JPH06349341A - Nozzle filter cable - Google Patents

Nozzle filter cable

Info

Publication number
JPH06349341A
JPH06349341A JP5167454A JP16745493A JPH06349341A JP H06349341 A JPH06349341 A JP H06349341A JP 5167454 A JP5167454 A JP 5167454A JP 16745493 A JP16745493 A JP 16745493A JP H06349341 A JPH06349341 A JP H06349341A
Authority
JP
Japan
Prior art keywords
magnetic
insulator
cable
noise filter
covered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5167454A
Other languages
Japanese (ja)
Other versions
JP3410768B2 (en
Inventor
Masakatsu Senda
正勝 千田
Osamu Ishii
修 石井
Toshinori Mori
敏則 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16745493A priority Critical patent/JP3410768B2/en
Priority to US08/257,769 priority patent/US5990417A/en
Publication of JPH06349341A publication Critical patent/JPH06349341A/en
Application granted granted Critical
Publication of JP3410768B2 publication Critical patent/JP3410768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Details Of Indoor Wiring (AREA)
  • Waveguides (AREA)

Abstract

PURPOSE:To provide a cable having a noise filter function, which is smaller in size than a conventional cable with a noise filter. CONSTITUTION:Conductor wires 1 each covered with an insulator 2 are covered with a conductive shield member 3, which is covered with a magnetic member 5 via an insulator 4. The magnetic member 5 is covered with an insulator 6. The magnetic member 5 is of a multiple layer structure where magnetic layers and non-magnetic insulative layers are laminated alternately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ノイズフィルタに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a noise filter.

【0002】[0002]

【従来の技術】磁性体の比透磁率μr(f)はμr′
(f)−j・μr″(f)で表され、μr′は実効的な
比透磁率、μr″は損失に対応する。ここでj=(−
1)1/2 、fは周波数である。磁性体を用いたノイズフ
ィルタは磁性体の損失によるノイズ抑制効果を利用した
ものである。ノイズフィルタとしては、インピーダンス
および抵抗が大きいことが要求される。電磁環境問題で
は、特にテレビの放送周波数にあたる30〜1000M
Hzのノイズが問題視されており、この周波数帯で優れ
たノイズ抑制効果を持つフィルタの実現が望まれてい
る。図8は従来の代表的ノイズフィルタ(フェライト
製)の形状を示す。図9は従来のケーブル(例えば、1
0mm径,24芯)を示す図であり、ノイズフィルタの
円筒内にケーブルを通して使用する。ノイズフィルタと
しては数十Ωから100Ω程度のインピーダンスが要求
される。図において、1は導線、2は絶縁体、3はシー
ルド体、4は絶縁体を示す。図10は図8のノイズフィ
ルタにおける代表的なインピーダンスの周波数特性を示
す図である(上遠野準之助:「電磁環境工学情報」p.
152、H4.6.30発行、号外、ミマツデータシス
テム)。サイズはd=10mm,t=4mm,l=30
mmである。|Z|はインピーダンス,Rは抵抗,XL
はリアクタンスである。30〜1000MHzで数十な
いし200Ωのインピーダンス値を示し、上記の条件を
満たしているが、他の電子部品に比べ、部品サイズはか
なり大きなものとなり、これを装荷したケーブルも体
積,重量は大きくなる。またフィルタ装荷によりケーブ
ルのフレキシビリティも損なわれる。このように、十分
なノイズ抑制効果を得るためには、従来のノイズフィル
タおよびこれを装荷したケーブルは部品サイズが大型で
あるという問題がある。
2. Description of the Related Art The relative permeability μr (f) of a magnetic material is μr '
(F) −j · μr ″ (f), where μr ′ corresponds to effective relative permeability and μr ″ corresponds to loss. Where j = (-
1) 1/2 and f are frequencies. The noise filter using the magnetic material utilizes the noise suppression effect due to the loss of the magnetic material. A noise filter is required to have high impedance and resistance. In the electromagnetic environment problem, 30 to 1000M, which corresponds to the broadcasting frequency of television,
Hz noise is regarded as a problem, and it is desired to realize a filter having an excellent noise suppressing effect in this frequency band. FIG. 8 shows the shape of a typical conventional noise filter (made of ferrite). FIG. 9 shows a conventional cable (for example, 1
It is a figure showing a 0 mm diameter, 24 cores, and it is used by passing a cable through a cylinder of a noise filter. An impedance of several tens of Ω to 100 Ω is required for the noise filter. In the figure, 1 is a conducting wire, 2 is an insulator, 3 is a shield, and 4 is an insulator. FIG. 10 is a diagram showing frequency characteristics of typical impedance in the noise filter of FIG. 8 (Junnosuke Ueno, “Electromagnetic Environmental Engineering Information” p.
152, issued H4.6.30, extra, Mimatsu Data System). The size is d = 10mm, t = 4mm, l = 30
mm. | Z | is impedance, R is resistance, XL
Is the reactance. It exhibits an impedance value of several tens to 200Ω at 30 to 1000 MHz and satisfies the above conditions, but the component size is considerably larger than other electronic components, and the volume and weight of the cable loaded with this are also large. . The loading of the filter also impairs the flexibility of the cable. As described above, in order to obtain a sufficient noise suppression effect, there is a problem that the conventional noise filter and the cable loaded with the conventional noise filter have a large component size.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の欠点を
改善するために提案されたもので、その目的は、従来の
ノイズフィルタ付ケーブルよりも小型で、ノイズフィル
タ機能を有するケーブルを提供することにある。
SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned drawbacks, and an object thereof is to provide a cable which is smaller than a conventional cable with a noise filter and has a noise filter function. Especially.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は絶縁体で覆われた1本以上の導線の周囲
を、導電性のシールド体が覆い、該シールド体の外側
を、絶縁体を介して磁性体が覆い、該磁性体の外側をさ
らに絶縁体が覆っていることを特徴とするノイズフィル
タケーブルを発明の要旨とするものである。さらに、本
発明は前記磁性層の厚さが表皮深さの10分の1から1
0倍の厚さであったり、前記非磁性絶縁層の厚さが前記
磁性層間の電気的絶縁を保ち得る厚さ以上であることも
特徴とする。従来のものとは、材料の構成および構造が
異なる。
In order to achieve the above-mentioned object, the present invention has a structure in which one or more conductors covered with an insulating material is covered with a conductive shield, and the outside of the shield is The present invention provides a noise filter cable characterized in that a magnetic material is covered via an insulator, and the outside of the magnetic material is further covered with an insulator. Further, in the present invention, the thickness of the magnetic layer is 1/10 to 1 of the skin depth.
It is also characterized in that the thickness is 0 times or the thickness of the non-magnetic insulating layer is equal to or larger than the thickness capable of maintaining electrical insulation between the magnetic layers. The material configuration and structure are different from the conventional ones.

【0005】[0005]

【作用】本発明は、ケーブルにおいて絶縁体で覆われた
1本以上の導線の周りを、導電性のシールド体が覆い、
シールド体の外側を絶縁体を介して磁性体が覆い、磁性
体の外側を絶縁体が覆い、前記磁性体が磁性層と非磁性
絶縁層とを交互に積層した多層構造を成している。この
ことによって、渦電流損失によるノイズ抑制効果を最大
限に利用することができ、従って、ノイズフィルタを省
略しても十分大きなノイズ抑制効果を得たケーブルを実
現することができる。
According to the present invention, a conductive shield body covers one or more conductors covered with an insulator in a cable,
A magnetic material covers the outer side of the shield body via an insulator, an outer surface of the magnetic body is covered with the insulator, and the magnetic body forms a multilayer structure in which magnetic layers and nonmagnetic insulating layers are alternately laminated. As a result, the noise suppressing effect due to the eddy current loss can be utilized to the maximum extent, and therefore a cable having a sufficiently large noise suppressing effect can be realized even if the noise filter is omitted.

【0006】[0006]

【実施例】次に本発明の実施例について説明する。図1
は本発明の実施例を示す図であり、絶縁体2で覆われた
1本あるいは複数本の導線1の周りを導電性のシールド
体3が覆い、このシールド体3の外側を絶縁体4を介し
て磁性体5が覆い、磁性体5の外側を絶縁体6が覆って
いる。図2は磁性体5の詳細を示す図であり、前記磁性
体5は磁性層7と非磁性絶縁層8とを交互に積層した多
層構造を成している。ここでは、さらに前記磁性層7の
厚さが表皮深さの10分の1から10倍の厚さであり、
前記非磁性絶縁層8の厚さが前記磁性層7間の電気的絶
縁を保ち得る厚さ以上に設定している。ここで磁性層
7,非磁性絶縁層8は図3のように一周してつながった
閉構造を成していても、図4のようにつながっていない
開構造を成していても同様の効果を示す。また、磁性体
5はケーブルの長さ方向に連続的につながったものであ
っても、いくつかに分断したものであっても同様の効果
を得ることができる。さらに絶縁体4,絶縁体6は構造
上、ケーブルに強度をもたせるために必要なものであっ
て、必要に応じて省くことも可能である。なお、磁性層
7が導電性である場合には、磁性層7がシールド体3の
機能も兼ねることができるため、シールド体3を除去で
きる。さらに積層数が多いほど、あるいはケーブルの長
さが長いほどノイズ抑制効果が高まることは自明のこと
である。
EXAMPLES Next, examples of the present invention will be described. Figure 1
Is a diagram showing an embodiment of the present invention, in which a conductive shield body 3 covers one or a plurality of conductors 1 covered with an insulator 2, and an insulator 4 is provided outside the shield body 3. The magnetic body 5 is covered with the insulator 6, and the outside of the magnetic body 5 is covered with the insulator 6. FIG. 2 is a diagram showing the details of the magnetic body 5. The magnetic body 5 has a multilayer structure in which magnetic layers 7 and nonmagnetic insulating layers 8 are alternately laminated. Here, the thickness of the magnetic layer 7 is 1/10 to 10 times the skin depth,
The thickness of the nonmagnetic insulating layer 8 is set to be equal to or larger than the thickness capable of maintaining electrical insulation between the magnetic layers 7. Here, the magnetic layer 7 and the non-magnetic insulating layer 8 may have the same closed structure as shown in FIG. 3 or an open structure not connected as shown in FIG. Indicates. Further, the same effect can be obtained whether the magnetic body 5 is continuously connected in the length direction of the cable or is divided into several pieces. Further, the insulator 4 and the insulator 6 are structurally necessary for giving strength to the cable, and can be omitted if necessary. When the magnetic layer 7 is conductive, the magnetic layer 7 can also serve as the shield body 3, and thus the shield body 3 can be removed. It is self-evident that the noise suppression effect increases as the number of laminated layers increases or the length of the cable increases.

【0007】磁性多層膜はイオンビームスパッタ(IB
S)法により作製した。多層構造膜を効率よく作製する
ために、IBS装置は複数のターゲットを装備し、これ
を交互に交換することにより、チャンバの真空を維持し
た状態で連続的な多層構造の実現を可能としている。ス
パッタ条件は、動作真空度:1×10-4Torr(スパッタ
ガスとしてArを使用),加速電圧:1kV,基板温
度:160℃とした。ターゲットにはCoZr系非晶質
合金(例えばCoZrNb〔膜組成:87,5,8a
t.%〕),NiFe合金(膜組成:82.5,17.
5at.%)、およびSiO2 を、基板にはコルニング
(Corning)No.0211ガラスを使用した。大きな比透磁率
を得るために、磁性層としてNiFeを用いる場合に
は、約100Oeの磁界印加による磁界中成膜を行い、
一方、磁性層としてCoZr系非晶質合金を用いる場合
には、磁界中成膜後、回転磁界中熱処理を行った。ノイ
ズフィルタケーブル用磁性多層膜(磁性体5)を作製す
るには、上記のように基板上に作製した磁性多層膜を基
板から剥しシート状としたものを、シールド体3あるい
は絶縁体4の外側に巻き付ける方法をとった。磁性多層
膜作製法としては、上記のIBS法以外に、RFスパッ
タ法,マグネトロンスパッタ法,蒸着法,メッキ法,ロ
ール法,塗布法,スクリーン印刷法,圧延法などを用い
ても同様の効果を得ることができる。また、円筒状の磁
性多層膜(磁性体5)を形成する方法としては、上記の
ように基板から剥したシートを利用する以外に、円筒状
基板に磁性多層膜を堆積させたものをそのまま利用する
方法が挙げられる。
The magnetic multilayer film is formed by ion beam sputtering (IB).
It was produced by the S) method. In order to efficiently produce a multilayer structure film, the IBS apparatus is equipped with a plurality of targets, and by alternately exchanging them, it is possible to realize a continuous multilayer structure while maintaining the vacuum of the chamber. The sputtering conditions were an operating vacuum degree of 1 × 10 −4 Torr (using Ar as a sputtering gas), an acceleration voltage of 1 kV, and a substrate temperature of 160 ° C. The target is a CoZr-based amorphous alloy (for example, CoZrNb [film composition: 87, 5, 8a
t. %]), NiFe alloy (film composition: 82.5, 17.
5 at. %) And SiO 2 on the substrate. 0211 glass was used. When NiFe is used for the magnetic layer to obtain a large relative magnetic permeability, film formation is performed in a magnetic field by applying a magnetic field of about 100 Oe,
On the other hand, when using a CoZr-based amorphous alloy for the magnetic layer, heat treatment was performed in a rotating magnetic field after film formation in the magnetic field. In order to produce the magnetic multilayer film (magnetic body 5) for the noise filter cable, the magnetic multilayer film produced on the substrate as described above is peeled from the substrate and formed into a sheet shape, which is placed outside the shield body 3 or the insulator 4. I took the method of wrapping it around. In addition to the above-mentioned IBS method, RF sputtering method, magnetron sputtering method, vapor deposition method, plating method, roll method, coating method, screen printing method, rolling method, etc. can be used as the magnetic multilayer film producing method to obtain the same effect. Obtainable. Further, as a method for forming the cylindrical magnetic multilayer film (magnetic body 5), other than using the sheet peeled from the substrate as described above, a method in which the magnetic multilayer film is deposited on the cylindrical substrate is used as it is. There is a method of doing.

【0008】図5に比透磁率(μr′,μr″)のtm
/δ依存性を示す。ここでtmは磁性層厚である。ま
た、δは表皮深さであり、抵抗率ρm,周波数f,真空
の透磁率μ0 を用いて、 δ=〔2ρm/(2πfμr′(0)μ0 )〕1/2 (1) で表される。磁性層にはμr′(0)=5000,ρm
=120μΩcmのCoZr系非晶質合金、およびμ
r′(0)=2500,ρm=20μΩcmのNiFe
合金を使用した。図5よりμr″はtm/δが0.1か
ら10の範囲で渦電流損失により大きな値となってい
る。このことから、具体的には、磁性層の厚さtmをδ
の10分の1から10倍の厚さに設定することにより、
より一層のノイズ抑制効果が得られることもわかる。図
6に磁性層としてNiFe合金50nmを、非磁性絶縁
層としてSiO2 を使用した場合の比透磁率の周波数特
性を示す。この周波数帯におけるNiFeの表皮深さは
0.16〜1.6μmであり、NiFe層厚に比べ十分
厚い。従ってSiO2 層がNiFe層間の電気的絶縁を
保っていれば、NiFeの磁気共鳴周波数650MHz
までμr′は一定、μr″は低い値をとる。電気的絶縁
を保てないようなSiO2 層の厚さが5nmと薄い場合
には、30MHz付近からμr′の低下、μr″の急増
が生じて、ノイズ抑制効果が減少している。一方、Si
2 層厚50nmでは650MHzまでμr′は一定と
なり、電気的絶縁はほぼ保たれており、SiO2 層厚1
00nmではノイズ抑制効果はいっそう確実となってい
る。以上、SiO2 を使用した場合、ノイズ抑制効果を
保つには数十nm程度の層厚とすれば良いことがわか
る。
FIG. 5 shows tm of relative permeability (μr ', μr ").
/ Δ dependence is shown. Here, tm is the magnetic layer thickness. Further, δ is the skin depth, and is expressed by δ = [2ρm / (2πfμr ′ (0) μ 0 )] 1/2 (1) using the resistivity ρm, frequency f, and vacuum permeability μ 0. To be done. Μr ′ (0) = 5000, ρm for the magnetic layer
= 120 μΩcm CoZr-based amorphous alloy, and μ
NiFe with r ′ (0) = 2500 and ρm = 20 μΩcm
Alloy was used. 5, μr ″ has a large value due to the eddy current loss in the range of tm / δ of 0.1 to 10. Therefore, specifically, the thickness tm of the magnetic layer is δ.
By setting the thickness to 1/10 to 10 times,
It can also be seen that a further noise suppression effect can be obtained. FIG. 6 shows frequency characteristics of relative permeability when NiFe alloy 50 nm is used as the magnetic layer and SiO 2 is used as the non-magnetic insulating layer. The skin depth of NiFe in this frequency band is 0.16 to 1.6 μm, which is sufficiently thicker than the NiFe layer thickness. Therefore, if the SiO 2 layer maintains the electrical insulation between the NiFe layers, the magnetic resonance frequency of NiFe is 650 MHz.
Μr ′ is constant and μr ″ has a low value. When the thickness of the SiO 2 layer that cannot maintain electrical insulation is as thin as 5 nm, μr ′ decreases from around 30 MHz, and μr ″ rapidly increases. As a result, the noise suppression effect is reduced. On the other hand, Si
O 2 layer thickness 50 nm .mu.r In to 650MHz 'becomes constant, electrical insulation is kept almost, SiO 2 layer thickness 1
At 00 nm, the noise suppression effect is even more certain. As described above, when SiO 2 is used, it is understood that the layer thickness of about several tens nm is sufficient to maintain the noise suppressing effect.

【0009】図7に磁性層7として上記CoZr系非晶
質合金を、非磁性絶縁層8としてSiO2 を使用した場
合のノイズフィルタケーブルのインピーダンス特性を示
す。絶縁体2,6にはビニールを、シールド体3にはア
ルミ箔を、絶縁体4にはカプトンを使用した。磁性層厚
はδ/10≦tm≦10δを満たす2μmに、非磁性絶
縁層厚は電気的絶縁を保ち得る0.1μmとした。ケー
ブルは10mm径,24芯であり、磁性体5のサイズは
d=10mm,t=20μm,1=300mmとした。
図8,図9の従来ノイズフィルタと従来ケーブルの組合
せと比べると、ケーブルの体積は従来ケーブルの体積と
殆ど変わらないにもかかわらず、30〜1000MHz
において数十〜300Ωと従来のノイズフィルタと同等
のインピーダンスを有していることがわかる。なお、磁
性層7としては、Fe,Ni,Coに、Fe,Ni,C
o,Zr,Nb,Y,Hf,Ti,Mo,W,Ta,S
i,B,Reのうち単独または複数の元素を添加した材
料を、一方、非磁性絶縁層8としては、SiO2 ,Al
N,Al2 3 ,BN,SiCを使用でき、上記と同様
の効果を得ることができる。
FIG. 7 shows impedance characteristics of the noise filter cable when the above CoZr type amorphous alloy is used as the magnetic layer 7 and SiO 2 is used as the non-magnetic insulating layer 8. Vinyl was used for the insulators 2 and 6, aluminum foil was used for the shield 3, and Kapton was used for the insulator 4. The thickness of the magnetic layer was 2 μm satisfying δ / 10 ≦ tm ≦ 10δ, and the thickness of the nonmagnetic insulating layer was 0.1 μm capable of maintaining electrical insulation. The cable has a diameter of 10 mm and 24 cores, and the size of the magnetic body 5 is d = 10 mm, t = 20 μm, and 1 = 300 mm.
Compared with the combination of the conventional noise filter and the conventional cable of FIGS. 8 and 9, the volume of the cable is almost the same as the volume of the conventional cable, but 30 to 1000 MHz.
It can be seen that the sample has an impedance equivalent to that of the conventional noise filter of several tens to 300Ω. The magnetic layer 7 includes Fe, Ni, Co, Fe, Ni, C.
o, Zr, Nb, Y, Hf, Ti, Mo, W, Ta, S
One of i, B and Re, to which a single element or a plurality of elements are added, is used as the non-magnetic insulating layer 8 while SiO 2 , Al
N, Al 2 O 3 , BN and SiC can be used, and the same effect as above can be obtained.

【0010】[0010]

【発明の効果】以上説明したように、従来はノイズフィ
ルタをケーブルに組み合わせて用いなければならなかっ
た、ことに対して本発明によればノイズフィルタを省略
してもノイズ抑制効果をケーブルが維持できる。すなわ
ちケーブルの高付加価値化ならびにノイズフィルタの省
略による部品の小形化の効果をもたらすものである。ま
た、シールド体および絶縁体に、アルミ箔およびビニー
ル,カプトンなどを選べば、従来ケーブルと同様のフレ
キシビリティを維持できる効果も有する。
As described above, in the past, a noise filter had to be used in combination with a cable, but according to the present invention, the cable maintains the noise suppressing effect even if the noise filter is omitted. it can. That is, it brings about the effect of making the cable high-value-added and miniaturizing the parts by omitting the noise filter. In addition, if aluminum foil, vinyl, Kapton, or the like is selected for the shield body and the insulator, it has the effect of maintaining the same flexibility as the conventional cable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のノイズフィルタの実施例を示す図であ
る。
FIG. 1 is a diagram showing an embodiment of a noise filter of the present invention.

【図2】磁性体部の詳細を示す図である。FIG. 2 is a diagram showing details of a magnetic body portion.

【図3】磁性体部の実施例を示す図である。FIG. 3 is a diagram showing an example of a magnetic body portion.

【図4】磁性体部の他の実施例を示す図である。FIG. 4 is a diagram showing another embodiment of the magnetic body portion.

【図5】比透磁率の磁性層厚依存性を示す図である。FIG. 5 is a diagram showing the dependency of relative permeability on the thickness of a magnetic layer.

【図6】比透磁率の周波数特性を示す図である。FIG. 6 is a diagram showing frequency characteristics of relative permeability.

【図7】インピーダンスの周波数特性を示す図である。FIG. 7 is a diagram showing frequency characteristics of impedance.

【図8】従来のノイズフィルタを示す図である。FIG. 8 is a diagram showing a conventional noise filter.

【図9】従来のケーブルを示す図である。FIG. 9 is a diagram showing a conventional cable.

【図10】従来部品のインピーダンスの周波数特性を示
す図である。
FIG. 10 is a diagram showing frequency characteristics of impedance of a conventional component.

【符号の説明】 1 導線 2 絶縁体 3 シールド体 4 絶縁体 5 磁性体 6 絶縁体 7 磁性層 8 非磁性絶縁層[Explanation of Codes] 1 Conductor 2 Insulator 3 Shield 4 Insulator 5 Magnetic 6 Insulator 7 Magnetic layer 8 Nonmagnetic insulating layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁体で覆われた1本以上の導線の周囲
を、導電性のシールド体が覆い、該シールド体の外側
を、絶縁体を介して磁性体が覆い、該磁性体の外側をさ
らに絶縁体が覆っていることを特徴とするノイズフィル
タケーブル。
1. A conductive shield body covers the periphery of one or more conductive wires covered with an insulator, and a magnetic body covers the outside of the shield body through an insulator, and the outside of the magnetic body. A noise filter cable characterized in that the insulation is further covered.
【請求項2】 磁性体が磁性層と非磁性絶縁層とを交互
に積層した多層構造を成していることを特徴とする請求
項1記載のノイズフィルタケーブル。
2. The noise filter cable according to claim 1, wherein the magnetic material has a multilayer structure in which magnetic layers and nonmagnetic insulating layers are alternately laminated.
JP16745493A 1993-06-07 1993-06-14 Noise filter cable Expired - Lifetime JP3410768B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16745493A JP3410768B2 (en) 1993-06-14 1993-06-14 Noise filter cable
US08/257,769 US5990417A (en) 1993-06-07 1994-06-06 Electromagnetic noise absorbing material and electromagnetic noise filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16745493A JP3410768B2 (en) 1993-06-14 1993-06-14 Noise filter cable

Publications (2)

Publication Number Publication Date
JPH06349341A true JPH06349341A (en) 1994-12-22
JP3410768B2 JP3410768B2 (en) 2003-05-26

Family

ID=15849993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16745493A Expired - Lifetime JP3410768B2 (en) 1993-06-07 1993-06-14 Noise filter cable

Country Status (1)

Country Link
JP (1) JP3410768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728068B1 (en) * 2003-02-05 2007-06-13 노키아 코포레이션 System and method for identifying applications targeted for message receipt in devices utilizing message queues
JP2012064777A (en) * 2010-09-16 2012-03-29 Mitsubishi Electric Corp Noise filter, cable with noise filter, and printed wiring board with noise filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728068B1 (en) * 2003-02-05 2007-06-13 노키아 코포레이션 System and method for identifying applications targeted for message receipt in devices utilizing message queues
JP2012064777A (en) * 2010-09-16 2012-03-29 Mitsubishi Electric Corp Noise filter, cable with noise filter, and printed wiring board with noise filter

Also Published As

Publication number Publication date
JP3410768B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
US5990417A (en) Electromagnetic noise absorbing material and electromagnetic noise filter
EP0054269B1 (en) Perpendicular magnetic recording medium, method for producing the same, and sputtering device
US6195249B1 (en) Electronic component having gaps between conductive thin films
JP4210016B2 (en) communication cable
EP0177780B1 (en) Magnetic material having high permeability in the high frequency range
JPH11340037A (en) Soft magnetic film, soft magnetic multi-layer film, manufacture thereof, and magnetic body element using same
US5833770A (en) High frequency soft magnetic alloy and plane magnetic element, antenna and wave absorber comprising the same
US5302469A (en) Soft magnetic thin film
JP3410768B2 (en) Noise filter cable
JPH06260869A (en) Noise filter
JPH06349637A (en) Magnetic body tube
JP2000252121A (en) HIGH-FREQUENCY Co-BASED METALLIC AMORPHOUS MAGNETIC FILM, AND MAGNETIC ELEMENT, INDUCTOR AND TRANSFORMER USING THE SAME
JPS62115813A (en) Shielded device
JPH0297097A (en) Electromagnetic shielding material
JP3314828B2 (en) Noise absorber and noise filter
JP3273693B2 (en) Cable connector for electronic device
US5411813A (en) Ferhgasi soft magnetic materials for inductive magnetic heads
JPH07240593A (en) Noise filter tape and manufacture of noise filter tape and apparatus for manufacturing noise filter tape
JPH07254457A (en) Cable connector having noise filter
Naoe et al. A reactive sputtering method for preparation of berthollide type of iron oxide films
EP3511959B1 (en) Soft magnetic alloy and magnetic device
JPH0462162B2 (en)
JPH07249888A (en) Electromagnetic wave absorption sheet
JPH07211530A (en) Magnetic core
JPH09260179A (en) Magnetic multilayer thin film and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

EXPY Cancellation because of completion of term