JPH06347737A - Optical control device - Google Patents

Optical control device

Info

Publication number
JPH06347737A
JPH06347737A JP13635893A JP13635893A JPH06347737A JP H06347737 A JPH06347737 A JP H06347737A JP 13635893 A JP13635893 A JP 13635893A JP 13635893 A JP13635893 A JP 13635893A JP H06347737 A JPH06347737 A JP H06347737A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
control device
electric field
control electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13635893A
Other languages
Japanese (ja)
Other versions
JP2606552B2 (en
Inventor
Yutaka Urino
豊 賣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5136358A priority Critical patent/JP2606552B2/en
Publication of JPH06347737A publication Critical patent/JPH06347737A/en
Application granted granted Critical
Publication of JP2606552B2 publication Critical patent/JP2606552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the optical control device which is stable in characteristics over a long period of time by diminishing the DC drift which has been a problem in the conventional optical control device. CONSTITUTION:Optical waveguides 21, 22, 23 and 24 formed by diffusing titanium are formed on a lithium niobate crystal substrate 1 of a Z-plate to constitute a Mach-Zehunder interference system. Control electrodes 25 and 26 are formed on the optical waveguides 22 and 23. These control electrodes 25, 26 are so formed respectively of the same size and are so constituted that electric fields of opposite directions are impressed to the optical waveguides 22, 23. The control electrode 25 is so installed as to overlap on the optical waveguides 22, 23. The electric field 7 of a vertical direction is impressed to the optical waveguides 22, 23. On the other hand, the control electrode 26 is so installed as to hold the optical waveguides 22, 23 and the electric field 8 of a transverse direction is impressed to the optical waveguides 22, 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光波の変調、光路切り
換えなどを行う光制御デバイスに関し、特に基板中に設
けた光導波路を用いて制御を行う導波型の光制御デバイ
スに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical control device for modulating a light wave and switching an optical path, and more particularly to a waveguide type optical control device for controlling using an optical waveguide provided in a substrate.

【0002】[0002]

【従来の技術】光通信システムの実用化が進むにつれ、
さらに大容量や多機能を持つ高度のシステムが求められ
ており、より高度の光信号の発生や光伝送路の切り替
え、交換などの新たな機能の付加が必要とされている。
現在の実用システムでは、光信号は直接半導体レーザや
発光ダイオードの注入電流を変調することによって得ら
れているが、直接変調では緩和振動などの効果のため1
0GHz前後以上の高速変調が難しいこと、波長変動が
発生するためコヒーレント光伝送方式には適用が難しい
などの欠点がある。これを解決する手段としては、外部
変調器を使用する方法があり、特に基板中に形成した光
導波路により構成した導波型の光変調器は、小型、高効
率、高速という特徴がある。一方、光伝送路の切り替え
やネットワークの交換機能を得る手段としては、光スイ
ッチが使用される。現在実用されている光スイッチは、
プリズム、ミラー、ファイバなどを機械的に移動させる
ものであり、低速であること、信頼性が不十分であるこ
と、単体での寸法が大きくマトリクス化に不適であるこ
と等の欠点がある。
2. Description of the Related Art As the practical use of optical communication systems progresses,
There is a demand for advanced systems with large capacity and multiple functions, and new functions such as generation of higher-level optical signals, switching of optical transmission lines, and replacement are required.
In the current practical system, the optical signal is obtained by directly modulating the injection current of the semiconductor laser or the light emitting diode. However, direct modulation has an effect such as relaxation oscillation.
There are drawbacks such as difficulty in high-speed modulation of around 0 GHz or more, and difficulty in application to the coherent optical transmission system due to wavelength variation. As a means for solving this, there is a method of using an external modulator, and in particular, a waveguide type optical modulator constituted by an optical waveguide formed in a substrate is characterized by small size, high efficiency and high speed. On the other hand, an optical switch is used as a means for obtaining the function of switching the optical transmission line and the switching function of the network. Currently used optical switches are
It mechanically moves a prism, a mirror, a fiber, and the like, and has drawbacks such as low speed, insufficient reliability, large size of a single unit, and unsuitable for matrix formation.

【0003】これを解決する手段として開発が進められ
ているものは、やはり光導波路を用いた導波型の光スイ
ッチであり、高速、多素子の集積化が可能、高信頼等の
特徴がある。特にニオブ酸リチウム(LiNbO3 )結
晶等の強誘電体材料を用いたものは、光吸収が小さく低
損失であること、大きな電気光学効果を有しているため
高効率である等の特徴があり、従来からも方向性結合器
型光変調器・スイッチ、全反射型光スイッチ、マッハツ
ェンダ型光変調器等の種々の方式の光制御素子が報告さ
れている。
What is being developed as a means for solving this is a waveguide type optical switch which also uses an optical waveguide, and is characterized by high speed, multi-element integration and high reliability. . In particular, a material using a ferroelectric material such as lithium niobate (LiNbO 3 ) crystal is characterized by low light absorption and low loss and high efficiency because it has a large electro-optical effect. Conventionally, various types of optical control elements such as a directional coupler type optical modulator / switch, a total reflection type optical switch, and a Mach-Zehnder type optical modulator have been reported.

【0004】図5(a),(b)に、従来の光制御デバ
イスの一例としてマッハツェンダ型光変調器の平面図及
び断面図を示す。図5(b)は、図5(a)の破線b−
b′部分の断面図を示している。図5(a)において、
Z軸に垂直に切り出したニオブ酸リチウム結晶基板1の
上にチタン(Ti)を拡散して屈折率を基板よりも大き
くして形成した帯状の光導波路21,22,23及び2
4が形成されている。光導波路21は基板の中央付近で
光導波路22及び23に分岐した後、再び合流して光導
波路24となりマッハツェンダ型干渉系を構成してい
る。マッハツェンダの2本の枝の光導波路22,23上
には電極による光吸収を防ぐためのバッファ層62を介
して制御電極61が形成されている。
FIGS. 5A and 5B show a plan view and a sectional view of a Mach-Zehnder type optical modulator as an example of a conventional optical control device. FIG. 5B is a broken line b- of FIG.
The sectional view of b'part is shown. In FIG. 5 (a),
Band-shaped optical waveguides 21, 22, 23, and 2 formed by diffusing titanium (Ti) on the lithium niobate crystal substrate 1 cut out perpendicularly to the Z-axis to make the refractive index larger than that of the substrate.
4 are formed. The optical waveguide 21 branches into optical waveguides 22 and 23 near the center of the substrate, and then merges again to become an optical waveguide 24, which constitutes a Mach-Zehnder type interference system. A control electrode 61 is formed on the two optical waveguides 22 and 23 of the Mach-Zehnder via a buffer layer 62 for preventing light absorption by the electrodes.

【0005】光導波路21に入射した入射光5は2本の
光導波路22,23に分けられ、それぞれの枝を伝搬し
た後に光導波路24に合流し出射光6となる。通常、2
本の枝の光導波路22,23は同じ光路長で、制御電極
61は2本の枝で同じ大きさで反対方向の電界7が掛か
るように設置されている。制御電極61に電圧を印加し
た場合、電気光学効果により制御電極6下の光導波路2
2,23の屈折率が変化し、光導波路22,23を伝搬
する光が反対方向に位相変調を受け、合流後の光導波路
24の導波モードのパワーが変化する。
Incident light 5 that has entered the optical waveguide 21 is split into two optical waveguides 22 and 23, propagates through the respective branches, and then joins the optical waveguide 24 to become emitted light 6. Usually 2
The optical waveguides 22 and 23 of the two branches have the same optical path length, and the control electrode 61 is installed so that the two branches have the same size and the electric field 7 in the opposite direction is applied. When a voltage is applied to the control electrode 61, the optical waveguide 2 below the control electrode 6 is caused by the electro-optic effect.
The refractive indexes of the optical waveguides 2 and 23 change, the lights propagating through the optical waveguides 22 and 23 undergo phase modulation in opposite directions, and the power of the waveguide mode of the optical waveguides 24 after merging changes.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図5に
示すような従来の光制御デバイスでは、DC電圧印加に
より結晶中の電荷が結晶や膜の界面に局部的に蓄積され
て光波に作用する電界強度が変化する現象即ちDCドリ
フトが生じやすく、デバイスの安定性に問題があった。
However, in the conventional light control device as shown in FIG. 5, the electric charge in the crystal is locally accumulated at the interface between the crystal and the film by the application of the DC voltage, and the electric field acts on the light wave. A phenomenon in which the intensity changes, that is, a DC drift is likely to occur, and there is a problem in device stability.

【0007】本発明の目的は、上述の従来の光制御デバ
イスの問題点を除き、特性が長期に渡って安定な光制御
デバイスを提供することにある。
An object of the present invention is to provide an optical control device having stable characteristics over a long period of time, except for the above-mentioned problems of the conventional optical control device.

【0008】[0008]

【課題を解決するための手段】本発明は、電気光学効果
を有する誘電体結晶基板上に形成された光導波路と、そ
の近傍に設置された制御電極とからなるマッハツェンダ
干渉型光制御デバイスにおいて、光制御用の電界の印加
手段として、同一のマッハツェンダ干渉器内に、光導波
路に基板の厚さ方向の電界を印加する第1の制御電極
と、光導波路に基板の厚さ方向及び光の伝搬方向と垂直
な方向の電界を印加する第2の制御電極とを具備するこ
とを特徴とする。
The present invention provides a Mach-Zehnder interference type optical control device comprising an optical waveguide formed on a dielectric crystal substrate having an electro-optical effect and a control electrode installed in the vicinity thereof, As means for applying an electric field for light control, a first control electrode for applying an electric field in the thickness direction of the substrate to the optical waveguide and a propagation direction of light in the substrate to the optical waveguide are provided in the same Mach-Zehnder interferometer. And a second control electrode for applying an electric field in a direction perpendicular to the direction.

【0009】また本発明は、電気光学効果を有する誘電
体結晶基板上に形成された光導波路と、その近傍に設置
された制御電極とからなる方向性結合器型光制御デバイ
スにおいて、光制御用の電界の印加手段として、同一の
方向性結合器内に、光導波路に基板の厚さ方向の電界を
印加する第1の制御電極と、光導波路に基板の厚さ方向
及び光の伝搬方向と垂直な方向の電界を印加する第2の
制御電極とを具備することを特徴とする。
Further, the present invention provides a directional coupler type optical control device comprising an optical waveguide formed on a dielectric crystal substrate having an electro-optical effect and a control electrode provided in the vicinity thereof for optical control. As means for applying the electric field, the first control electrode for applying an electric field in the thickness direction of the substrate to the optical waveguide and the optical waveguide in the thickness direction of the substrate and the propagation direction of light are provided in the same directional coupler. And a second control electrode for applying an electric field in a vertical direction.

【0010】[0010]

【作用】本発明の光制御デバイスは、光制御用の電界の
印加手段として、光導波路に基板の厚さ方向(以後、こ
の方向を縦方向と呼ぶ)の電界を印加する制御電極と、
光導波路に基板の厚さ方向及び光の伝搬方向と垂直な方
向(以後、この方向を横方向と呼ぶ)の電界を印加する
制御電極の両方を具備する。発明者らの実験によると、
縦方向の電界を印加した場合、DCドリフトは印加した
電界を弱める方向におこり(以後、このようなDCドリ
フトを正のDCドリフトと呼ぶ)、逆に横方向の電界を
印加した場合、DCドリフトは印加した電界を強める方
向におこる(以後、このようなDCドリフトを負のDC
ドリフトと呼ぶ)。従って、縦方向の電界と横方向の電
界を組み合わせることにより、正のDCドリフトと負の
DCドリフトを相殺することができ、DCドリフトを減
少させることができる。
The light control device of the present invention comprises, as means for applying an electric field for light control, a control electrode for applying an electric field in the thickness direction of the substrate (hereinafter, this direction is referred to as a vertical direction) to the optical waveguide.
The optical waveguide is provided with both a thickness direction of the substrate and a control electrode for applying an electric field in a direction perpendicular to the light propagation direction (hereinafter, this direction is referred to as a lateral direction). According to the experiments by the inventors,
When a vertical electric field is applied, DC drift occurs in a direction that weakens the applied electric field (hereinafter, such DC drift is referred to as positive DC drift), and conversely, when a horizontal electric field is applied, DC drift occurs. Occurs in the direction in which the applied electric field is strengthened (hereinafter, such a DC drift will be a negative DC
Called drift). Therefore, by combining the vertical electric field and the horizontal electric field, the positive DC drift and the negative DC drift can be canceled and the DC drift can be reduced.

【0011】以上のことより、本発明の光制御デバイス
は、従来に比べて安定な光制御デバイスが得られる。
From the above, the light control device of the present invention can provide a more stable light control device than the conventional one.

【0012】[0012]

【実施例】図1(a),(b),(c)は、本発明によ
る光制御デバイスの一実施例であるマッハツェンダ型光
変調器の平面図及び断面図である。図1(a)の破線b
−b′部分の断面図を(b)に示す。図1(a)の破線
c−c′部分の断面図を(c)に示す。
1 (a), 1 (b) and 1 (c) are a plan view and a sectional view of a Mach-Zehnder type optical modulator which is an embodiment of an optical control device according to the present invention. Broken line b in FIG.
A sectional view of the portion -b 'is shown in FIG. A cross-sectional view taken along the broken line cc 'of FIG. 1A is shown in FIG.

【0013】Z板ニオブ酸リチウム結晶基板1の上に、
チタンを900〜1100℃程度で数時間熱拡散して形
成された3〜10μm程度の光導波路21,22,23
及び24が形成されている。光導波路21は2つに分岐
して光導波路22及び23となった後、合流して光導波
路24となり、マッハツェンダ干渉系を構成している。
光導波路22及び23上には制御電極25及び26が形
成されている。制御電極25,26は、それぞれ同じ大
きさで反対方向の電界が導波路22,23に印加される
ように構成されている。制御電極25は光導波路22,
23に重なるように設置され、光導波路22,23には
縦方向の電界7が印加される。一方、制御電極26は光
導波路22,23を挟むように設置され、光導波路2
2,23には横方向の電界8が印加される。作用の項で
も述べたように、縦方向の電界に対しては正のDCドリ
フトが発生し、横方向の電界に対しては負のDCドリフ
トが発生する。しかもこの両方のDCドリフトの時定数
は、ほぼ等しい。従って、制御電極25,26によるT
Eモード即ち横方向の偏光の屈折率変化量Δnd 及びΔ
t はそれぞれ、 Δnd =[1−D(t)]Γd 13o 3 d d /(2gd ) (1) Δnt =[1+αD(t)]Γt 22o 3 t t /(2gt ) (2) と表すことができる。ただし、D(t)は縦方向の電界
によるDCドリフト量、αは縦電界と横電界のDCドリ
フト量の大きさの比、Γは電界補正係数、r13,r22
電気光学係数、no は常光の屈折率、Vは印加電圧、L
は電極長、gは電極間隔、サフィックスのd,tはそれ
ぞれ縦方向の電界を印加する電極25及び横方向の電界
を印加する電極26を表す。従って、図1(a)に示す
ように縦方向の電界の電極25と横方向の電界の電極2
6を縦続接続した場合、マッハツェンダ各枝の位相変化
量は各制御電極での位相変化量の和に等しいから、 Γd 13d d /gd =αΓt 22t t /gt (3) の関係を満足するようにそれぞれの電極の印加電圧、電
極長、電極間隔等を調整することにより、各枝でのDC
ドリフトによる位相変化を零にすることができる。マッ
ハツェンダの出力光強度は2つの枝の位相差によって決
まるので、各枝での位相変化量のDCドリフトを零にす
ることができれば、マッハツェンダ型光変調器の出力光
強度のDCドリフトも零にすることができ、安定な光変
調器を得ることができる。
On the Z plate lithium niobate crystal substrate 1,
Optical waveguides 21, 22 and 23 of about 3 to 10 μm formed by thermally diffusing titanium at 900 to 1100 ° C. for several hours.
And 24 are formed. The optical waveguide 21 branches into two to become optical waveguides 22 and 23, and then merges to form an optical waveguide 24, which constitutes a Mach-Zehnder interference system.
Control electrodes 25 and 26 are formed on the optical waveguides 22 and 23. The control electrodes 25 and 26 are configured such that electric fields having the same magnitude and opposite directions are applied to the waveguides 22 and 23, respectively. The control electrode 25 is the optical waveguide 22,
It is installed so as to overlap with 23, and a vertical electric field 7 is applied to the optical waveguides 22 and 23. On the other hand, the control electrode 26 is installed so as to sandwich the optical waveguides 22 and 23, and
A horizontal electric field 8 is applied to the electrodes 2 and 23. As described in the action section, a positive DC drift occurs with respect to the vertical electric field, and a negative DC drift occurs with respect to the lateral electric field. Moreover, the time constants of both DC drifts are almost equal. Therefore, T due to the control electrodes 25 and 26
E mode, that is, the refractive index changes Δn d and Δ of the polarized light in the lateral direction
n t respectively, Δn d = [1-D (t)] Γ d r 13 n o 3 V d L d / (2g d) (1) Δn t = [1 + αD (t)] Γ t r 22 n o It can be expressed as 3 V t L t / (2g t ) (2). Here, D (t) is the amount of DC drift due to the vertical electric field, α is the ratio of the magnitude of the DC drift amount between the vertical electric field and the horizontal electric field, Γ is the electric field correction coefficient, r 13 and r 22 are electro-optical coefficients, and n o is the refractive index of ordinary light, V is the applied voltage, L
Is the electrode length, g is the electrode spacing, and suffixes d and t are the electrode 25 for applying a vertical electric field and the electrode 26 for applying a horizontal electric field, respectively. Therefore, as shown in FIG. 1A, the vertical electric field electrode 25 and the horizontal electric field electrode 2 are formed.
If the 6 cascaded, since the phase variation of the Mach-Zehnder each branch is equal to the sum of the amount of phase change at each control electrode, Γ d r 13 V d L d / g d = αΓ t r 22 V t L t / By adjusting the applied voltage of each electrode, the electrode length, the electrode interval, etc. so as to satisfy the relationship of g t (3), DC in each branch
The phase change due to drift can be made zero. Since the output light intensity of the Mach-Zehnder is determined by the phase difference between the two branches, if the DC drift of the phase change amount at each branch can be made zero, the DC drift of the output light intensity of the Mach-Zehnder optical modulator will also be made zero. Therefore, a stable optical modulator can be obtained.

【0014】図2(a),(b)は、本発明の別の実施
例によるマッハツェンダ型光変調器の平面図及び断面図
である。
2A and 2B are a plan view and a sectional view of a Mach-Zehnder type optical modulator according to another embodiment of the present invention.

【0015】図2(a)の破線b−b′部分の断面図を
(b)に示す。図1の例と同様にZ板ニオブ酸リチウム
結晶基板1の上に、光導波路21,22,23及び24
が形成され、マッハツェンダ干渉系を構成している。光
導波路22及び23上には制御電極31が形成されてい
る。制御電極31は、光導波路22に重なり、且つ光導
波路23を挟むように設置される。制御電極31によ
り、光電極22には縦方向の電界7が印加され、光導波
路23には横方向の電界8が印加される。マッハツェン
ダの2つの枝の光導波路22及び23には、それぞれの
位相変化が反対方向になるように電界が印加される。マ
ッハツェンダの出力光強度は2つの枝の位相差によって
決まるので、制御電極31が式(3)の関係を満足する
ように電極の印加電圧、電極長、電極間隔等を調整する
ことにより、2つの枝でのそれぞれの位相変化量のDC
ドリフトは合流の際に相殺され、DCドリフトによる出
力光強度の変化を零にすることができ、安定な光強度変
調器が得られる。
FIG. 2B is a sectional view of the broken line bb 'in FIG. 2A. Similar to the example of FIG. 1, the optical waveguides 21, 22, 23 and 24 are formed on the Z-plate lithium niobate crystal substrate 1.
Are formed to form a Mach-Zehnder interference system. A control electrode 31 is formed on the optical waveguides 22 and 23. The control electrode 31 is installed so as to overlap the optical waveguide 22 and sandwich the optical waveguide 23. A vertical electric field 7 is applied to the photoelectrode 22 and a horizontal electric field 8 is applied to the optical waveguide 23 by the control electrode 31. An electric field is applied to the optical waveguides 22 and 23 of the two branches of the Mach-Zehnder so that the respective phase changes are in opposite directions. Since the output light intensity of the Mach-Zehnder is determined by the phase difference between the two branches, the control electrode 31 adjusts the voltage applied to the electrodes, the electrode length, the electrode interval, etc. so that the control electrode 31 satisfies the two conditions. DC of the amount of phase change in each branch
The drifts are canceled at the time of merging, the change in the output light intensity due to the DC drift can be made zero, and a stable light intensity modulator can be obtained.

【0016】図3(a),(b),(c)は、本発明の
実施例による方向性結合器型光スイッチの平面図及び断
面図である。
FIGS. 3A, 3B and 3C are a plan view and a sectional view of a directional coupler type optical switch according to an embodiment of the present invention.

【0017】図3(a)の破線b−b′部分の断面図を
(b)、破線c−c′部分の断面図を(c)に示す。Z
板ニオブ酸リチウム結晶基板1の上に、チタンを900
〜1100℃程度で数時間熱拡散して形成された3〜1
0μm程度の光導波路41及び42が形成されており、
基板の中央部で両光導波路は互いに数μmまで近接して
方向性結合器を構成している。その上に制御電極43及
び44が設置されている。制御電極43は光導波路4
1,42に重なるように設置され、光導波路41,42
には縦方向の電界7が印加される。一方、制御電極44
は光導波路41,42を挟むように設置され、光導波路
41,42には横方向の電界8が印加される。上記のよ
うな構成とすることにより、図1のマッハツェンダ型変
調器の場合と同じ原理で、方向性結合器型光スイッチの
DCドリフトを小さくすることができる。
A sectional view taken along the broken line bb 'in FIG. 3A is shown in FIG. 3B, and a sectional view taken along the broken line cc' is shown in FIG. 3C. Z
Plate 900 titanium on the lithium niobate crystal substrate 1
〜1 to 100 formed by thermal diffusion at about 1100 ° C for several hours
Optical waveguides 41 and 42 of about 0 μm are formed,
In the central part of the substrate, both optical waveguides are close to each other by several μm to form a directional coupler. Control electrodes 43 and 44 are installed on it. The control electrode 43 is the optical waveguide 4
The optical waveguides 41 and 42 are installed so as to overlap with the optical waveguides 41 and 42.
A vertical electric field 7 is applied to. On the other hand, the control electrode 44
Are installed so as to sandwich the optical waveguides 41 and 42, and a lateral electric field 8 is applied to the optical waveguides 41 and 42. With the above configuration, the DC drift of the directional coupler type optical switch can be reduced by the same principle as that of the Mach-Zehnder type modulator of FIG.

【0018】図4(a),(b)は、本発明の別の実施
例による方向性結合器型光スイッチの平面図及び断面図
である。
4A and 4B are a plan view and a sectional view of a directional coupler type optical switch according to another embodiment of the present invention.

【0019】図1(a)の破線b−b′部分の断面図を
(b)に示す。図3の場合と同様に、Z板ニオブ酸リチ
ウム結晶基板1の上に光導波路41及び42が形成され
ており、基板の中央部で両光導波路は互いに数μmまで
近接して方向性結合器を構成している。その上に制御電
極51が設置されている。制御電極51は、光導波路4
1に重なるように、且つ光導波路22を挟むように設置
される。制御電極51により、光導波路41には縦方向
の電界7が印加され、光導波路42には横方向の電界8
が印加される。上記のような構成にすることにより、図
2のマッハツェンダ型変調器の場合と同じ原理で、方向
性結合器型光スイッチのDCドリフトを小さくすること
ができる。
A sectional view taken along the broken line bb 'of FIG. 1A is shown in FIG. Similar to the case of FIG. 3, the optical waveguides 41 and 42 are formed on the Z-plate lithium niobate crystal substrate 1, and both optical waveguides are close to each other up to several μm in the central portion of the substrate and the directional coupler is used. Are configured. The control electrode 51 is installed on it. The control electrode 51 is the optical waveguide 4
The optical waveguide 22 is placed so as to overlap with the optical waveguide 1. A vertical electric field 7 is applied to the optical waveguide 41 by the control electrode 51, and a horizontal electric field 8 is applied to the optical waveguide 42.
Is applied. With the above configuration, the DC drift of the directional coupler type optical switch can be reduced by the same principle as in the case of the Mach-Zehnder type modulator of FIG.

【0020】[0020]

【発明の効果】以上述べたように、本発明の光制御デバ
イスでは、DCドリフトを小さくすることができるの
で、従来の光制御デバイスに比べ、特性の安定した光制
御デバイスが得られる。
As described above, in the light control device of the present invention, the DC drift can be reduced, so that the light control device having stable characteristics can be obtained as compared with the conventional light control device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光制御デバイスの一例を示す平面
図および断面図である。
FIG. 1 is a plan view and a cross-sectional view showing an example of a light control device according to the present invention.

【図2】本発明による光制御デバイスの一例を示す平面
図および断面図である。
FIG. 2 is a plan view and a sectional view showing an example of a light control device according to the present invention.

【図3】本発明による光制御デバイスの一例を示す平面
図および断面図である。
FIG. 3 is a plan view and a cross-sectional view showing an example of a light control device according to the present invention.

【図4】本発明による光制御デバイスの一例を示す平面
図および断面図である。
FIG. 4 is a plan view and a cross-sectional view showing an example of a light control device according to the present invention.

【図5】従来例による光制御デバイスの一例を示す平面
図および断面図である。
5A and 5B are a plan view and a cross-sectional view showing an example of a conventional light control device.

【符号の説明】[Explanation of symbols]

1 ニオブ酸リチウム結晶基板 21,22,23,24,41,42 光導波路 25,26,31,43,44,51,61 制御電極 5 入射光 6 出射光 7 縦方向電界 8 横方向電界 62 バッファ層 1 Lithium niobate crystal substrate 21, 22, 23, 24, 41, 42 Optical waveguide 25, 26, 31, 43, 44, 51, 61 Control electrode 5 Incident light 6 Emission light 7 Vertical electric field 8 Horizontal electric field 62 Buffer layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電気光学効果を有する誘電体結晶基板上に
形成された光導波路と、その近傍に設置された制御電極
とからなるマッハツェンダ干渉型光制御デバイスにおい
て、 光制御用の電界の印加手段として、同一のマッハツェン
ダ干渉器内に、光導波路に基板の厚さ方向の電界を印加
する第1の制御電極と、光導波路に基板の厚さ方向及び
光の伝搬方向と垂直な方向の電界を印加する第2の制御
電極とを具備することを特徴とする光制御デバイス。
1. A Mach-Zehnder interference type optical control device comprising an optical waveguide formed on a dielectric crystal substrate having an electro-optical effect and a control electrode installed in the vicinity thereof, and means for applying an electric field for optical control. In the same Mach-Zehnder interferometer, a first control electrode for applying an electric field in the thickness direction of the substrate to the optical waveguide and an electric field in the direction perpendicular to the thickness direction of the substrate and the light propagation direction are applied to the optical waveguide. A light control device comprising: a second control electrode for applying.
【請求項2】前記光導波路は分岐部を有するマッハツェ
ンダ干渉系を構成し、 前記第1の制御電極は、前記分岐部に重なるように設置
され、 前記第2の制御電極は、前記分岐部を挟むように設置さ
れている、ことを特徴とする請求項1記載の光制御デバ
イス。
2. The optical waveguide constitutes a Mach-Zehnder interference system having a branch portion, the first control electrode is installed so as to overlap the branch portion, and the second control electrode is provided with the branch portion. The light control device according to claim 1, wherein the light control device is installed so as to sandwich it.
【請求項3】前記光導波路は、第1の分岐光導波路およ
び第2の分岐光導波路を有するマッハツェンダ干渉系を
構成し、 前記第1の制御電極は、第1の分岐光導波路に重なるよ
うに設置され、 前記第2の制御電極は、第2の分岐光導波路を挟むよう
に設置されている、ことを特徴とする請求項1記載の光
制御デバイス。
3. The optical waveguide constitutes a Mach-Zehnder interference system having a first branched optical waveguide and a second branched optical waveguide, and the first control electrode is overlapped with the first branched optical waveguide. The light control device according to claim 1, wherein the light control device is installed, and the second control electrode is installed so as to sandwich the second branched optical waveguide.
【請求項4】電気光学効果を有する誘電体結晶基板上に
形成された光導波路と、その近傍に設置された制御電極
とからなる方向性結合器型光制御デバイスにおいて、 光制御用の電界の印加手段として、同一の方向性結合器
内に、光導波路に基板の厚さ方向の電界を印加する第1
の制御電極と、光導波路に基板の厚さ方向及び光の伝搬
方向と垂直な方向の電界を印加する第2の制御電極とを
具備することを特徴とする光制御デバイス。
4. A directional coupler type optical control device comprising an optical waveguide formed on a dielectric crystal substrate having an electro-optical effect and a control electrode installed in the vicinity thereof, wherein an electric field for optical control is provided. As an applying means, a first electric field is applied to the optical waveguide in the thickness direction of the substrate in the same directional coupler.
And a second control electrode for applying an electric field to the optical waveguide in a direction perpendicular to the thickness direction of the substrate and the light propagation direction.
【請求項5】前記光導波路は近接部を有する方向性結合
器を構成し、 前記第1の制御電極は、前記近接部に重なるように設置
され、 前記第2の制御電極は、前記近接部を挟むように設置さ
れている、ことを特徴とする請求項4記載の光制御デバ
イス。
5. The optical waveguide constitutes a directional coupler having a proximity portion, the first control electrode is installed so as to overlap the proximity portion, and the second control electrode is disposed in the proximity portion. 5. The light control device according to claim 4, wherein the light control device is installed so as to sandwich it.
【請求項6】前記光導波路は、近接する第1の光導波路
および第2の光導波路を有する方向性結合器を構成し、 前記第1の制御電極は、第1の光導波路に重なるように
設置され、 前記第2の制御電極は、第2の光導波路を挟むように設
置されている、ことを特徴とする請求項4記載の光制御
デバイス。
6. The optical waveguide constitutes a directional coupler having a first optical waveguide and a second optical waveguide which are adjacent to each other, and the first control electrode is arranged to overlap the first optical waveguide. The light control device according to claim 4, wherein the light control device is installed, and the second control electrode is installed so as to sandwich the second optical waveguide.
JP5136358A 1993-06-08 1993-06-08 Light control device Expired - Fee Related JP2606552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5136358A JP2606552B2 (en) 1993-06-08 1993-06-08 Light control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5136358A JP2606552B2 (en) 1993-06-08 1993-06-08 Light control device

Publications (2)

Publication Number Publication Date
JPH06347737A true JPH06347737A (en) 1994-12-22
JP2606552B2 JP2606552B2 (en) 1997-05-07

Family

ID=15173317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5136358A Expired - Fee Related JP2606552B2 (en) 1993-06-08 1993-06-08 Light control device

Country Status (1)

Country Link
JP (1) JP2606552B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214627A (en) * 1985-07-12 1987-01-23 Oki Electric Ind Co Ltd Waveguide type optical switch
JPS644719A (en) * 1987-06-29 1989-01-09 Japan Broadcasting Corp Optical modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214627A (en) * 1985-07-12 1987-01-23 Oki Electric Ind Co Ltd Waveguide type optical switch
JPS644719A (en) * 1987-06-29 1989-01-09 Japan Broadcasting Corp Optical modulator

Also Published As

Publication number Publication date
JP2606552B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US7447389B2 (en) Optical modulator
US7088874B2 (en) Electro-optic devices, including modulators and switches
JPH1184434A (en) Light control circuit and its operation method
JP2014066737A (en) Control method for optical modulation device
JP2946630B2 (en) Light modulator
JPH04172316A (en) Wave guide type light control device
JP2606552B2 (en) Light control device
JPH0593891A (en) Waveguide type optical modulator and its driving method
JPH09211403A (en) Light control element
JP2998373B2 (en) Light control circuit
JP2993192B2 (en) Light control circuit
JP3139009B2 (en) Light switch
JPH0566428A (en) Optical control device
JP2912039B2 (en) Light control device
JPH06347839A (en) Optical control device
JP2616144B2 (en) Light control device and light control circuit
JP2982448B2 (en) Light control circuit
JPH06281897A (en) Light intensity modulator
JPS62258419A (en) Optical control device
JP3106710B2 (en) Light control device
JP2900569B2 (en) Optical waveguide device
JPH0980364A (en) Waveguide type optical device
JPH06347838A (en) Optical control device
JP2836174B2 (en) Light control device
JPH06250131A (en) Optical control element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961217

LAPS Cancellation because of no payment of annual fees