JPH06346179A - Metal powder for iron-nickel type sintered compact, iron-nickel type sintered compact, and production thereof - Google Patents

Metal powder for iron-nickel type sintered compact, iron-nickel type sintered compact, and production thereof

Info

Publication number
JPH06346179A
JPH06346179A JP13585193A JP13585193A JPH06346179A JP H06346179 A JPH06346179 A JP H06346179A JP 13585193 A JP13585193 A JP 13585193A JP 13585193 A JP13585193 A JP 13585193A JP H06346179 A JPH06346179 A JP H06346179A
Authority
JP
Japan
Prior art keywords
iron
powder
less
sintered body
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13585193A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kuga
我 光 広 久
Hideo Suzuki
木 日出夫 鈴
Hiroshi Otsubo
坪 宏 大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13585193A priority Critical patent/JPH06346179A/en
Publication of JPH06346179A publication Critical patent/JPH06346179A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize energy loss at the time of vibration in a low-freauency region by subjecting a molded body of a kneaded material consisting of an Ni alloy powder of prescribed conditions, containing prescribed percentages of Ni and Fe, and an organic binder to sintering at a temp. slightly lower than the melting point of this alloy powder. CONSTITUTION:An alloy having a composition consisting of, by weight, 10-60% Ni and the balance Fe is melted. This Fe-Ni alloy is formed into powder, in which average grain size, carbon content, and oxygen content are regulated to <=15mum, <=0.1%, and <=0.5%, respectively. Then, this alloy powder is kneaded with an organic binder, which is molded and degreased. Subsequently, sintering is done at a temp. lower by 20-100 deg.c than the melting point of this alloy powder, By this method, the Fe-Ni type sintered compact minimal in energy loss at the time of vibration in a low frequency region of <=100KHz can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は100kHZ 以下の低周
波域の振動時におけるエネルギー損失が小さい鉄−ニッ
ケル(Fe−Ni)系焼結体に関する。
The present invention relates to iron energy loss is small at the time of vibration of the following low-frequency region 100kH Z - about nickel (Fe-Ni) sintered body.

【0002】[0002]

【従来の技術】Fe−Ni系合金は、優れた磁気特性を
有する強磁性金属材料であって、例えば、パーマロイ
(Fe−78Ni,Fe−45Ni)等の高透磁率材料
や、磁歪の効果により低熱膨張率を有するアンバー合金
(Fe−36Ni)を代表とする磁気ひずみ材料などが
あげられる。この中でも低熱膨張の金属材料は、高寸法
精度の要求される精密機械部品において使用される。
2. Description of the Related Art Fe-Ni based alloys are ferromagnetic metal materials having excellent magnetic properties, and for example, high magnetic permeability materials such as permalloy (Fe-78Ni, Fe-45Ni) and magnetostrictive effects. A magnetostrictive material represented by an amber alloy (Fe-36Ni) having a low coefficient of thermal expansion can be given. Among them, a metal material having a low thermal expansion is used in a precision machine part that requires high dimensional accuracy.

【0003】Fe−Ni系金属材料はその製造時におけ
る冷却後に残留オーステナイトを多量に含むため機械加
工性が劣るので、複雑形状部品の製作にはニヤネットシ
ェイプに形成、焼結が可能な粉末冶金が用いられる。ま
た磁性材料用には磁気特性が良いこと以外にエネルギー
損失が少ないことが要求され、例えばアンバー合金は、
低熱膨張係数を有するために超音波モーターの部品等に
使用されるが、振動減衰能が大きい場合は振動によるエ
ネルギーロスが大きくなって効率が低下する。
Since Fe-Ni-based metallic materials contain a large amount of retained austenite after cooling during their production, they are inferior in machinability. Therefore, in the production of complex shaped parts, powder metallurgy capable of forming and sintering in a net shape Is used. In addition, magnetic materials are required to have low energy loss in addition to good magnetic properties.
Since it has a low coefficient of thermal expansion, it is used for parts of ultrasonic motors, etc. However, when vibration damping capacity is large, energy loss due to vibration becomes large and efficiency is reduced.

【0004】[0004]

【発明が解決しようとする課題】この振動によるエネル
ギーの損失は、周波数に大きく依存し、周波数の増大と
ともに大きくなる。そのため、超音波モーター等では高
周波域の振動でエネルギー損失が小さいことが要求され
る。一般にこのようなエネルギー損失は、主にヒステリ
シス型の損失と渦電流損失よりなる。100kHZ を超
える周波域では、金属系磁気ひずみ材料では電気抵抗が
小さすぎるために内部の渦電流損失が大きく使用不可能
となるので、電気抵抗の大きなセラミック系が用いられ
ている。他方、100kHZ 以下の低周波域において
は、渦電流損失と同時にヒステリシス損失を考慮する必
要がある。ヒステリシス型の損失は、磁界の変動による
磁壁の移動に伴うエネルギー損失であり、材料内部の欠
陥が大きく影響する。そのため、焼結体では、内部に存
在する欠陥が磁気特性あるいはエネルギー損失に影響を
及ぼし、焼結材料である磁気ひずみ材料においては、エ
ネルギー損失が溶製材よりも悪いのが現状である。通常
この種の焼結体として工業的に利用可能な特性の許容限
は、振動損失係数が溶製材の1.5倍以下であることが
要求されている。
The loss of energy due to this vibration greatly depends on the frequency and increases as the frequency increases. Therefore, ultrasonic motors and the like are required to have small energy loss due to vibration in a high frequency range. Generally, such energy loss mainly consists of hysteresis type loss and eddy current loss. In the frequency range exceeding 100KH Z, since the interior of the eddy current loss becomes large unusable because the electrical resistance is too small in metallic magnetostrictive material, a large ceramic electric resistance is used. On the other hand, in the 100KH Z following low frequency range, there hysteresis loss should consider at the same time as the eddy current loss. The hysteresis type loss is an energy loss due to the movement of the domain wall due to the fluctuation of the magnetic field, and the defects inside the material have a great influence. Therefore, in the sintered body, the defects existing inside affect the magnetic characteristics or the energy loss, and in the magnetostrictive material which is a sintered material, the energy loss is presently worse than that of the ingot material. Normally, the allowable limit of the industrially applicable characteristics of this type of sintered body is that the vibration loss coefficient is required to be 1.5 times or less that of the ingot material.

【0005】[0005]

【課題を解決するための手段】本発明者らは、このエネ
ルギー損失に及ぼすFe−Ni系焼結体用金属粉末の性
状並びにこの粉末を焼結するに際しての焼結条件につい
て鋭意検討を重ねた結果、粉末冶金法によりエネルギー
損失の小さいFe−Ni系焼結体を製造するには、結晶
粒径を粗大化させることなく、焼結密度を上げ、内部空
孔を少なくすることが望ましいとの知見を得、かかる焼
結体を効率よく製造する条件を見出して本発明を完成す
るに到った。
Means for Solving the Problems The inventors of the present invention have made extensive studies on the properties of the metal powder for a Fe--Ni system sintered body that affect the energy loss and the sintering conditions for sintering the powder. As a result, in order to produce a Fe-Ni-based sintered body having a small energy loss by the powder metallurgy method, it is desirable to increase the sintering density and reduce the internal voids without coarsening the crystal grain size. With the knowledge obtained, the present invention has been completed by finding conditions for efficiently producing such a sintered body.

【0006】すなわち、本発明に係るFe−Ni系焼結
体においては、次のとおりになる。
That is, the Fe-Ni system sintered body according to the present invention is as follows.

【0007】原料金属粉末はNiが10〜60wt%、
残部がFeからなるFe−Ni系合金の粉末であって、
該粉末は平均粒径が15μm以下、炭素含有量が0.1
wt%以下、酸素含有量が0.5wt%以下である。
Ni is 10 to 60 wt% in the raw metal powder,
A powder of an Fe-Ni alloy, the balance of which is Fe,
The powder has an average particle size of 15 μm or less and a carbon content of 0.1.
wt% or less and the oxygen content is 0.5 wt% or less.

【0008】焼結体は、Niが10〜60wt%、残部
がFeからなるFe−Ni系合金粉末の焼結体からな
り、その焼結密度比が98%以上、平均結晶粒径が20
0μm以下である。
The sintered body is a sintered body of Fe-Ni alloy powder containing 10 to 60 wt% of Ni and the balance of Fe, and has a sintering density ratio of 98% or more and an average crystal grain size of 20.
It is 0 μm or less.

【0009】製造方法は、 イ)Niが10〜60wt%、残部がFeからなるFe
−Ni系合金の粉末で、平均粒径が15μm以下、炭素
含有量が0.1wt%以下、酸素含有量が0.5%以下
である合金粉末を原料とし、 ロ)該合金粉末を有機バインダーと混練し、成形し、脱
脂すること、 ハ)該脱脂体を該合金の融点より20〜100℃低い温
度で焼結すること、である。
The manufacturing method is as follows: a) Fe containing 10 to 60 wt% of Ni and the balance of Fe
-Ni-based alloy powder having an average particle size of 15 µm or less, a carbon content of 0.1 wt% or less, and an oxygen content of 0.5% or less is used as a raw material, and b) the alloy powder is an organic binder. And kneading, molding, and degreasing, and c) sintering the degreased body at a temperature 20 to 100 ° C. lower than the melting point of the alloy.

【0010】以下に本発明を具体的に説明する。The present invention will be specifically described below.

【0011】本発明において、原料金属粉末としてFe
−Ni系合金粉末を使用するのは、Fe粉およびNi粉
の混合粉末を用いた場合、焼結初期にNiがFe中に拡
散して元のNi粉の周りに大きな内部空孔を形成するた
めNiが焼結性を阻害して焼結密度比が98%以上の高
密度の焼結体を得ることが不可能であるためである。
In the present invention, Fe is used as the raw metal powder.
When using a mixed powder of Fe powder and Ni powder, Ni-based alloy powder is used, and Ni diffuses into Fe at the initial stage of sintering to form large internal pores around the original Ni powder. Therefore, Ni impairs the sinterability, and it is impossible to obtain a high-density sintered body having a sintering density ratio of 98% or more.

【0012】また、原料合金粉末の合金組成において、
Niが10〜60wt%、残部がFeであるのは、Ni
含有量が10wt%未満または60wt%を超えると、
得られた焼結体の電気抵抗が小さくなって高周波域での
エネルギー損失が大になるためである。
Further, in the alloy composition of the raw material alloy powder,
Ni is 10 to 60 wt% and the balance is Fe.
If the content is less than 10 wt% or more than 60 wt%,
This is because the electric resistance of the obtained sintered body becomes small and the energy loss in the high frequency range becomes large.

【0013】原料合金粉末の性状において、原料合金粉
末を平均粒径が15μm以下の微粉末のものにすること
によって焼結体の内部空孔が完全に球状化するので結晶
粒の粗大化が抑制される。
Regarding the properties of the raw material alloy powder, when the raw material alloy powder is a fine powder having an average particle diameter of 15 μm or less, the internal pores of the sintered body are completely spherical, so that the coarsening of crystal grains is suppressed. To be done.

【0014】また、焼結時のCとOとの反応により生成
するガスの閉じ込めにともなう焼結体密度の低下を抑え
るために、C含有量が0.1wt%以下、O含有量が
0.5wt%以下にすることを要する。
Further, in order to suppress the decrease in the density of the sintered body due to the confinement of the gas generated by the reaction between C and O during sintering, the C content is 0.1 wt% or less and the O content is 0.1% or less. It is required to be 5 wt% or less.

【0015】原料合金粉末を、有機バインダーと混練
し、射出成形等で成形し、脱脂して得られた脱脂成形体
は、再結晶を起こさない範囲でできるだけ高温で焼結さ
れることが好ましく、このために本発明においては合金
の融点より20〜100℃低い温度で焼結する。この温
度範囲内で焼結することによって、再結晶が起こらずに
焼結密度比が98%以上、平均結晶粒径が200μm以
下の焼結体を得ることができる。
The degreased compact obtained by kneading the raw material alloy powder with an organic binder, molding by injection molding, etc., and degreasing is preferably sintered at a temperature as high as possible within a range not causing recrystallization, Therefore, in the present invention, sintering is performed at a temperature 20 to 100 ° C. lower than the melting point of the alloy. By sintering within this temperature range, a sintered body having a sintering density ratio of 98% or more and an average crystal grain size of 200 μm or less can be obtained without recrystallization.

【0016】本発明においては、原料合金粉末に添加す
る有機バインダーは金属粉末射出成形用に常用されるも
の、例えば熱可塑性樹脂、ワックス、可塑剤よりなるバ
インダーでよくその添加量は40〜60vol%にする
のが好ましい。有機バインダーと原料粉末の混練は、バ
ッチ式または連続式のニーダを用いる。
In the present invention, the organic binder added to the raw material alloy powder may be one commonly used for metal powder injection molding, for example, a binder comprising a thermoplastic resin, a wax and a plasticizer, and the addition amount thereof is 40 to 60 vol%. Is preferred. For kneading the organic binder and the raw material powder, a batch type or continuous type kneader is used.

【0017】本発明においては、脱脂は不活性ガス雰囲
気下、減圧下、あるいは減圧後不活性雰囲気下で行なっ
て、脱脂時の酸化を防ぐことが望ましい。
In the present invention, it is desirable that degreasing be performed in an inert gas atmosphere, under reduced pressure, or after depressurization in an inert atmosphere to prevent oxidation during degreasing.

【0018】本発明においては、焼結雰囲気としてCと
Oの反応が終了する1100℃以下の温度域では真空ま
たは水素ガス、それ以上の温度域ではアルゴンまたは真
空が用いられる。
In the present invention, as a sintering atmosphere, vacuum or hydrogen gas is used in a temperature range of 1100 ° C. or lower where the reaction of C and O is completed, and argon or vacuum is used in a temperature range higher than that.

【0019】このようにして得られる本発明に係るFe
−Ni系焼結体は、例えばFe−36wt%Ni合金焼
結体での7.7kHZ および20kHZ での周波数と振
動損失係数との関係を示す図1に見られるように、同組
成の溶製材と比べて、焼結体では焼結体密度比の低下と
ともにエネルギー損失が大きくなる。これは、焼結体内
部に存在する内部空孔等の欠陥が磁壁の移動や回転の障
害となり、ヒステリシス損失を大きくさせるためであ
る。また、相対密度を98%以上にすれば損失係数が溶
製材の1.5倍以下にすることができる。このようにし
て本発明に係るFe−Ni系焼結体は、100kHZ
下の低周波域の振動時におけるエネルギー損失が小さい
ものとなり、磁気ひずみ材料などとして広い利用範囲を
有することとなる。
The Fe according to the present invention thus obtained
As shown in FIG. 1, which shows the relationship between the frequency and the vibration loss coefficient at 7.7 kH Z and 20 kH Z in the Fe-36 wt% Ni alloy sintered body, the —Ni-based sintered body has the same composition. Compared with the ingot material, the energy loss of the sintered body increases as the density ratio of the sintered body decreases. This is because defects such as internal holes existing inside the sintered body impede movement and rotation of the domain wall, which increases hysteresis loss. Further, if the relative density is 98% or more, the loss coefficient can be 1.5 times or less that of the ingot material. Fe-Ni-based sintered body according to this way the present invention will become as energy loss during the vibration of the 100KH Z following low frequency range is small, will have a wide utilization range as such magnetostrictive material.

【0020】[0020]

【実施例】以下に実施例をあげて、本発明さらに詳しく
説明する。
The present invention will be described in more detail with reference to the following examples.

【0021】表1の原料金属粉末に記載する特性を有す
る粉末と熱可塑性樹脂(アクリル系樹脂+エチレン系樹
脂)ワックス、可塑剤よりなる約50vol%の量の有
機バインダーとを、加圧ニーダータイプの混練機により
混練した。得られた混練物を射出成形機により3×10
×55mmの平板条試験片に成形後、窒素ガス雰囲気で
500℃まで昇温速度1℃/分の昇温速度で脱脂した。
得られた脱脂体を、表1中の温度で焼結して、焼結体を
得た。この焼結体の物性を焼結密度比、平均結晶粒径、
電気抵抗について測定し表1に示す結果を得た。
A powder having the characteristics described in the raw material metal powder of Table 1, a thermoplastic resin (acrylic resin + ethylene resin) wax, and an organic binder in an amount of about 50 vol% consisting of a plasticizer are used in a pressure kneader type. The kneading machine was used for kneading. The resulting kneaded product was 3 × 10 by an injection molding machine.
After molding into a flat strip test piece of x55 mm, it was degreased in a nitrogen gas atmosphere up to 500 ° C at a heating rate of 1 ° C / min.
The obtained degreased body was sintered at the temperature shown in Table 1 to obtain a sintered body. The physical properties of this sintered body are the sintered density ratio, the average crystal grain size,
The electric resistance was measured and the results shown in Table 1 were obtained.

【0022】[0022]

【表1】 [Table 1]

【0023】粉体特性および焼結温度が焼結体密度、平
均結晶粒径に及ぼす影響を表1からみると、まず、混合
粉末を原料とするか、またはCが0.1wt%を超える
かOが0.5wt%を超える組成の粉末を原料とした場
合に(Fe−Ni合金系の融点−焼結温度)>100℃
の場合は、焼結密度比98%よりも小さい。また、(F
e−Ni合金系の融点−結晶温度)<20℃の場合は、
平均結晶粒径が200μmを超え、結晶粒の粗大化が起
こる。また電気抵抗はNi含有量によって大きく変動
し、Ni<10wt%またはNi量>60wt%では電
気抵抗は30μΩcm以下となって交流特性が劣化す
る。
The effects of the powder characteristics and the sintering temperature on the density of the sintered body and the average crystal grain size are as follows. First, whether the mixed powder is used as a raw material or whether C exceeds 0.1 wt%. When powder having a composition in which O exceeds 0.5 wt% is used as a raw material (melting point of Fe—Ni alloy-sintering temperature)> 100 ° C.
In the case of, the sintered density ratio is smaller than 98%. Also, (F
When the melting point of the e-Ni alloy system-the crystal temperature) <20 ° C,
The average crystal grain size exceeds 200 μm, and the crystal grains become coarse. Further, the electric resistance greatly varies depending on the Ni content, and when Ni <10 wt% or Ni amount> 60 wt%, the electric resistance becomes 30 μΩcm or less and the AC characteristics deteriorate.

【0024】更に本発明および比較例の焼結体と同組成
の溶製材について振動損失係数の測定を機械インピーダ
ンス法により行い20kHZ での振動損失係数を測定し
た。結果を表2に示す。本発明の焼結体においては振動
損失係数が溶製材の1.5倍以下と比較例に比べて低い
値となることが判る。
The measured vibration loss factor at 20 kHz Z perform further measurements of the vibration loss factor for the sintered body having the same composition ingot material of the present invention and comparative examples by a mechanical impedance method. The results are shown in Table 2. It can be seen that the vibration loss coefficient of the sintered body of the present invention is 1.5 times or less that of the ingot material, which is lower than that of the comparative example.

【0025】 [0025]

【0026】[0026]

【発明の効果】本発明により、100kHZ 以下周波域
の振動下でのエネルギー損失の小さなFe−Ni系焼結
体を粉末冶金法により製造することが可能となる。
According to the present invention, it is possible to small Fe-Ni-based sintered body energy loss under vibration of 100KH Z following frequency range produced by powder metallurgy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Fe−36Ni合金焼結体の周波数と振動損
失係数の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between frequency and vibration loss coefficient of a Fe-36Ni alloy sintered body.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ニッケルが10〜60wt%、残部が鉄か
らなる鉄−ニッケル系合金の粉末であって、該粉末は平
均粒径が15μm以下、炭素含有量が0.1wt%以
下、酸素含有量が0.5wt%以下であることを特徴と
する、鉄−ニッケル系焼結体用金属粉末。
1. An iron-nickel alloy powder comprising 10 to 60 wt% of nickel and the balance being iron, the powder having an average particle size of 15 μm or less, a carbon content of 0.1 wt% or less, and an oxygen content. A metal powder for an iron-nickel-based sintered body, characterized in that the amount thereof is 0.5 wt% or less.
【請求項2】ニッケルが10〜60wt%、残部が鉄か
らなる鉄−ニッケル系合金粉末の焼結体からなり、その
焼結密度比が98%以上、平均結晶粒径が200μm以
下であることを特徴とする、鉄−ニッケル系焼結体。
2. A sintered body of an iron-nickel alloy powder containing 10 to 60 wt% of nickel and the balance being iron, and the sintered density ratio thereof is 98% or more and the average crystal grain size is 200 μm or less. An iron-nickel based sintered body characterized by:
【請求項3】イ)ニッケルが10〜60wt%、残部が
鉄からなる鉄−ニッケル系合金の粉末で、平均粒径が1
5μm以下、炭素含有量が0.1wt%以下、酸素含有
量が0.5%以下である合金粉末を原料とし、 ロ)該合金粉末を有機バインダーと混練し、成形し、脱
脂すること、 ハ)該脱脂体を該合金の融点より20〜100℃低い温
度で焼結すること、を含む、鉄−ニッケル系焼結体の製
造方法。
3. An iron-nickel alloy powder comprising: 10) 60% by weight of nickel and the balance being iron, and having an average particle size of 1
Starting from an alloy powder having a carbon content of 5 μm or less, a carbon content of 0.1 wt% or less, and an oxygen content of 0.5% or less, (b) kneading the alloy powder with an organic binder, molding, and degreasing; ) Sintering the degreased body at a temperature 20 to 100 ° C. lower than the melting point of the alloy, the method for producing an iron-nickel based sintered body.
JP13585193A 1993-06-07 1993-06-07 Metal powder for iron-nickel type sintered compact, iron-nickel type sintered compact, and production thereof Pending JPH06346179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13585193A JPH06346179A (en) 1993-06-07 1993-06-07 Metal powder for iron-nickel type sintered compact, iron-nickel type sintered compact, and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13585193A JPH06346179A (en) 1993-06-07 1993-06-07 Metal powder for iron-nickel type sintered compact, iron-nickel type sintered compact, and production thereof

Publications (1)

Publication Number Publication Date
JPH06346179A true JPH06346179A (en) 1994-12-20

Family

ID=15161257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13585193A Pending JPH06346179A (en) 1993-06-07 1993-06-07 Metal powder for iron-nickel type sintered compact, iron-nickel type sintered compact, and production thereof

Country Status (1)

Country Link
JP (1) JPH06346179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165256A (en) * 2011-12-16 2013-06-19 Tdk株式会社 Soft-magnetic alloy powder, compressed powder, powder-compressing magnetic core and magnetic element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165256A (en) * 2011-12-16 2013-06-19 Tdk株式会社 Soft-magnetic alloy powder, compressed powder, powder-compressing magnetic core and magnetic element

Similar Documents

Publication Publication Date Title
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
EP2963659B1 (en) Soft magnetic member and reactor
JPH0775205B2 (en) Method for producing Fe-P alloy soft magnetic sintered body
US2988806A (en) Sintered magnetic alloy and methods of production
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
KR20160134548A (en) Soft magnetic metal powder and soft magnetic metal dust core
JPH03191036A (en) Sintered fe-co alloy
JP2005116820A (en) Dust core
JPH06346179A (en) Metal powder for iron-nickel type sintered compact, iron-nickel type sintered compact, and production thereof
JP4106966B2 (en) Composite magnetic material and manufacturing method thereof
KR100256358B1 (en) The manufacturing method for sintering magnetic alloy with fe-si line
JP2928647B2 (en) Method for producing iron-cobalt based sintered magnetic material
KR101477652B1 (en) Method of manufacturing magnetic powder core for metal injection molding using Fe-6.5%Si alloy
KR20180061508A (en) Fabricationg method of soft magnet powder
JPH01172548A (en) Iron-cobalt-type soft magnetic material
JP2000087194A (en) Alloy for electromagnet and its manufacture
JPH0570881A (en) Production of sintered compact of fe-ni-p alloy soft-magnetic material
JP2019153614A (en) Powder magnetic core and manufacturing method thereof and powder for magnetic core
JPH06172810A (en) Production of tungsten alloy sintered compact
JP2022070698A (en) Method for producing sintered product
JPH10147832A (en) Manufacture of &#39;permalloy(r)&#39; sintered compact
JPH108170A (en) Production of sintered body and produced sintered body
JP2004014614A (en) METHOD FOR PRODUCING Fe-Si BASED SOFT MAGNETISM SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JPH0931588A (en) Production of invar (r) sintered compact

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010814