JPH06349637A - Magnetic body tube - Google Patents

Magnetic body tube

Info

Publication number
JPH06349637A
JPH06349637A JP5163135A JP16313593A JPH06349637A JP H06349637 A JPH06349637 A JP H06349637A JP 5163135 A JP5163135 A JP 5163135A JP 16313593 A JP16313593 A JP 16313593A JP H06349637 A JPH06349637 A JP H06349637A
Authority
JP
Japan
Prior art keywords
magnetic
layers
magnetic body
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5163135A
Other languages
Japanese (ja)
Inventor
Masakatsu Senda
正勝 千田
Osamu Ishii
修 石井
Toshinori Mori
敏則 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5163135A priority Critical patent/JPH06349637A/en
Priority to US08/257,769 priority patent/US5990417A/en
Publication of JPH06349637A publication Critical patent/JPH06349637A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To gain sufficiently high noise suppressing effect of the title magnetic body tube even if the component size is miniaturized by a method wherein said tube is multilayer structured of alternately laminated layers having magnetic body and non-magnetic insulating layers. CONSTITUTION:A cylindrical magnetic body 1 is multilayer structured of alternately laminated magnetic layers 2 and non-magnetic insulating layers 3. Thus, the effect of miniaturizing the component size can be brought about in order to get the impedance value in the same level as that of conventional components, i.e., the noise suppressing effect. Furthermore, the more the laminated layer number and the longer the magnetic body tube, the higher the noise suppressing effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はノイズフィルタに関す
る。
FIELD OF THE INVENTION The present invention relates to noise filters.

【0002】[0002]

【従来の技術】磁性体の比透磁率μr(f)はμr′
(f)−j・μr″(f)で表され、μr′は実効的な
比透磁率、μr″は損失に対応する。ここでj=(−
1)1/2 、fは周波数である。磁性体を用いたノイズフ
ィルタは磁性体の損失によるノイズ抑制効果を利用した
ものである。ノイズフィルタとしては、インピーダンス
および抵抗が大きいことが要求される。電磁環境問題で
は、特にテレビの放送周波数にあたる30〜1000M
Hzのノイズが問題視されており、この周波数帯で優れ
たノイズ抑制効果を持つフィルタの実現が望まれてい
る。
2. Description of the Related Art The relative permeability μr (f) of a magnetic material is μr '
(F) −j · μr ″ (f), where μr ′ corresponds to effective relative permeability and μr ″ corresponds to loss. Where j = (-
1) 1/2 and f are frequencies. The noise filter using the magnetic material utilizes the noise suppression effect due to the loss of the magnetic material. A noise filter is required to have high impedance and resistance. In the electromagnetic environment problem, 30 to 1000M, which corresponds to the broadcasting frequency of television,
Hz noise is regarded as a problem, and it is desired to realize a filter having an excellent noise suppressing effect in this frequency band.

【0003】図8は従来の代表的ノイズフィルタ(フェ
ライト製)の形状を示す斜視図であり、ケーブルを図8
の円筒内に通して使用する。ノイズフィルタとしては数
十Ωから100Ω程度のインピーダンスが要求される。
図9は図8のノイズフィルタにおける代表的なインピー
ダンスの周波数特性を示す図である(上遠野準之助:
「電磁環境工学情報」p.152、H4.6.30発
行、号外、ミマツデータシステム)。サイズはd=10
mm,t=4mm,l=30mmである。|Z|はイン
ピーダンス,Rは抵抗,XL はリアクタンスである。3
0〜1000MHzで数十ないし200Ωの値を示し、
上記の条件を満たしてはいるが、他の電子部品に比べ、
部品サイズはかなり大きなものとなる。このように、十
分なノイズ抑制効果を得るためには、従来のノイズフィ
ルタは部品サイズが大型であるという問題がある。
FIG. 8 is a perspective view showing the shape of a conventional typical noise filter (made of ferrite).
It is used by passing it through the cylinder. An impedance of several tens of Ω to 100 Ω is required for the noise filter.
FIG. 9 is a diagram showing a frequency characteristic of a typical impedance in the noise filter of FIG. 8 (Junnosuke Kaminono:
"Electromagnetic Environmental Engineering Information" p. 152, issued H4.6.30, extra, Mimatsu Data System). The size is d = 10
mm, t = 4 mm, l = 30 mm. | Z | impedance, R represents the resistance, X L is the reactance. Three
It shows a value of several tens to 200Ω at 0 to 1000MHz,
Although satisfying the above conditions, compared to other electronic components,
The component size will be quite large. As described above, in order to obtain a sufficient noise suppression effect, the conventional noise filter has a problem that the size of the component is large.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の欠点を
改善するために提案されたもので、従来のノイズフィル
タよりも小型のノイズフィルタを提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned drawbacks, and an object thereof is to provide a noise filter which is smaller than a conventional noise filter.

【0005】[0005]

【課題を解決するための手段】本発明は、磁性体が円筒
状を成し、前記磁性体が磁性層と非磁性絶縁層とを交互
に積層して成る多層構造をなすことを特徴とする。さら
に前記磁性層の厚さが表皮深さの10分の1から10倍
の厚さであり、前記非磁性絶縁層の厚さが前記磁性層間
の電気的絶縁を保ち得る厚さ以上であることを特徴とす
る。従来部品とは、材料構成および構造が異なる。
The present invention is characterized in that the magnetic body has a cylindrical shape, and the magnetic body has a multilayer structure in which magnetic layers and nonmagnetic insulating layers are alternately laminated. . Furthermore, the thickness of the magnetic layer is 1/10 to 10 times the skin depth, and the thickness of the non-magnetic insulating layer is not less than a thickness capable of maintaining electrical insulation between the magnetic layers. Is characterized by. The material configuration and structure are different from those of conventional parts.

【0006】[0006]

【作用】本発明は、磁性体が円筒状を成し、前記磁性体
が磁性層と非磁性絶縁層とを交互に積層して成る多層構
造を成し、前記磁性層の厚さが表皮深さの10分の1か
ら10倍の厚さであり、前記非磁性絶縁層の厚さが前記
磁性層間の電気的絶縁を保ち得る厚さ以上であることを
特徴とするため、渦電流損失によるノイズ抑制効果を最
大限に利用することができ、従って、部品サイズを小型
化しても十分大きなノイズ抑制効果を得ることができ
る。
According to the present invention, the magnetic body has a cylindrical shape, and the magnetic body has a multilayer structure in which magnetic layers and nonmagnetic insulating layers are alternately laminated. The thickness of the non-magnetic insulating layer is not less than 1/10 to 10 times, and the thickness of the non-magnetic insulating layer is equal to or more than the thickness capable of maintaining electrical insulation between the magnetic layers. The noise suppressing effect can be utilized to the maximum extent, and therefore, a sufficiently large noise suppressing effect can be obtained even if the component size is reduced.

【0007】[0007]

【実施例】次に本発明の実施例について説明する。図1
は本発明の実施例を示す図であり、磁性体1が円筒状を
成している。図2は磁性体1の詳細を示す図であり、磁
性層2と非磁性絶縁層3とが交互に積層した構造を成し
ている。積層数が多いほど、また磁性体チューブの長さ
が長いほどノイズ抑制効果が高い。ここで各層は図3の
ように一周してつながった閉構造を成していても、図4
のようにつながっていない開構造を成していても同様の
効果を示す。磁性層2の厚さは表皮深さの10分の1か
ら10倍の厚さに、また非磁性絶縁層3の厚さは磁性層
2間の電気的絶縁を保ち得る厚さ以上に設定されてい
る。
EXAMPLES Next, examples of the present invention will be described. Figure 1
FIG. 4 is a diagram showing an embodiment of the present invention, in which the magnetic body 1 has a cylindrical shape. FIG. 2 is a diagram showing details of the magnetic body 1, and has a structure in which magnetic layers 2 and nonmagnetic insulating layers 3 are alternately laminated. The larger the number of stacked layers and the longer the length of the magnetic tube, the higher the noise suppression effect. Here, even if each layer has a closed structure in which the layers are connected to each other as shown in FIG.
Similar effects are exhibited even if the open structure is not connected as shown in. The thickness of the magnetic layer 2 is set to 1/10 to 10 times the skin depth, and the thickness of the non-magnetic insulating layer 3 is set to a thickness equal to or more than a thickness capable of maintaining electrical insulation between the magnetic layers 2. ing.

【0008】磁性多層膜はイオンビームスパッタ(IB
S)法により作製した。多層構造膜を効率よく作製する
ために、IBS装置は複数のターゲットを装備し、これ
を交互に交換することにより、チャンバの真空を維持し
た状態で連続的な多層構造の実現を可能としている。ス
パッタ条件は、動作真空度:1×10-4Torr(スパッタ
ガスとしてArを使用),加速電圧:1kV,基板温
度:180℃とした。ターゲットにはCoZr系非晶質
合金(例えばCoZrNb〔膜組成:87,5,8a
t.%〕)。NiFe合金(膜組成:82.5,17.
5at.%)、およびSiO2 を、基板にはコルニング
(Corning)No.0211ガラスを使用した。大きな比透磁
率を得るために、磁性層としてNiFeを用いる場合に
は、約100Oeの磁界印加による磁界中成膜を行い、
一方、磁性層としてCoZr系非晶質合金を用いる場合
には、磁界中成膜後、回転磁界中熱処理を行った。磁性
体チューブを作製するには上記のように基板上に作製し
た磁性多層膜を基板から剥し、これを円筒状に丸めて製
造した。磁性多層膜作製法としては、上記のIBS法以
外に、RFスパッタ法,マグネトロンスパッタ法,蒸着
法,メッキ法,ロール法,塗布法,スクリーン印刷法,
圧延法などを用いても同様の効果を得ることができる。
また、円筒状の磁性多層膜(磁性体1)を形成する方法
としては、上記のように基板から剥したシートを利用す
る以外に、円筒状基板に磁性多層膜を堆積させたものを
そのまま利用する方法が挙げられる。
The magnetic multilayer film is formed by ion beam sputtering (IB
It was produced by the S) method. In order to efficiently produce a multilayer structure film, the IBS apparatus is equipped with a plurality of targets, and by alternately exchanging them, it is possible to realize a continuous multilayer structure while maintaining the vacuum of the chamber. The sputtering conditions were an operating vacuum degree of 1 × 10 −4 Torr (using Ar as a sputtering gas), an acceleration voltage of 1 kV, and a substrate temperature of 180 ° C. The target is a CoZr-based amorphous alloy (for example, CoZrNb [film composition: 87, 5, 8a
t. %]). NiFe alloy (film composition: 82.5, 17.
5 at. %), And SiO 2 on the substrate. 0211 glass was used. When NiFe is used for the magnetic layer to obtain a large relative magnetic permeability, film formation is performed in a magnetic field by applying a magnetic field of about 100 Oe,
On the other hand, when using a CoZr-based amorphous alloy for the magnetic layer, heat treatment was performed in a rotating magnetic field after film formation in the magnetic field. In order to produce a magnetic tube, the magnetic multilayer film produced on the substrate as described above was peeled from the substrate and rolled into a cylindrical shape. In addition to the above IBS method, the magnetic multilayer film manufacturing method includes RF sputtering method, magnetron sputtering method, vapor deposition method, plating method, roll method, coating method, screen printing method,
The same effect can be obtained by using a rolling method or the like.
Further, as a method for forming a cylindrical magnetic multilayer film (magnetic body 1), other than using the sheet peeled from the substrate as described above, a cylindrical substrate on which the magnetic multilayer film is deposited can be used as it is. There is a method of doing.

【0009】図5に比透磁率(μr′,μr″)のtm
/δ依存性を示す。ここでtmは磁性層厚である。ま
た、δは表皮深さであり、抵抗率ρm,周波数f,真空
の透磁率μ0 を用いて、 δ=〔2ρm/(2πfμr′(0)μ0 )〕1/2 (1) で表される。磁性層にはμr′(0)=5000,ρm
=120μΩcmのCoZr系非晶質合金およびμr′
(0)=2000,ρm=20μΩcmのNiFe合金
を使用した。μr″はtm/δが0.1から10の範囲
で渦電流損失により大きな値となる。このことから、t
mをδの10分の1から10倍の厚さに設定することに
より、大きなノイズ抑制効果が得られることがわかる。
FIG. 5 shows tm of relative permeability (μr ′, μr ″).
/ Δ dependence is shown. Here, tm is the magnetic layer thickness. Further, δ is the skin depth, and is expressed by δ = [2ρm / (2πfμr ′ (0) μ 0 )] 1/2 (1) using the resistivity ρm, frequency f, and vacuum permeability μ 0. To be done. Μr ′ (0) = 5000, ρm for the magnetic layer
= 120 μΩcm CoZr-based amorphous alloy and μr ′
A NiFe alloy with (0) = 2000 and ρm = 20 μΩcm was used. μr ″ has a large value due to eddy current loss when tm / δ is in the range of 0.1 to 10. From this, t
It can be seen that a large noise suppression effect can be obtained by setting m to be 1/10 to 10 times the thickness of δ.

【0010】図6に磁性層2としてNiFe合金50n
mを、非磁性絶縁層3としてSiO2 を使用した場合の
比透磁率の周波数特性を示す。この周波数帯におけるN
iFeの表皮深さは0.16〜1.6μmでありNiF
e層厚に比べ十分厚い。従ってSiO2 層がNiFe層
間の電気的絶縁を保っていれば、NiFeの磁気共鳴周
波数650MHzまでμr′は一定、μr″は低い値を
とる。SiO2 層厚が5nmと薄い場合には、30MH
z付近からμr′の低下、μr″の急増が生じ、電気的
絶縁が不完全となっていることがわかる。一方、SiO
2 層厚50nmでは650MHzまでμr′は一定とな
り、電気的絶縁はほぼ保たれており、SiO2 層厚10
0nmでは絶縁効果はいっそう確実となる。以上、Si
2 を使用した場合、磁性層間の電気的絶縁を保つには
数十nm程度の層厚とすれば良いことがわかる。
In FIG. 6, a NiFe alloy 50n is used as the magnetic layer 2.
m is the frequency characteristic of relative permeability when SiO 2 is used as the non-magnetic insulating layer 3. N in this frequency band
The skin depth of iFe is 0.16 to 1.6 μm and NiF
e is sufficiently thicker than the layer thickness. Therefore, the SiO 2 layer is only to keep the electrical insulation of the NiFe layers, constant until .mu.r 'magnetic resonance frequency 650MHz of NiFe, μr ".SiO 2 layer thickness take low values is when 5nm and thin, 30 mH
It can be seen that electrical insulation is incomplete due to a decrease in μr ′ and a rapid increase in μr ″ from around z. On the other hand, SiO
Until 2 layer thickness 50nm In 650MHz .mu.r 'becomes constant, electrical insulation is kept almost, SiO 2 layer thickness 10
At 0 nm, the insulation effect becomes more reliable. Above, Si
When O 2 is used, it can be seen that the layer thickness of about several tens nm is sufficient to maintain the electrical insulation between the magnetic layers.

【0011】図7に磁性層として上記CoZr系非晶質
合金を、非磁性絶縁層としてSiO2 を使用した場合の
ノイズフィルタのインピーダンス特性を示す。磁性層厚
はδ/10≦tm≦10δを満たす2μmに、非磁性絶
縁層厚は電気的絶縁を保ち得る0.1μmとした。サイ
ズはd=3mm,t=60μm,1=30mmである。
図8の従来部品と比べると、体積は〜1/102 に小型
化したにもかかわらず、30〜1000MHzにおいて
数十〜300Ωと同等のインピーダンスが実現してい
る。なお、磁性層2としては、Fe,Ni,Coに、F
e,Ni,Co,Zr,Nb,Y,Hf,Ti,Mo,
W,Ta,Si,B,Reのうち単独または複数の元素
を添加した材料を、一方、非磁性絶縁層3としては、S
iO2 ,AlN,Al2 3 ,BN,SiCを使用で
き、上記と同様の効果を得ることができる。
FIG. 7 shows impedance characteristics of the noise filter when the above CoZr type amorphous alloy is used as the magnetic layer and SiO 2 is used as the non-magnetic insulating layer. The thickness of the magnetic layer was 2 μm satisfying δ / 10 ≦ tm ≦ 10δ, and the thickness of the nonmagnetic insulating layer was 0.1 μm capable of maintaining electrical insulation. The size is d = 3 mm, t = 60 μm, 1 = 30 mm.
Compared with the conventional component of FIG. 8, although the volume is reduced to ˜1 / 10 2 , the impedance equivalent to several tens to 300Ω is achieved at 30 to 1000 MHz. The magnetic layer 2 includes Fe, Ni, Co, and F.
e, Ni, Co, Zr, Nb, Y, Hf, Ti, Mo,
One of W, Ta, Si, B, and Re, to which a single element or a plurality of elements are added, on the other hand, the nonmagnetic insulating layer 3 is S
iO 2 , AlN, Al 2 O 3 , BN and SiC can be used, and the same effect as above can be obtained.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
磁性体チューブにおいて、この磁性体は磁性層と非磁性
絶縁層とを交互に積層した多層構造を成しているので、
従来部品と同程度のインピーダンス値、すなわちノイズ
抑制効果を得るのに、部品のサイズが小型になるという
効果を奏する。
As described above, according to the present invention,
In the magnetic tube, since this magnetic material has a multilayer structure in which magnetic layers and non-magnetic insulating layers are alternately laminated,
In order to obtain the same impedance value as that of the conventional component, that is, the noise suppression effect, the size of the component is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のノイズフィルタの実施例を示す図であ
る。
FIG. 1 is a diagram showing an embodiment of a noise filter of the present invention.

【図2】磁性体部の詳細を示す図である。FIG. 2 is a diagram showing details of a magnetic body portion.

【図3】磁性体部の実施例を示す図である。FIG. 3 is a diagram showing an example of a magnetic body portion.

【図4】磁性体部の他の実施例を示す図である。FIG. 4 is a diagram showing another embodiment of the magnetic body portion.

【図5】比透磁率の磁性層厚依存性を示す図である。FIG. 5 is a diagram showing the dependency of relative permeability on the thickness of a magnetic layer.

【図6】比透磁率の周波数特性を示す図である。FIG. 6 is a diagram showing frequency characteristics of relative permeability.

【図7】インピーダンスの周波数特性を示す図である。FIG. 7 is a diagram showing frequency characteristics of impedance.

【図8】従来部品を示す図である。FIG. 8 is a diagram showing a conventional component.

【図9】従来部品のインピーダンスの周波数特性を示す
図である。
FIG. 9 is a diagram showing frequency characteristics of impedance of a conventional component.

【符号の説明】[Explanation of symbols]

1 磁性体 2 磁性層 3 非磁性絶縁層 1 magnetic material 2 magnetic layer 3 non-magnetic insulating layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の磁性体を用いた磁性体チューブ
において、前記磁性体は、磁性層と非磁性絶縁層とを交
互に積層してなる多層構造を成していることを特徴とす
る磁性体チューブ。
1. A magnetic tube using a cylindrical magnetic body, wherein the magnetic body has a multilayer structure in which magnetic layers and non-magnetic insulating layers are alternately laminated. Magnetic tube.
【請求項2】 磁性層の厚さが表皮深さの10分の1か
ら10倍の厚さであることを特徴とする請求項1記載の
磁性体チューブ。
2. The magnetic tube according to claim 1, wherein the thickness of the magnetic layer is 1/10 to 10 times the skin depth.
【請求項3】 非磁性絶縁層の厚さが磁性層間の電気的
絶縁を保ち得る厚さ以上であることを特徴とする請求項
2記載の磁性体チューブ。
3. The magnetic tube according to claim 2, wherein the thickness of the non-magnetic insulating layer is not less than a thickness capable of maintaining electrical insulation between the magnetic layers.
JP5163135A 1993-06-07 1993-06-07 Magnetic body tube Pending JPH06349637A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5163135A JPH06349637A (en) 1993-06-07 1993-06-07 Magnetic body tube
US08/257,769 US5990417A (en) 1993-06-07 1994-06-06 Electromagnetic noise absorbing material and electromagnetic noise filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5163135A JPH06349637A (en) 1993-06-07 1993-06-07 Magnetic body tube

Publications (1)

Publication Number Publication Date
JPH06349637A true JPH06349637A (en) 1994-12-22

Family

ID=15767868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5163135A Pending JPH06349637A (en) 1993-06-07 1993-06-07 Magnetic body tube

Country Status (1)

Country Link
JP (1) JPH06349637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040597A1 (en) * 2002-10-31 2004-05-13 Matsushita Electric Industrial Co., Ltd. Inductance part and electronic device using the same
WO2007032149A1 (en) * 2005-09-16 2007-03-22 Kyushu University, National University Corporation High-frequency device using magnetic multi-layer film dot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040597A1 (en) * 2002-10-31 2004-05-13 Matsushita Electric Industrial Co., Ltd. Inductance part and electronic device using the same
US7212094B2 (en) 2002-10-31 2007-05-01 Matsushita Electric Industrial Co., Ltd. Inductive components and electronic devices using the same
WO2007032149A1 (en) * 2005-09-16 2007-03-22 Kyushu University, National University Corporation High-frequency device using magnetic multi-layer film dot

Similar Documents

Publication Publication Date Title
US6410170B1 (en) High resistivity FeXN sputtered films for magnetic storage devices and method of fabrication
WO2003060933A1 (en) High-frequency magnetic thin film, composite magnetic thin film, and magnetic device using same
EP0177780B1 (en) Magnetic material having high permeability in the high frequency range
US5302469A (en) Soft magnetic thin film
GB2083230A (en) Method of manufacturing a thin film magnetic field sensor
JPH08273930A (en) Thin-film magnetic element and its manufacture
JPH06349637A (en) Magnetic body tube
US5756201A (en) Magnetic thin film for magnetic head, method of manufacturing the same, and magnetic head
JP3305790B2 (en) Manufacturing method of thin film permanent magnet
US4623439A (en) Thin film of Ni-Co-Fe ternary alloy and process for producing the same
JPH06349341A (en) Nozzle filter cable
JPH0773412A (en) Thin film magnetic head
Naoe et al. Preparation of soft magnetic films of nanocrystalline Fe–Cu–Nb–Si–B alloy by facing targets sputtering
JP5981564B2 (en) Magnetic recording medium and method for manufacturing the same
JP2005109246A (en) High frequency magnetic thin film and its manufacturing method, and magnetic element
US5411813A (en) Ferhgasi soft magnetic materials for inductive magnetic heads
JP2535819B2 (en) Method of manufacturing thin film magnetic head
JPH0462162B2 (en)
JPH0729719A (en) Noise absorber and noise filter
JPS61233409A (en) Production of laminated magnetic core for high frequency and magnetic head core
JPH0282601A (en) Multilayer magnetic film
EP0522982B1 (en) An FeGaSi-based magnetic material with Ir as an additive
JP2571062B2 (en) Soft magnetic film for high frequency band and method of manufacturing the same
JPH09115729A (en) Ultramicrocrystal magnetic film and its manufacture
JPH09260179A (en) Magnetic multilayer thin film and manufacture thereof