JPH06350255A - Production of multilayer printed wiring board - Google Patents

Production of multilayer printed wiring board

Info

Publication number
JPH06350255A
JPH06350255A JP13581693A JP13581693A JPH06350255A JP H06350255 A JPH06350255 A JP H06350255A JP 13581693 A JP13581693 A JP 13581693A JP 13581693 A JP13581693 A JP 13581693A JP H06350255 A JPH06350255 A JP H06350255A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
flexible
multilayer printed
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13581693A
Other languages
Japanese (ja)
Inventor
Naohito Yoshimura
直仁 吉村
Koji Hirukawa
孝治 蛭川
Mitsuru Nozaki
充 野崎
Koichi Nakano
孝一 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP13581693A priority Critical patent/JPH06350255A/en
Publication of JPH06350255A publication Critical patent/JPH06350255A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • H05K3/4691Rigid-flexible multilayer circuits comprising rigid and flexible layers, e.g. having in the bending regions only flexible layers

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To provide a method for producing a rigid flexible multilayer printed wiring board having highly reliable rigid part and flexible part. CONSTITUTION:A printed wiring board having at least one flexible layer is combined with a printed wiring board having at least one rigid layer to produce a multilayer printed wiring board wherein no adhesive is used on the circuit at the time of formation of a protective film layer in order to protect the flexible layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリジッド部とフレキシブ
ル部を有するリジッドフレキシブル多層プリント配線板
の信頼性を向上させるためのものである。リジッドフレ
キシブル多層配線板はプリント板加工、部品実装後、そ
のリジッド部の一部分を取り除き、一部のフレキシブル
な機能を有する層を被覆したフレキシブル基板部分を露
出させることによって、自動的にコネクターが形成でき
ることが特徴である。この多層プリント配線板では、リ
ジッド部とフレキシブル部を接続させるためのコネクタ
ーの接続端子を削減できるため、プリント配線板の実装
密度を格段に上昇させることが可能となり、実装密度の
向上が図れるため、今後、軽薄短小を志向する電子磁器
に幅広く応用できるものと期待されている。また上記リ
ジッドフレキシブル多層プリント配線板において、上記
のリジッド部の一部分を取り除く作業をプリント配線板
の部品実装後行うことによって、部品実装工程も簡略化
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to improve the reliability of a rigid flexible multilayer printed wiring board having a rigid portion and a flexible portion. Rigid-flexible multilayer wiring board is capable of automatically forming a connector by processing a printed board and mounting components, and then removing a part of the rigid part and exposing a part of the flexible board coated with a layer having a flexible function. Is a feature. In this multilayer printed wiring board, the connection terminals of the connector for connecting the rigid portion and the flexible portion can be reduced, so that the mounting density of the printed wiring board can be significantly increased and the mounting density can be improved. In the future, it is expected that it can be widely applied to electronic porcelain that aims to be light, thin, short and small. Further, in the rigid flexible multilayer printed wiring board, the work of removing a part of the rigid portion is performed after mounting the components of the printed wiring board, so that the component mounting process can be simplified.

【0002】[0002]

【従来の技術】リジッドフレキシブル多層プリント配線
板の構成として一般的にはフレキシブル銅張板に回路形
成を行なった後、その回路保護のためにポリイミド等の
高耐熱性樹脂フィルムをエポキシ樹脂、アクリル樹脂等
の熱硬化性樹脂に可塑剤を添加した接着剤を介して貼り
付け、その上下にプリプレグ層を用いてリジッドな内層
用あるいは外層用プリント配線板を積層して形成され
る。この耐熱性フィルムの貼り合せに先立ち、ポリイミ
ドフィルムの吸湿水分を除去するため、耐熱性フィルム
を接着剤をつけた状態のもの (カバーレイフィルム) を
100〜120℃で10〜30分程度乾燥する。この乾
燥が短かすぎると耐熱性フィルムに含まれる水分の除去
が完全でなく、積層後のリジッドフレキシブル多層プリ
ント配線板の耐熱性低下の原因となる。逆に乾燥が長す
ぎた場合、接着剤の硬化が進み、多層プリント配線板の
成型性、密着性に支障をきたすこととなる。
2. Description of the Related Art Generally, as a structure of a rigid flexible multilayer printed wiring board, after forming a circuit on a flexible copper clad board, a high heat resistant resin film such as polyimide is used as an epoxy resin or an acrylic resin to protect the circuit. It is formed by adhering a thermosetting resin such as the above via an adhesive containing a plasticizer, and by stacking a rigid inner layer or outer layer printed wiring board using prepreg layers on the upper and lower sides thereof. Prior to adhering the heat resistant film, the heat resistant film with an adhesive (coverlay film) is dried at 100 to 120 ° C. for about 10 to 30 minutes in order to remove moisture absorbed by the polyimide film. . If the drying is too short, the moisture contained in the heat-resistant film will not be completely removed, and the heat resistance of the rigid-flexible multilayer printed wiring board after lamination will be deteriorated. On the contrary, if the drying is too long, the curing of the adhesive progresses, and the moldability and adhesion of the multilayer printed wiring board are impaired.

【0003】また上記耐熱性フィルムの接着に用いる接
着剤は、その熱膨張率がリジッド部を構成する各材料と
比べ大きくなるためスルーホールメッキ形成後、熱サイ
クルがかかるとその熱膨張率の差によりスルーホールメ
ッキのバレルクラックの発生の要因となり、スルーホー
ルメッキの信頼性を低下させる原因となっていた。
The thermal expansion coefficient of the adhesive used for adhering the heat-resistant film is larger than that of each material forming the rigid portion, so that the thermal expansion coefficient is different when a thermal cycle is applied after the through-hole plating is formed. As a result, it causes a barrel crack in the through hole plating, which causes a decrease in reliability of the through hole plating.

【0004】[0004]

【本発明が解決しようとする課題】本発明は、上記した
リジッドフレキシブル多層プリント配線板の製造法にお
いて、フレキシブル部の回路保護に用いる耐熱性フィル
ムの貼り合せ方法を改善し、信頼性の高い多層プリント
配線板を得ることに関するものである。
DISCLOSURE OF THE INVENTION The present invention has improved the method of laminating a heat-resistant film used for circuit protection of a flexible part in the method of manufacturing a rigid flexible multilayer printed wiring board described above, and has a highly reliable multilayer structure. It relates to obtaining a printed wiring board.

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、上記
耐熱性フィルムの貼り合せに接着剤を用いずにリジッド
フレキシブル多層プリント配線板を製造することによっ
て高い信頼性が得られることを見い出したものであり、
その方法として硬化後もフレキシブルな機能を有するガ
ラス布、もしくは高耐熱性樹脂繊維を基材としたプリプ
レグを用いる方法に効果を見い出したことにある。上記
硬化後もフレキシブルな機能を有するプリプレグの使用
方法としては、回路形成を行なったフレキシブル銅張板
の上下をこのプリプレグで挟み込み積層することによっ
てプリプレグ層自体を回路保護層として利用する方法と
2枚以上のフレキシブル銅張板をこのプリプレグを用い
て積層することによってフレキシブル銅張板の基材部分
を回路保護層として利用する両方法が可能である。
That is, the present invention has found that high reliability can be obtained by producing a rigid flexible multilayer printed wiring board without using an adhesive for bonding the heat resistant film. And
As a method therefor, it has been found that a method of using a glass cloth having a flexible function even after curing or a method of using a prepreg having a high heat resistant resin fiber as a base material is effective. As a method of using the prepreg having a flexible function even after curing, a method of using the prepreg layer itself as a circuit protective layer by sandwiching the upper and lower sides of a flexible copper clad plate on which a circuit is formed with this prepreg and laminating two By laminating the above-mentioned flexible copper clad board using this prepreg, both methods of using the base material part of the flexible copper clad board as a circuit protection layer are possible.

【0006】以下に本発明の構成について説明する。本
発明の多層プリント配線板とは、少なくとも1枚の内層
板、あるいは外層板がフレキシブルな機能を有するリジ
ッドフレキシブル多層プリント配線板であって、そのフ
レキシブルな機能を有する内層板、あるいは外層板を用
いること、及びその回路保護を行なうこと以外は一般の
リジッドな多層プリント配線板の製造方法がそのまま使
用できる。フレキシブルな基材層の構成としては、芳香
族ポリアミドイミドフィルムもしくは芳香族ポリイミド
フィルムと銅箔などの金属箔を接着剤を用いて加熱接着
したものが一般的に用いられるが、接着剤を用いないで
直接、芳香族ポリアミドイミドもしくは芳香族ポリイミ
ド前駆体からその表面層に金属箔を配置したもの、ゴム
成分などの可撓性付与剤を加えた硬化後もフレキシブル
な機能を有する熱硬化性樹脂のワニスに、ガラス織布な
いしは全芳香族ポリアミドなどの超耐熱製樹脂製の織布
を含浸させたプリプレグを銅箔などの金属箔と貼り合わ
せた後加熱硬化させた両面板ないしは片面板の使用も考
えられる。
The structure of the present invention will be described below. The multilayer printed wiring board of the present invention is a rigid flexible multilayer printed wiring board in which at least one inner layer board or outer layer board has a flexible function, and the inner layer board or outer layer board having the flexible function is used. The general manufacturing method of a rigid multilayer printed wiring board can be used as it is, except that the circuit protection is performed. The flexible substrate layer is generally composed of an aromatic polyamideimide film or an aromatic polyimide film and a metal foil such as a copper foil which are heat-bonded with an adhesive, but the adhesive is not used. With a thermosetting resin having a flexible function even after curing by directly adding a flexibility-imparting agent such as a rubber component to the surface layer of the aromatic polyamide-imide or the aromatic polyimide precursor, the metal foil is arranged. It is also possible to use a double-sided plate or a single-sided plate in which a prepreg impregnated with a woven glass cloth or a woven cloth made of a resin such as wholly aromatic polyamide is impregnated with a varnish Conceivable.

【0007】またフレキシブルな機能を有する中間層、
あるいは外層回路表面に設ける回路保護層形成のための
硬化後もフレキシブルな機能を有するプリプレグとして
は、ゴム成分などの可撓性付与剤を加えた熱硬化性樹脂
のワニスに、ガラス織布ないしは全芳香族ポリアミドな
どの超耐熱製樹脂製の織布を含浸させたプリプレグが用
いられる。
An intermediate layer having a flexible function,
Alternatively, as a prepreg having a flexible function even after curing for forming a circuit protective layer provided on the outer layer circuit surface, a glass woven fabric or a whole woven fabric can be used in a varnish of a thermosetting resin to which a flexibility-imparting agent such as a rubber component is added. A prepreg impregnated with a woven fabric made of a super heat-resistant resin such as aromatic polyamide is used.

【0008】[0008]

【実施例】以下実施例により本発明を説明する。 実施例1 絶縁層厚0.025mm銅箔厚35μmのポリイミド製
フレキシブル両面銅張板(新日鉄化学製、商品名エスパ
ネックス)に基本格子上(2.54mmピッチ)に配列
された2500個の1.6mmφのランドの内層パター
ンを形成したフレキシブル内層板を120℃1時間の条
件で乾燥し、アクリロニトリルブタジエンゴムを樹脂中
に20重量部添加させたブロム化ビスフェノールA型エ
ポキシ100重量部を主成分としジシアンジアミド4重
量部と2メチル4エチルイミダーノール0.2重量部を
それぞれ硬化剤、硬化触媒としメチルエチルケトン80
重量部及びジメチルホルムアミド14重量部の混合溶剤
に配合させた配合ワニスに、1080タイプガラスクロ
ス厚み0.051mmを含浸させ乾燥して得られる可撓
性付与プリプレグ(樹脂量70%)ではさみ、その上下
に0.6mmtの外層用ガラスエポキシ片面銅張板(外
層銅箔厚み18μm)を1枚ずつ重ねた構成で成型温度
175℃、成型圧力30kg・f/cm2 成型時間2時
間の条件で積層プレスを行ない図1に示す層構成のフレ
キシブルリジッド多層銅張板を得た。
The present invention will be described with reference to the following examples. Example 1 Insulating layer thickness of 0.025 mm and copper foil thickness of 35 μm made of polyimide flexible double-sided copper clad board (Nippon Steel Chemical Co., Ltd., trade name Espanex) of 2500 pieces arranged on a basic lattice (2.54 mm pitch). A flexible inner layer board having an inner layer pattern of 6 mmφ lands was dried at 120 ° C. for 1 hour, and 20 parts by weight of acrylonitrile butadiene rubber was added to the resin, and 100 parts by weight of brominated bisphenol A type epoxy was used as a main component and dicyandiamide. 4 parts by weight and 0.2 parts by weight of 2 methyl 4 ethyl imidazole are used as a curing agent and a curing catalyst, respectively, and methyl ethyl ketone 80
Parts by weight and 14 parts by weight of dimethylformamide mixed with a mixed varnish impregnated with 10801 type glass cloth having a thickness of 0.051 mm and dried, and scissors with a flexibility-imparting prepreg (resin amount 70%). A 0.6mmt outer layer glass epoxy single-sided copper clad plate for outer layer (outer layer copper foil thickness 18 μm) is laminated one by one, and laminated at a molding temperature of 175 ° C., a molding pressure of 30 kg · f / cm 2 and a molding time of 2 hours. By pressing, a flexible rigid multilayer copper clad plate having the layer structure shown in FIG. 1 was obtained.

【0009】得られたフレキシブルリジッド多層銅張板
に0.35mmφの穴あけを内層のランド位置にドリル
回転数80krpm、送り速度1.6m/minの条件
で2500穴行ない、過マンガン酸デスミア無電解銅メ
ッキ、硫酸銅メッキにて厚み25μmのスルーホールメ
ッキを形成した。上記スルーホールメッキを形成した銅
張板のスルーホール位置にランドを有する隣接するスル
ーホールを直列につなぐ外層パターンをテンティング法
により形成し温度サイクル試験用プリント配線板を得
た。
A 0.35 mmφ hole was drilled in the obtained flexible rigid multilayer copper clad plate, 2500 holes were made in the land position of the inner layer at a drill rotation speed of 80 krpm and a feed rate of 1.6 m / min. Through-hole plating having a thickness of 25 μm was formed by plating and copper sulfate plating. An outer layer pattern was formed by a tenting method to connect adjacent through holes having lands in series at the positions of the through holes of the copper clad plate on which the above through hole plating was formed to obtain a printed wiring board for temperature cycle test.

【0010】上記温度サイクル試験用プリント配線板を
温度サイクル試験槽に入れMIL−STD202F M
ETHOD 102A温度サイクル試験条件C(−65
℃と125℃の熱サイクル条件)にて処理し、各サイク
ル毎のスルーホール導通抵抗の変化を測定した。結果を
表−1に示した。また上記多層回路形成を行なわないフ
レキシブルリジッド多層銅張板の外層銅箔をエッチング
法にて除去したサンプルを10cm×10cmに切断し、沸
騰水にて2時間煮沸した後、260℃の半田浴中に20
秒ディッピングし吸湿耐熱性を調査した。結果を表−2
に示した。
The above-mentioned printed circuit board for temperature cycle test is put in a temperature cycle test tank and MIL-STD202FM.
ETHOD 102A temperature cycle test condition C (-65
C. and 125.degree. C.), and the change in through-hole conduction resistance was measured for each cycle. The results are shown in Table-1. Also, a sample obtained by removing the outer layer copper foil of the flexible rigid multilayer copper clad plate without forming the multilayer circuit by etching method was cut into 10 cm × 10 cm, boiled in boiling water for 2 hours, and then in a solder bath at 260 ° C. To 20
Second dipping was performed to investigate heat resistance after moisture absorption. The results are shown in Table-2.
It was shown to.

【0011】実施例2 実施例1で用いたフレキシブル両面銅張板を2枚用意
し、その片面をエッチングにて銅箔除去し、片面に実施
例1と同様の内層回路形成して120℃で1時間乾燥し
た後、その間を実施例1で用いた可撓性付与プリプレグ
で挟み、その上下に0.1mmtガラスエポキシプリプ
レグ1枚づつ、されにその上下に0.5mmtの外層用
ガラスエポキシ片面銅張板(外層銅箔厚み18μm)を
1枚づつ重ねた構成にて実施例1と同条件にて積層プレ
スを行ない図2に示す層構成のフレキシブルリジッド多
層銅張板を得た。
Example 2 Two flexible double-sided copper clad plates used in Example 1 were prepared, and one side of the copper foil was removed by etching to remove the copper foil. An inner layer circuit similar to that of Example 1 was formed on one side of the copper foil at 120 ° C. After drying for 1 hour, it was sandwiched between the flexibility-imparting prepregs used in Example 1, and 0.1 mmt glass epoxy prepregs were placed on the upper and lower sides thereof, respectively. Laminating presses were performed under the same conditions as in Example 1 with a structure in which clad plates (outer layer copper foil thickness 18 μm) were stacked one by one to obtain a flexible rigid multilayer copper clad plate having a layer structure shown in FIG.

【0012】得られたフレキシブルリジッド多層銅張板
を実施例1と同方法にて加工し温度サイクル試験、吸湿
耐熱性試験を行なった結果を表1、及び表2に示した。
The obtained flexible rigid multilayer copper clad plate was processed in the same manner as in Example 1 and subjected to a temperature cycle test and a moisture absorption heat resistance test. The results are shown in Tables 1 and 2.

【0013】実施例3 可撓性付与プリプレグにアクリロニトリルブタジエンゴ
ム25部トリアジンプレポリマー20部ブロム化ビスフ
ェノールA型エポキシ50部、及びメチルエチルケトン
50部ジメチルホルムアミド20部の混合ワニス中に1
080タイプガラスクロスを含浸させて製造した樹脂量
70%の可撓性付与プリプレグを用いる以外は実施例2
と同条件で製造したフレキシブルリジッド多層板を実施
例1と同方法にて加工し温度サイクル試験、吸湿耐熱性
試験を行なった結果を表1及び表2に示した。
Example 3 Flexibility-imparting prepreg 25 parts acrylonitrile butadiene rubber 20 parts triazine prepolymer 20 parts brominated bisphenol A type epoxy 50 parts methyl ethyl ketone 50 parts dimethylformamide 20 parts 1 in a mixed varnish
Example 2 except that a flexibility-imparting prepreg produced by impregnating 080 type glass cloth with a resin amount of 70% was used.
The flexible rigid multilayer board manufactured under the same conditions as in Example 1 was processed by the same method as in Example 1 and subjected to a temperature cycle test and a moisture absorption heat resistance test. The results are shown in Tables 1 and 2.

【0014】比較例1 実施例1と同方法にて回路形成したフレキシブル内層板
を120℃1時間の条件で乾燥し、その上下に、厚み2
5μmポリイミドフィルムの片面にアクリル系接着剤を
50μmの厚みでコーティングさせたカバーレイフィル
ム(デュポン社、商品名パイララックス)を100℃、
20分間の条件で乾燥させたものを接着剤層を内層銅箔側
に合わせて重ね、その上下に0.1mmtガラスエポキ
シプリプレグを1枚づつ、さらにその上下に0.5mm
tの外層用のガラスエポキシ片面銅張板(外層銅箔厚み
18μm)を1枚づつ重ねた構成で、実施例1と同条件
にて積層して図3に示す層構成のフレキシブルリジッド
多層銅張板を得た。得られたプレキシブルリジッド多層
銅張板を実施例1と同方法にて加工し、温度サイクル試
験、吸湿耐熱性試験を行なった結果を表1及び表2に示
した。
Comparative Example 1 A flexible inner layer plate on which a circuit was formed by the same method as in Example 1 was dried under the conditions of 120 ° C. for 1 hour, and a thickness of 2
A coverlay film (DuPont, trade name Pyralux) in which an acrylic adhesive is coated on one side of a 5 μm polyimide film to a thickness of 50 μm,
What was dried under the condition of 20 minutes was laminated with the adhesive layer on the inner copper foil side, and 0.1mmt glass epoxy prepreg was placed on each of the upper and lower sides, and 0.5mm was placed on the upper and lower sides.
A flexible rigid multi-layered copper clad having a layer structure shown in FIG. 3 in which the glass epoxy single-sided copper clad boards for outer layers (outer layer copper foil thickness 18 μm) are stacked one by one under the same conditions as in Example 1. I got a plate. The plexiable rigid multilayer copper clad plate thus obtained was processed in the same manner as in Example 1 and subjected to a temperature cycle test and a moisture absorption heat resistance test. The results are shown in Tables 1 and 2.

【0015】[0015]

【表1】 各プリント配線板の温度サイクル試験後のスルーホール抵抗値 サイクル数 初期値 5サイクル 25サイクル 50サイクル 100サイクル 実施例1 10.0Ω 10.5Ω 10.5Ω 10.4Ω 11.3Ω 実施例2 11.0Ω 11.2Ω 10.9Ω 11.0Ω 10.7Ω 実施例3 10.4Ω 10.6Ω 10.5Ω 10.4Ω 10.7Ω 比較例1 10.9Ω 10.9Ω 10.3Ω オープン オープン [Table 1] Through-hole resistance value after temperature cycle test of each printed wiring board Number of cycles Initial value 5 cycles 25 cycles 50 cycles 100 cycles Example 1 10.0Ω 10.5Ω 10.5Ω 10.4Ω 11.3Ω Example 2 11.0Ω 11.2Ω 10.9Ω 11.0Ω 10.7Ω Example 3 10.4Ω 10.6Ω 10.5Ω 10.4Ω 10.7Ω Comparative Example 1 10.9Ω 10.9Ω 10.3Ω Open Open

【0016】[0016]

【表2】 各プリント配線板の吸湿耐熱性試験結果 異常の有無など 実施例1 ハンダ処理後もデラミネーションの発生なし 実施例2 同 上 実施例3 同 上 比較例1 ハンダ処理後にカバーレイフィルムとガラスエポキシプリ プレグの間でデラミネーションの発生あり [Table 2] Moisture absorption heat resistance test result of each printed wiring board Abnormality etc. Example 1 No delamination after soldering Example 2 Same as above Example 3 Same as above Comparative Example 1 Coverlay film after soldering There is the occurrence of delamination between the glass epoxy prepreg

【0017】[0017]

【発明の効果】以上、発明の詳細な説明、実施例などか
ら明瞭なように本発明によるフレキシブルリジッド多層
プリント配線板は、スルーホールの信頼性吸湿耐熱性と
も優れたものが得られ、より信頼性の高いフレキシブル
リジッド多層プリント配線板の製造を可能とするもので
あり、その工業的な意義は高い。
As is clear from the detailed description of the invention and the examples, the flexible rigid multilayer printed wiring board according to the present invention has excellent through-hole reliability and moisture absorption / heat resistance. It is possible to manufacture a flexible rigid multilayer printed wiring board with high performance, and its industrial significance is high.

【0018】[0018]

【図面の簡単な説明】[Brief description of drawings]

【図1】 断面図 フレキシブルリジッド多層銅張板の積層構成の模式を示
す断面図である。
FIG. 1 is a cross-sectional view schematically showing a laminated structure of a flexible rigid multilayer copper clad plate.

【図2】 断面図 フレキシブルリジッド多層銅張板の積層構成の模式を示
す断面図である。
FIG. 2 is a sectional view schematically showing a laminated structure of a flexible rigid multilayer copper clad plate.

【図3】 断面図 フレキシブルリジッド多層銅張板の積層構成の模式を示
す断面図である。
FIG. 3 is a cross-sectional view showing a schematic laminated structure of a flexible rigid multilayer copper clad plate.

【符号の説明】[Explanation of symbols]

図1〜3の符号は、それぞれ下記を示す。 A : 絶縁層厚 0.025mmのフレキシブル内層板 B : 厚 0.07 mmの可撓性付与プリプレグ B’: 厚 0.1 mm のガラスエポキシプリプレグ C : 絶縁層厚 0.5 mm のガラスエポキシ片面銅張板 C’: 絶縁層厚 0.4 mm のガラスエポキシ片面銅張板 D : 厚 0.025mmのカバーレイフィルム The symbols in FIGS. 1 to 3 indicate the following, respectively. A: Flexible inner layer board with insulation layer thickness of 0.025 mm B: Flexible prepreg with thickness of 0.07 mm B ': Glass epoxy prepreg with thickness of 0.1 mm C: Glass epoxy single-sided copper clad board with insulation layer thickness of 0.5 mm C': Insulation Glass-epoxy single-sided copper clad board with a layer thickness of 0.4 mm D: Coverlay film with a thickness of 0.025 mm

フロントページの続き (72)発明者 中野 孝一 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京工場内Front page continuation (72) Inventor Koichi Nakano 6-1, 1-1 Shinjuku, Katsushika-ku, Tokyo Mitsubishi Gas Chemical Co., Ltd. Tokyo factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少くとも1層のフレキシブルな機能を有
するプリント配線板と少くとも1層のリジッドな機能を
有するプリント配線板を組合せた形の多層プリント配線
板でフレキシブル層の回路保護のために、回路上に保護
フィルム層形成時に接着剤を使用しないことを特徴とす
る多層プリント配線板の製造法
1. A multilayer printed wiring board in which a printed wiring board having at least one layer of a flexible function and a printed wiring board having at least one layer of a rigid function are combined to protect a circuit of a flexible layer. A method for manufacturing a multilayer printed wiring board characterized by not using an adhesive when forming a protective film layer on a circuit
【請求項2】 請求項1記載の多層プリント配線板の製
造法においてフレキシブル回路の保護フイルムの貼着の
ために、硬化後もフレキシブルな機能を有するガラス布
もしくは高耐熱性樹脂繊維を基材としたプリプレグを用
いることを特徴とする多層プリント配線板の製造法
2. The method for producing a multilayer printed wiring board according to claim 1, wherein a glass cloth or a highly heat resistant resin fiber having a flexible function after curing is used as a base material for sticking a protective film of a flexible circuit. For manufacturing a multilayer printed wiring board characterized by using a prepreg
【請求項3】 請求項2記載の多層プリント配線板でフ
レキシブル回路の保護に硬化後もフレキシブルな機能を
有するプリプレグを加熱・加圧することによって形成す
ることを特徴とする多層プリント配線板の製造法
3. The method for manufacturing a multilayer printed wiring board according to claim 2, wherein the multilayer printed wiring board is formed by heating and pressing a prepreg having a flexible function even after curing to protect the flexible circuit in the multilayer printed wiring board.
【請求項4】 請求項2記載の多層プリント配線板の製
造法において、2枚以上の回路形成を行なったフレキシ
ブル銅張板を硬化後もフレキシブルな機能を有するプリ
プレグを用いて多層化することを特徴とする多層プリン
ト配線板の製造法
4. The method for manufacturing a multilayer printed wiring board according to claim 2, wherein the flexible copper clad board on which two or more circuits are formed is multilayered by using a prepreg having a flexible function even after curing. Characteristic multi-layer printed wiring board manufacturing method
JP13581693A 1993-06-07 1993-06-07 Production of multilayer printed wiring board Pending JPH06350255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13581693A JPH06350255A (en) 1993-06-07 1993-06-07 Production of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13581693A JPH06350255A (en) 1993-06-07 1993-06-07 Production of multilayer printed wiring board

Publications (1)

Publication Number Publication Date
JPH06350255A true JPH06350255A (en) 1994-12-22

Family

ID=15160483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13581693A Pending JPH06350255A (en) 1993-06-07 1993-06-07 Production of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JPH06350255A (en)

Similar Documents

Publication Publication Date Title
US6673190B2 (en) Lasable bond-ply materials for high density printed wiring boards
US6268070B1 (en) Laminate for multi-layer printed circuit
US5633069A (en) Multilayer printed-circuit substrate, wiring substrate and process of producing the same
US20040170795A1 (en) Lasable bond-ply materials for high density printed wiring boards
JP2003318550A (en) Laminated wiring board and multilayer wiring assembly, and method for manufacturing the same
JPH06350255A (en) Production of multilayer printed wiring board
WO2004105453A1 (en) Through hole electrical connection structure for flexible multilayer circuit board and method for forming the same
JPH0697670A (en) Board for multilayer printed wiring
JPH07176837A (en) Rigid-flexible printed wiring board and its manufacture
JP2003086941A (en) Printed wiring board
JP2000277917A (en) Multilayer printed wiring board and manufacture of the same
JPH08148836A (en) Multilayered flexrigid wiring board
JPH0750455A (en) Rigid/flexible printed wiring board and its manufacture
JPH06244554A (en) Multilayered wiring substrate and its manufacture
JPH0992974A (en) Manufacture of multilayer board
JPH0671143B2 (en) Method for manufacturing multilayer printed wiring board
JP3154350B2 (en) Printed wiring board and its manufacturing method
JPH0570953B2 (en)
JPH05220892A (en) Copper clad laminated sheet and production thereof
JP2002158442A (en) Multilayer printed board and its laminating method
JP2776202B2 (en) Manufacturing method of super multilayer laminate
JP2501031B2 (en) Metal foil laminated board
JPH06260765A (en) Multilayer wiring board and manufacture thereof
JPH05275855A (en) Multilayer printed circuit board
JPH05152752A (en) Manufacture of multilayered printed wiring board