced to 5 torr. The vapor that has passed through the hollow fiber is dry ice-
It was collected in a trap cooled with methanol and then analyzed by gas chromatography. When the permeation amount per unit time was calculated from the permeation amount, it was 1250 g / hr ・ m
2 , the concentration of isopropyl alcohol in the permeate was 1.
It was only 8%.

【0026】実施例2 実施例1で得たクロルメチル化ポリスルホン10部をク
ロルメチル化していないポリスルホン10部とともにN
−メチルピロリドン80部均一に溶解した。これをメッ
シュフィルターでろ過したのち、脱気してポリエステル
製の不織布の上に直径40cmのローラ上に0.1mm
のスリットを作った間からコーティングして、それをそ
のまま水中に入れて、相転換させ製膜した。ここで得ら
れた平膜を一旦乾燥して後、90%濃硫酸中に5時間浸
漬して後、次いで80%硫酸、40%硫酸において順次
平衡にした後、水洗し、さらに0.1規定の水酸化カリ
ウム水溶液に平衡にした後再び乾燥した。この膜の非対
称構造を有している表層部はメチルレッドによって著し
く染色された。なお、硫酸に浸漬していない原膜は染色
されなかった。
Example 2 10 parts of the chloromethylated polysulfone obtained in Example 1 together with 10 parts of non-chloromethylated polysulfone
-Methylpyrrolidone 80 parts dissolved uniformly. After filtering this with a mesh filter, deaeration and 0.1 mm on a polyester non-woven fabric on a roller with a diameter of 40 cm
The slit was coated from the time it was made, and it was put in water as it was, and the phase was converted to form a film. The flat membrane obtained here was once dried, then immersed in 90% concentrated sulfuric acid for 5 hours, then equilibrated in order of 80% sulfuric acid and 40% sulfuric acid, washed with water, and then 0.1 N. After equilibrating with an aqueous solution of potassium hydroxide, the solution was dried again. The surface layer having an asymmetric structure of this film was markedly stained with methyl red. In addition, the original membrane not soaked in sulfuric acid was not stained.

【0027】また、硫酸に浸漬した膜と浸漬していない
原膜をエチレンジクロライド中に浸漬した結果、硫酸に
浸漬した膜は若干膨潤した程度で変化が無かったが、硫
酸に浸漬していない原膜は、補強材の不織布を残すのみ
で完全に溶解した。
Further, as a result of immersing the membrane soaked in sulfuric acid and the original membrane not soaked in ethylene dichloride, the membrane soaked in sulfuric acid showed a slight swelling and no change, but the original membrane not soaked in sulfuric acid was not changed. The membrane was completely dissolved, leaving only the reinforcing non-woven fabric.

【0028】この2種の平膜を用いて、95%の含水エ
タノールの脱水を実施例1と同様の浸漬気化法によって
行った。温度は60℃で2torまで減圧にして膜透過
したガスを捕集して分析したところ、硫酸処理していな
い膜では透過液量が2100g/hr・m2で透過液中
のエタノール濃度は32%であったが、硫酸処理した膜
では1800g/hr・m2の透過液量でエタノール濃
度は8.9%であった。
Using these two kinds of flat membranes, dehydration of 95% hydrous ethanol was carried out by the same immersion vaporization method as in Example 1. When the temperature of the membrane was reduced to 2 torr at 60 ° C and the gas permeated through the membrane was collected and analyzed, the membrane without sulfuric acid treatment had a permeate volume of 2100 g / hr · m 2 and an ethanol concentration of 32% in the permeate. However, the sulfuric acid-treated membrane had an ethanol concentration of 8.9% at a permeated liquid amount of 1800 g / hr · m 2 .

【0029】実施例3 実施例1と同様の操作でポリスルホンのクロルメチル化
を反応時間を短かくして実施したところ、生成したクロ
ルメチル化ポリスルホン中のCl含量は4.2%であっ
た。このクロルメチル化ポリスルホン15部と分子量6
万のポリビニルピロリドン5部をN−メチルピロリドン
80部に溶解した。メッシュフィルターでろ過したの
ち、粘稠な液を実施例2と同様にしてポリエステル製の
不織布上に塗布し、直ちに水浴を通して凝固分担させ
た。得られた膜は表層部に緻密層があり、内部はスポン
ジ状となっていた。
Example 3 Chloromethylation of polysulfone was carried out in the same manner as in Example 1 with a shorter reaction time. As a result, the Cl content in the chloromethylated polysulfone produced was 4.2%. 15 parts of this chloromethylated polysulfone and a molecular weight of 6
Ten parts of polyvinylpyrrolidone were dissolved in 80 parts of N-methylpyrrolidone. After filtering with a mesh filter, the viscous liquid was applied onto a polyester non-woven fabric in the same manner as in Example 2, and immediately passed through a water bath for coagulation. The obtained film had a dense layer in the surface layer and had a sponge inside.

【0030】この膜を限外ろ過膜を評価する装置に組込
んで3kg/cm2の加圧下に透水量を測定したとこ
ろ、350l/hr・m2であった。分画分子量を単分
散のポリエチレングライコールで測定したところ約2
0,000であった。
When this membrane was installed in an apparatus for evaluating an ultrafiltration membrane and the water permeation rate was measured under a pressure of 3 kg / cm 2 , it was 350 l / hr · m 2 . The molecular weight cut-off was measured with monodisperse polyethylene glycol and was about 2
It was 10,000.

【0031】次に、この膜を20%硫酸、40%硫酸、
80%硫酸と順次平衡にしたのち、90%濃硫酸に5時
間浸漬したのち、再び順次に希薄な硫酸に浸漬して後、
水洗しさらに0.1規定の苛性ソーダ中に浸漬した。こ
の膜の透水量を同様に測定したところ500l/m2
hrであり、分画分子量は約20,000であって変化
が無かった。
Next, this film was treated with 20% sulfuric acid, 40% sulfuric acid,
After equilibrating with 80% sulfuric acid in sequence, dipping in 90% concentrated sulfuric acid for 5 hours, and then again dipping in dilute sulfuric acid,
It was washed with water and further immersed in 0.1 N caustic soda. When the water permeability of this membrane was measured in the same manner, it was 500 l / m 2 ·
and the molecular weight cut-off was about 20,000, which was unchanged.

【0032】次いで、ポリエチレングライコールを水と
アセトンの3:1の混合溶媒に溶解した液を同様にろ過
したところ、硫酸で処理した膜は分画分子量20,00
0の分画性を示したが、硫酸で処理していない膜は分画
分子量は50,000となり、溶出曲線はブロードとな
っていた。
Then, a solution prepared by dissolving polyethylene glycol in a 3: 1 mixed solvent of water and acetone was filtered in the same manner. The membrane treated with sulfuric acid had a molecular weight cut-off of 20,000.
Although the fractionation property was 0, the molecular weight of the membrane not treated with sulfuric acid was 50,000 and the elution curve was broad.

【0033】実施例4 下記式で表される繰り返し単位Example 4 Repeating unit represented by the following formula

【0034】[0034]

【化2】 [Chemical 2]

【0035】を有するポリエーテルイミド(ゼネラル・
エレクトリック社製、商品名ウルテム1000、重量平
均分子量40,000)15部と実施例1で合成したク
ロルメチル化ポリスルホン5部をN−メチルピロリドン
80部に均一に溶解し、ろ過後、二重管ノズルを用いて
中空糸を水中にいれて凝固させ、内面に緻密層を有し、
外部は多孔質である中空糸を得た。この膜を風乾し、さ
らに150℃で30分加熱乾燥して後、90%、4℃に
冷却した濃硫酸を中空糸内に10分間通した後、順次に
80%、40%の硫酸を中空糸内に通した後、水洗し、
最後に0.1規定の苛性ソーダを中空糸内に流して後に
乾燥した。
Polyether imide having (general
15 parts of Ultem 1000, weight average molecular weight 40,000) manufactured by Electric Co., and 5 parts of chloromethylated polysulfone synthesized in Example 1 are uniformly dissolved in 80 parts of N-methylpyrrolidone, and after filtration, a double-tube nozzle. The hollow fiber is put into water by using to solidify, and has a dense layer on the inner surface.
A hollow fiber having a porous exterior was obtained. The membrane was air-dried and further dried by heating at 150 ° C. for 30 minutes, then concentrated sulfuric acid cooled to 90% and 4 ° C. was passed through the hollow fiber for 10 minutes, and then 80% and 40% sulfuric acid were sequentially hollowed. After passing through the thread, wash with water,
Finally, 0.1 N caustic soda was poured into the hollow fiber and then dried.

【0036】この得られた膜の内側にエチレンジクロラ
イドを流したが、中空糸自体に変化は無かった。他方、
硫酸で処理していない膜の中にエチレンジクロライドを
入れたら直ちに中空糸は溶解した。
Ethylene dichloride was poured inside the obtained membrane, but there was no change in the hollow fiber itself. On the other hand,
When ethylene dichloride was put into the membrane not treated with sulfuric acid, the hollow fiber immediately dissolved.

【0037】実施例5 実施例3で製造した限外ろ過膜を127℃の蒸気中に1
時間放置して後、ポリエチレングライコールで分画分子
量を測定した。その結果、硫酸で処理した膜の透水量は
470l/hr・m2であり、分画分子量は約20,0
00で殆ど変化無かったが、硫酸で処理していない膜は
透水量は120l/hr・m2となり、分画分子量は約
8000となっていた。
Example 5 The ultrafiltration membrane produced in Example 3 was immersed in steam at 127 ° C. for 1 hour.
After standing for a time, the molecular weight cut off was measured with polyethylene glycol. As a result, the water permeability of the membrane treated with sulfuric acid was 470 l / hr · m 2 , and the molecular weight cutoff was about 20,0.
However, the membrane not treated with sulfuric acid had a water permeability of 120 l / hr · m 2 and a molecular weight cut-off of about 8,000.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ハロアルキル基を結合した表層部の少なく
とも一方に緻密層を有する非対称構造の高分子膜状物
を、80%以上の濃硫酸と接触処理させることを特徴と
する分離膜の製造方法。
1. A method for producing a separation membrane, which comprises subjecting a polymer membrane having an asymmetric structure having a dense layer on at least one of surface layers bound with a haloalkyl group to a contact treatment with 80% or more concentrated sulfuric acid. .
JP16558492A 1992-06-24 1992-06-24 Production of separation membrane Pending JPH06350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16558492A JPH06350A (en) 1992-06-24 1992-06-24 Production of separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16558492A JPH06350A (en) 1992-06-24 1992-06-24 Production of separation membrane

Publications (1)

Publication Number Publication Date
JPH06350A true JPH06350A (en) 1994-01-11

Family

ID=15815136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16558492A Pending JPH06350A (en) 1992-06-24 1992-06-24 Production of separation membrane

Country Status (1)

Country Link
JP (1) JPH06350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200982A1 (en) * 2020-03-30 2021-10-07 東洋紡株式会社 Polyphenylene-based semipermeable membrane and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200982A1 (en) * 2020-03-30 2021-10-07 東洋紡株式会社 Polyphenylene-based semipermeable membrane and manufacturing method therefor
JP2021159784A (en) * 2020-03-30 2021-10-11 東洋紡株式会社 Polyphenylene-based semi-permeable membrane and method for producing the same

Similar Documents

Publication Publication Date Title
EP1773477B1 (en) Hydrophilic membranes
US7867417B2 (en) Membrane post treatment
US20080214687A1 (en) Cross Linking Treatment of Polymer Membranes
JPH01284303A (en) High selectivity permeable membrane having hydrophilic property rendered to surface and production thereof
JP3216910B2 (en) Porous hollow fiber membrane
JPH02160026A (en) Hydrophilic separation membrane
JP3165740B2 (en) Separation membrane and method for producing the same
AU2006261581B2 (en) Cross linking treatment of polymer membranes
JPH04176330A (en) Production of charge type separation membrane
JPH06350A (en) Production of separation membrane
JPS6239636A (en) Production of hydrophilic organic polymer substrate
JPH0751632B2 (en) Hydrophilized polyethylene sulfone membrane
JP2885878B2 (en) Separation membrane
CN114749035B (en) Low-pressure large-flux hollow fiber nanofiltration membrane, and preparation method and application thereof
JPH0516290B2 (en)
JPH05293345A (en) Semipermeable dual membrane
JP2918137B2 (en) Porous membrane surface-treated with modified nylon and method for producing the same
US5221482A (en) Polyparabanic acid membrane for selective separation
JPS6257613A (en) Production of hydrophilic organic polymer substrate
JPH03278826A (en) Composite film and its preparation
JPS61125409A (en) Method for making porous polyolefin hollow yarn hydrophilic
JP2883406B2 (en) Hydrophilic membrane
AU2005259840B2 (en) Hydrophilic membranes
JPH04222623A (en) Prevaporation separation membrane
JPH0510967B2 (en)