JPH06345495A - Anode joining method - Google Patents

Anode joining method

Info

Publication number
JPH06345495A
JPH06345495A JP14205793A JP14205793A JPH06345495A JP H06345495 A JPH06345495 A JP H06345495A JP 14205793 A JP14205793 A JP 14205793A JP 14205793 A JP14205793 A JP 14205793A JP H06345495 A JPH06345495 A JP H06345495A
Authority
JP
Japan
Prior art keywords
joining
temperature
bonding
anodic bonding
elastic spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14205793A
Other languages
Japanese (ja)
Inventor
Masahito Kimura
雅人 木村
Osamu Tabata
修 田畑
Hirobumi Funabashi
博文 船橋
Keiichi Shimaoka
敬一 島岡
Motohiro Fujiyoshi
基弘 藤吉
Susumu Sugiyama
進 杉山
Toshiaki Nakagawa
稔章 中川
Yasuaki Tsurumi
康昭 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP14205793A priority Critical patent/JPH06345495A/en
Publication of JPH06345495A publication Critical patent/JPH06345495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Abstract

PURPOSE:To provide an anode joining method capable of obtaining accelerating sensor, etc., having hardly any temperature dependance in the aspect of accuracy even in both cases in the case of lowering the temperature from high temperature state in joining to temperature used and the case of having the change of temperature in the range of temperature used. CONSTITUTION:In the anode joining method for subjecting a semiconductor member in which a beam-like elastic spring 6 and a weight part 5 supported by the beam-like elastic spring 6 are formed to anode joining with a glass member in which an electrode is formed at the position opposite to the weight part by heating and application of voltage, a layer for preventing joining is formed in a part of contact face between the semiconductor member and the glass member. The forming part is a part in which heat stress directly exerts an influence upon the beam elastic spring if joining is carried out in this part. Since joining is not carried out in a part in which joiningpreventing layer is formed and joining part 3 is formed in other part, the joining is finally carried out in a part in which heat stress does not directly exert an influence upon beam-like elastic spring 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は陽極接合方法、特に各種
センサの製造に用いられる陽極接合方法における熱応力
の緩和に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anodic bonding method, and more particularly to relaxation of thermal stress in the anodic bonding method used for manufacturing various sensors.

【0002】[0002]

【従来の技術】半導体部材とガラス部材とを加熱及び直
流電圧印加により接合する陽極接合法は、半導体部材と
ガラス部材とを無加重で接合できる、気密な接合が得ら
れる等の利点を有しており、低融点ガラスを接着剤とし
て接合する低融点ガラス接合法と比較しても遜色ない接
合強度を有することから加速度センサや圧力センサの製
造等の分野で広く適用されている。
2. Description of the Related Art The anodic bonding method for joining a semiconductor member and a glass member by heating and applying a DC voltage has advantages such that the semiconductor member and the glass member can be joined without weight, and an airtight joint can be obtained. However, since it has a bonding strength comparable to that of a low melting point glass bonding method in which low melting point glass is bonded as an adhesive, it is widely applied in the fields of manufacturing acceleration sensors and pressure sensors.

【0003】陽極接合方法がこれらセンサの製造に用い
られる場合、単に接合強度を十分なものとするのみなら
ず、製造されたセンサの機能が製造条件により影響され
てはならないという制約がある。特に、近年は半導体加
工技術を用いて小型化・軽量化が進み、それに伴い高精
度化や高信頼性が課題となっており、陽極接合法に課さ
れる条件は厳格なものとなる。
When the anodic bonding method is used for manufacturing these sensors, there is a constraint that not only the bonding strength is sufficient, but also the function of the manufactured sensor should not be affected by manufacturing conditions. In particular, in recent years, semiconductor processing technology has been used to reduce the size and weight of the semiconductor, and as a result, higher precision and higher reliability have become issues, and the conditions imposed on the anodic bonding method become strict.

【0004】図9及び図10には従来の陽極接合方法が
示されており、陽極接合方法を用いて静電容量型加速度
センサを製造する例が示されている。静電容量型加速度
センサはガラス等の上部構造材1と単結晶シリコン等の
下部構造材2を接合させ、400℃、800Vの加熱及
び電圧印加により陽極接合される。接合部3は上部構造
材1と下部構造材2を十分な強度で接合すべく、接触部
の全面(図9の斜線で示されている)で形成される。
9 and 10 show a conventional anodic bonding method, and show an example of manufacturing a capacitance type acceleration sensor by using the anodic bonding method. In the capacitance type acceleration sensor, an upper structural material 1 such as glass and a lower structural material 2 such as single crystal silicon are bonded and anodically bonded by heating at 400 ° C. and 800 V and applying a voltage. The joint portion 3 is formed on the entire surface of the contact portion (shown by the diagonal lines in FIG. 9) in order to join the upper structural material 1 and the lower structural material 2 with sufficient strength.

【0005】ところが、このように上部構造材と下部構
造材の接触部全面を陽極接合の接合部とすると、これら
の材質が異なる場合はそれらの熱膨張率も異なるので、
接合後に周囲温度が変化するとそれらの構造物の熱膨張
率の差により可動部である重り部5を支えている梁状弾
性ばね6に大きな内部応力が生じる。この結果、正規の
外力によって電極面7,9に生じる変位量に誤差を与
え、精度面に影響を与えることになる。ここでの温度変
化には2種類の場合がある。すなわち、一方は接合時の
高温状態から使用温度まで降温する場合で、他方は使用
温度範囲における温度変化である。
However, when the entire contact portion between the upper structural material and the lower structural material is used as the bonding portion for anodic bonding in this way, the thermal expansion coefficients of the different materials are different.
When the ambient temperature changes after joining, a large internal stress is generated in the beam-shaped elastic spring 6 supporting the weight portion 5 which is a movable portion due to the difference in the coefficient of thermal expansion of these structures. As a result, an error is given to the amount of displacement generated on the electrode surfaces 7 and 9 by the normal external force, which affects the accuracy. There are two types of temperature change here. That is, one is the case where the temperature is decreased from the high temperature state at the time of joining to the use temperature, and the other is the temperature change in the use temperature range.

【0006】このように、従来の陽極接合方法では、加
速度センサ等を製造する場合にそのセンサの機能に影響
を与えてしまう問題があった。そこで、従来において
は、陽極接合時の温度変化による悪影響を防止すべく、
例えば梁の支持部分の裏面に切り欠き溝を設けることで
熱応力を吸収させる方法(特開平1−301174号公
報)が考えられている。また、使用温度範囲における温
度変化による影響を除去する対策として、 (a)材料の見かけ上の熱膨張率を一致させる(特開平
3−131176号公報) (b)加熱手段を設けて一定温度に加熱して使用する
(特開平1−302772号公報) (c)取付け台座の一部に突起を設けてセンサチップを
浮かせて支持する(特開平1−301176号公報) などの方法が採られている。
As described above, the conventional anodic bonding method has a problem that the function of the acceleration sensor or the like is affected when the sensor or the like is manufactured. Therefore, in the past, in order to prevent adverse effects due to temperature changes during anodic bonding,
For example, a method has been proposed in which a notch groove is provided on the back surface of the supporting portion of the beam to absorb thermal stress (Japanese Patent Laid-Open No. 1-301174). Further, as a measure for eliminating the influence of temperature change in the operating temperature range, (a) the apparent thermal expansion coefficients of the materials are made to coincide with each other (JP-A-3-131176). (B) A heating means is provided to maintain a constant temperature. When heated and used (JP-A-1-302772) (c) A method is adopted in which a protrusion is provided on a part of the mounting base to float and support the sensor chip (JP-A-1-301176). There is.

【0007】[0007]

【発明が解決しようとする課題】しかし、特開平1−3
01174号公報の方法では、溝と直角方向に作用する
応力は吸収できても、溝に平行な方向に作用する応力は
吸収できない問題がある。さらに溝を設けることにより
強度が低下し、衝撃力に対して不利な結果となる。
However, Japanese Patent Laid-Open No. 1-33
The method of Japanese Patent No. 01174 has a problem that it can absorb the stress acting in the direction perpendicular to the groove but cannot absorb the stress acting in the direction parallel to the groove. Further, the provision of the groove lowers the strength, resulting in a disadvantageous effect on the impact force.

【0008】また、(a)の方法は、陽極接合方法の前
提となる材質が半導体部材とガラス部材であることを考
えると、実際に熱膨張の等しい物質を見つけるのは不可
能に近い。また(b)の方法は加熱手段を別途に設ける
という大きな無駄が生じ、さらに加熱開始後設定温度に
到達するまで使用できないことになる。さらに(c)の
方法はセンサチップを浮かせることによりチップ自体が
片持ち梁状態となり、振動が発生するため精度に支障を
きたす恐れがある。
Further, in the method (a), it is almost impossible to actually find a substance having the same thermal expansion, considering that the materials that are the premise of the anodic bonding method are the semiconductor member and the glass member. Further, the method (b) has a large waste of providing a heating means separately, and cannot be used until the set temperature is reached after the heating is started. Further, in the method (c), floating the sensor chip causes the chip itself to be in a cantilever state, and vibration may occur, which may impair accuracy.

【0009】このように、従来の陽極接合方法では、製
造されたセンサの接合温度からの温度変化と使用温度範
囲における温度変化の両方の場合には対応できず、かつ
それぞれに問題があった。本発明は上記従来の課題に鑑
みなされたものであり、その目的は、接合時の高温状態
から使用温度まで降温する場合と使用温度範囲内で温度
変化のある場合のどちらの場合においても精度面におけ
る温度依存性の少ない加速度センサ等を得ることが可能
であり、その用途を拡大することができる陽極接合方法
を提供することにある。
As described above, the conventional anodic bonding method cannot cope with both the temperature change from the bonding temperature of the manufactured sensor and the temperature change in the operating temperature range, and has a problem in each case. The present invention has been made in view of the above-mentioned conventional problems, and the object thereof is accuracy in both cases of lowering the temperature from the high temperature state at the time of joining to the use temperature and the case where there is a temperature change within the use temperature range. It is to provide an anodic bonding method that can obtain an acceleration sensor or the like having less temperature dependency in the above, and can be used for a wider range of applications.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の陽極接合方法は、半導体部材とガラス部材
とを加熱及び電圧印加により陽極接合する陽極接合方法
であって、陽極接合に先立ち少なくとも前記ガラス部材
の熱応力が直接影響を及ぼす領域に接合防止用金属膜を
形成して前記半導体部材と前記ガラス部材の前記金属膜
が形成された領域での陽極接合を阻止し、前記金属膜が
形成された領域以外で前記半導体部材と前記ガラス部材
を陽極接合することを特徴とする。
In order to achieve the above object, the anodic bonding method of the present invention is an anodic bonding method in which a semiconductor member and a glass member are anodic bonded by heating and voltage application. Prior to forming a metal film for bonding prevention in at least a region directly affected by thermal stress of the glass member to prevent anodic bonding in the region of the semiconductor member and the glass member where the metal film is formed, the metal It is characterized in that the semiconductor member and the glass member are anodically bonded in a region other than the region where the film is formed.

【0011】[0011]

【作用】このように、本発明の陽極接合方法では、半導
体部材とガラス部材とを接合する際、従来のように接触
面全面において接合するのではなく、限定した一部箇所
において接合を行うものである。前述したように、半導
体材とガラス材のように部材の材質が異なる場合は、そ
れらの熱膨張率も異なるため、陽極接合後に周囲温度が
変化するとそれらの部材の熱膨張率の差によりこれらの
部材間において熱応力が発生し、接合箇所において他方
の部材に作用を及ぼすとともに、非接合箇所において熱
ひずみという形で影響を及ぼす。従来は構成部材の接触
面全面において接合を行なっていたため、例えば加速度
センサにおいては非接合部で最もひずみを生じ易い部位
である梁状弾性ばねにこの熱ひずみが集中する結果にな
っていた。
As described above, according to the anodic bonding method of the present invention, when the semiconductor member and the glass member are bonded together, the bonding is not carried out over the entire contact surface as in the conventional case, but the bonding is carried out at a limited partial location. Is. As described above, when the materials of the members are different, such as the semiconductor material and the glass material, their thermal expansion coefficients are also different. Therefore, when the ambient temperature changes after the anodic bonding, the difference in the thermal expansion coefficient of these members causes these differences. Thermal stress is generated between the members, exerting an action on the other member at the joint portion, and in the form of thermal strain at the non-joint portion. Conventionally, joining is performed on the entire contact surface of the component member, so that, for example, in an acceleration sensor, this thermal strain is concentrated on the beam-shaped elastic spring, which is the portion where strain is most likely to occur at the non-joining portion.

【0012】本発明においては、半導体部材とガラス部
材との接触面の一部に接合防止用金属膜が形成されてお
り、その形成部分としては、もしその部分において接合
が行われたならば熱応力が直接影響を及ぼすであろう部
分が選択される。例えば、前記の加速度センサでは梁状
弾性ばねの長手方法の延長上、または前記重り部の中心
から所定距離離れた周辺位置等である。この状態におい
て接合を行うと、接合防止用金属膜を形成した部分につ
いては接合が行われないため、熱応力が直接影響を及ぼ
さない部分において接合が行われることになる。したが
って、接合時の高温状態から使用温度まで降温する際の
温度変化により発生する熱応力および使用に際しての温
度変化により発生する熱応力の影響を低減することがで
きる。
According to the present invention, the metal film for preventing bonding is formed on a part of the contact surface between the semiconductor member and the glass member, and the part where the metal film for bonding is formed is heated if the bonding is performed at that part. The part where the stress will directly affect is selected. For example, in the acceleration sensor described above, it is an extension of the lengthwise method of the beam-shaped elastic spring, or a peripheral position separated from the center of the weight portion by a predetermined distance. If the joining is performed in this state, the joining is not performed on the portion where the metal film for preventing the joining is formed, so that the joining is performed on the portion where the thermal stress does not directly affect. Therefore, it is possible to reduce the influence of the thermal stress generated by the temperature change when the temperature is lowered from the high temperature state at the time of joining to the use temperature and the thermal stress generated by the temperature change during the use.

【0013】[0013]

【実施例】以下、図面を用いながら本発明の陽極接合方
法の好適な実施例を特に加速度センサの製造を例にとり
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the anodic bonding method of the present invention will be described below with reference to the drawings, taking manufacturing of an acceleration sensor as an example.

【0014】第1実施例 本実施例の陽極接合方法が適用される第1の容量型加速
度センサの全体構成は従来と同様である。すなわち、図
10のように上部構造材1と下部構造材2が接触面3に
おいて接合されている。下部構造材2は、固定部4、重
り部5、重り部5を支える梁状弾性ばね6および重り部
5の上面に配置された可動電極7から構成されている。
また、上部構造材1はカバーガラス8および固定電極9
から構成されている。従来においては、上部構造材1と
下部構造材2が接触面全面において接合されている。4
00℃の高温状態及び800Vの電圧印加状態で接合さ
れた後、室温付近の使用温度まで降温されるため、上部
構造材1と下部構造材2の熱膨張率の違いにより熱応力
が発生し、接合されていない部分でひずみを生じやすい
部分、すなわち梁状弾性ばね6にその影響が熱ひずみと
いう形で生じる。その結果、重り部5に変位が生じ、可
動電極7と固定電極9の距離が変化して初期容量の変動
が生じることになる。さらに同様の現象が使用温度範囲
内の温度変化に対しても生じる。ただしこの場合は温度
変化が上昇と下降の両方の場合がある。
First Embodiment The overall structure of the first capacitive acceleration sensor to which the anodic bonding method of this embodiment is applied is the same as the conventional one. That is, as shown in FIG. 10, the upper structural material 1 and the lower structural material 2 are joined at the contact surface 3. The lower structural member 2 is composed of a fixed portion 4, a weight portion 5, a beam-like elastic spring 6 supporting the weight portion 5, and a movable electrode 7 arranged on the upper surface of the weight portion 5.
In addition, the upper structural material 1 includes the cover glass 8 and the fixed electrode 9.
It consists of Conventionally, the upper structural material 1 and the lower structural material 2 are joined together over the entire contact surface. Four
After being joined in a high temperature state of 00 ° C. and a voltage applied state of 800 V, the temperature is lowered to a working temperature near room temperature, so that thermal stress occurs due to the difference in thermal expansion coefficient between the upper structural member 1 and the lower structural member 2, The influence is generated in the form of thermal strain on the beam-like elastic spring 6 where strain is likely to occur in the unjoined portion. As a result, the weight portion 5 is displaced, the distance between the movable electrode 7 and the fixed electrode 9 is changed, and the initial capacitance is changed. Further, a similar phenomenon occurs even when the temperature changes within the operating temperature range. However, in this case, the temperature change may be both rising and falling.

【0015】図1は本第1実施例の陽極接合方法により
接合された加速度センサについて、上部構造材1と下部
構造材2の接合位置を示したものである。接合位置は図
中斜線で示された領域である。図9と比較すれば明らか
なように、上部構造材1と下部構造材2は接触面全面で
はなく、限定された一部領域のみで接合されている。こ
のような限定された領域のみで接合を行うには、図1の
斜線で示した接合部3以外の接触面に接合を行なう前に
蒸着法やスパッタリング法などでクロム、パラジウム、
白金等の接合防止防止用金属膜を形成しておけばよい。
接合防止用金属膜が形成された領域では電圧印加によっ
ても静電引力が作用せず、上部構造材1と下部構造材2
とは密着しないのでその部分に関しては接合が行なわれ
ず、結局図1の斜線で示した箇所においてのみ接合が行
なわれることになる。なお、図1の加速度センサでは梁
が重りの中心から十字型に延びている形状である。しか
るにこの梁の長手方向の延長線上には接合箇所が存在し
ない。構造材の熱膨張率の差により生ずる応力は、接合
箇所において他の部材に作用を及ぼす。したがって梁に
は直接この応力の影響を与えないことになり、重り部に
生じる変位量が減少し、その結果初期容量の変動が減少
することになる。
FIG. 1 shows the bonding positions of the upper structural member 1 and the lower structural member 2 in the acceleration sensor bonded by the anodic bonding method of the first embodiment. The joining position is a shaded area in the figure. As is clear from comparison with FIG. 9, the upper structural material 1 and the lower structural material 2 are joined not in the entire contact surface but in only a limited partial area. In order to perform the bonding only in such a limited region, chromium, palladium, or the like may be formed by a vapor deposition method, a sputtering method, or the like before the bonding is performed on the contact surface other than the bonding portion 3 shown by the hatching in FIG.
It suffices to form a metal film for preventing bonding of platinum or the like.
In the region where the metal film for preventing bonding is formed, electrostatic attraction does not act even when a voltage is applied, and the upper structural material 1 and the lower structural material 2
Since they do not come into close contact with each other, joining is not performed on that portion, and eventually joining is performed only on the shaded portion in FIG. In the acceleration sensor of FIG. 1, the beam has a shape extending in a cross shape from the center of the weight. However, there is no joint on the extension of the beam in the longitudinal direction. The stress caused by the difference in the coefficient of thermal expansion of the structural material acts on other members at the joint. Therefore, the beam is not directly affected by this stress, the amount of displacement generated in the weight portion is reduced, and as a result, the fluctuation of the initial capacity is reduced.

【0016】第2実施例 図2には本実施例の陽極接合方法が適用される第2の加
速度センサの例が示されている。図2の加速度センサは
図1の加速度センサとは梁6の形状が異なり、重り部5
の端部より4方向に梁が延びている。この場合も図に示
すように梁6の長手方向の延長線上からずれた位置に接
合箇所(図中斜線部分)を設け、それ以外の領域には接
合を行なう前に蒸着法やスパッタリング法などでクロ
ム、パラジウム、白金等の接合防止防止用金属膜を形成
しておく。この場合にも、梁6の長手方向の延長線上に
は接合箇所が存在しないので、構造材の熱膨張率の差に
より生ずる応力は、直接梁6には影響を与えない。従っ
て、重り部5に生じる変位量が減少し、その結果初期容
量の変動が減少することで、温度変化に対する初期容量
の変動を緩和させることができる。
Second Embodiment FIG. 2 shows an example of a second acceleration sensor to which the anodic bonding method of this embodiment is applied. The acceleration sensor of FIG. 2 is different from the acceleration sensor of FIG.
A beam extends in four directions from the end of the. In this case as well, as shown in the figure, a joining portion (hatched portion in the figure) is provided at a position deviated from the extension line in the longitudinal direction of the beam 6, and the other regions are formed by vapor deposition or sputtering before joining. A metal film for preventing bonding of chromium, palladium, platinum, etc. is formed in advance. Also in this case, since there is no joint portion on the extension line of the beam 6 in the longitudinal direction, the stress generated by the difference in the coefficient of thermal expansion of the structural material does not directly affect the beam 6. Therefore, the amount of displacement generated in the weight portion 5 is reduced, and as a result, the variation in the initial capacity is reduced, so that the variation in the initial capacity with respect to the temperature change can be alleviated.

【0017】第3実施例 図3には本実施例の陽極接合方法が適用される第3の加
速度センサの例が示されている。この第3の加速度セン
サは梁6が重り部5から平行に延びており、これに垂直
な方向には梁6が存在しない場合である。このような加
速度センサでは、図3に示すように梁6の長手方向と平
行に接合位置を設定し、他の領域に接合防止用金属膜を
形成すればよい。この場合にも、梁6に平行に接合領域
が選択されているため、梁6の長手方向の延長線上には
接合箇所が存在しないので、構造材の熱膨張率の差によ
り生ずる応力は直接梁に影響を与えない。従って、重り
部5に生じる変位量が減少し、その結果初期容量の変動
が減少することで、温度変化に対する初期容量の変動を
緩和させることができる。なお、図3において接合領域
は連続的に形成されているが、十分な接合強度が得られ
る限り、このように連続的ではなく直線上に並んだ数箇
所のポイントに設定することも可能である。
Third Embodiment FIG. 3 shows an example of a third acceleration sensor to which the anodic bonding method of this embodiment is applied. In this third acceleration sensor, the beam 6 extends in parallel with the weight portion 5, and the beam 6 does not exist in the direction perpendicular to this. In such an acceleration sensor, the joining position may be set in parallel with the longitudinal direction of the beam 6 as shown in FIG. 3, and the joining preventing metal film may be formed in another region. Also in this case, since the joint region is selected in parallel with the beam 6, there is no joint on the extension line of the beam 6 in the longitudinal direction. Therefore, the stress caused by the difference in the coefficient of thermal expansion of the structural material is directly applied to the beam. Does not affect Therefore, the amount of displacement generated in the weight portion 5 is reduced, and as a result, the variation in the initial capacity is reduced, so that the variation in the initial capacity with respect to the temperature change can be alleviated. It should be noted that in FIG. 3, the bonding region is formed continuously, but as long as sufficient bonding strength is obtained, it is also possible to set it at several points arranged on a straight line instead of being continuous. .

【0018】第4実施例 前述した第3実施例では、梁6が重り部5から平行に延
びており、これに垂直な方向には梁が存在しない第3の
加速度センサにおいて、梁6の長手方向と平行に接合位
置を設定し、他の領域に接合防止用金属膜を形成した場
合を示したが、接合領域を他の位置に設定する事も可能
である。図4には、重り部5、すなわち可動部の中心に
近い箇所で、重り部5を囲むように接合位置を設定した
例である。この場合にも、接合を行わない他の領域では
接合防止用金属膜を形成することは言うまでもない。こ
のように接合領域を設定すると、熱ひずみは接合が行わ
れない周辺部で解放されるため、梁6には直接影響を与
えることがない。さらに、可動部の中心に近い箇所で接
合するため、温度変化による初期容量の変動を抑えるこ
とも可能となる。
Fourth Embodiment In the third embodiment described above, in the third acceleration sensor in which the beam 6 extends parallel to the weight portion 5 and the beam does not exist in the direction perpendicular to the weight portion 5, the length of the beam 6 is long. Although the bonding position is set parallel to the direction and the bonding preventing metal film is formed in another region, the bonding region can be set in another position. FIG. 4 shows an example in which the joining position is set so as to surround the weight portion 5 at a position near the weight portion 5, that is, the center of the movable portion. In this case as well, it goes without saying that the metal film for preventing bonding is formed in other regions where bonding is not performed. When the joint region is set in this way, the thermal strain is released in the peripheral portion where the joint is not performed, so that the beam 6 is not directly affected. Furthermore, since the joint is made at a position close to the center of the movable portion, it is possible to suppress the fluctuation of the initial capacity due to the temperature change.

【0019】第5実施例 前述した第4実施例では、重り部5を囲むように接合位
置を設定したが、図5に示すように、梁6の長手方向と
平行に、かつ、可動部の中心に近い箇所に接合位置を設
定することもできる。この場合には、接合強度は図4に
比べて若干劣るものの、梁6の長手方向の延長線上には
接合箇所が存在しないので、構造材の熱膨張率の差によ
り生ずる応力の影響をより効果的に除去することができ
る。
Fifth Embodiment In the above-mentioned fourth embodiment, the joining position is set so as to surround the weight portion 5, but as shown in FIG. 5, it is parallel to the longitudinal direction of the beam 6 and the movable portion. It is also possible to set the joining position at a position close to the center. In this case, although the joint strength is slightly inferior to that in FIG. 4, since there is no joint on the extension line of the beam 6 in the longitudinal direction, the effect of the stress caused by the difference in the coefficient of thermal expansion of the structural material is more effective. Can be removed selectively.

【0020】第6実施例 前述した第5実施例において、加速度センサの構造上、
梁6の長手方向と平行に接合位置を設定できない場合に
は、図6に示すように梁6の長手方向と垂直に、かつ、
可動部の中心に近い箇所に接合位置を設定することもで
きる。この場合においても、第4実施例と同様に熱ひず
みは接合が行われない周辺部で解放されるため、梁6に
は直接影響を与えることがない。
Sixth Embodiment In the fifth embodiment described above, due to the structure of the acceleration sensor,
When the joint position cannot be set parallel to the longitudinal direction of the beam 6, as shown in FIG.
The joining position can also be set at a position close to the center of the movable part. Also in this case, as in the fourth embodiment, the thermal strain is released in the peripheral portion where the joining is not performed, so that the beam 6 is not directly affected.

【0021】第7実施例 前述した第1実施例乃至第6実施例においては、接合強
度にも配慮して接合位置を設定した例を示したが、小さ
な接合強度でよい場合(例えば低加速度のみを計測する
場合など)には、図7、あるいは図8に示すように可動
部の中心に近い一箇所のみで接合することもできる。こ
れらの場合でも、接合が行われない他の3方向で熱応力
が解放されるため、梁6には直接影響を与ない。
Seventh Embodiment In the above-described first to sixth embodiments, an example in which the joining position is set in consideration of the joining strength is shown, but when a small joining strength is sufficient (for example, only low acceleration is used). When measuring (for example), it is also possible to join at only one place near the center of the movable part as shown in FIG. 7 or 8. Even in these cases, since the thermal stress is released in the other three directions in which the joining is not performed, the beam 6 is not directly affected.

【0022】以上のように、本実施例の陽極接合方法に
よれば、接合によって2種類以上の構造物で加速度セン
サ等を構築する際、構造材の熱膨張率の差により生ずる
内部応力が緩和されるため、精度面における温度依存性
を低減させることができる。なお、上記した各実施例
は、いずれも加工したシリコン基板の上面にガラスを接
合する2層構造の場合であるが、3層構造以上の場合に
も応用することができる。すなわち、例えば加工したシ
リコン基板の上面と下面にガラスを接合する場合、それ
らの接合箇所を前述したような箇所に限定することで、
構造材の熱膨張率の差により生ずる内部応力を緩和さ
せ、精度面における温度依存性を低減させることができ
る。
As described above, according to the anodic bonding method of the present embodiment, when constructing an acceleration sensor or the like with two or more types of structures by bonding, the internal stress caused by the difference in the coefficient of thermal expansion of the structural materials is relaxed. Therefore, the temperature dependence in terms of accuracy can be reduced. In addition, each of the above-described embodiments is a case of a two-layer structure in which glass is bonded to the upper surface of a processed silicon substrate, but it can be applied to a case of a three-layer structure or more. That is, for example, when bonding glass to the upper surface and the lower surface of the processed silicon substrate, by limiting those bonding locations to the locations as described above,
The internal stress caused by the difference in the coefficient of thermal expansion of the structural material can be relaxed, and the temperature dependence in terms of accuracy can be reduced.

【0023】また、接合箇所に関しては、図1乃至図8
に示した接合箇所を適宜組み合わせることもできる。例
えば、「梁状弾性ばねの長手方向からずれた箇所でかつ
重り部の中心に近い箇所」、あるいは「重り部の中心に
近い箇所でかつ矩形の一辺に沿った箇所」のようにであ
る。状況によっては、このように組み合わせることによ
って、より大きな効果を期待することができる。
Further, as to the jointed portions, FIGS.
It is also possible to appropriately combine the joint portions shown in. For example, “a portion deviated from the longitudinal direction of the beam-shaped elastic spring and close to the center of the weight portion” or “a portion close to the center of the weight portion and along one side of the rectangle”. Depending on the situation, a larger effect can be expected by combining in this way.

【0024】さらに本実施例では、特に加速度センサに
適用した場合を示したが、圧力センサ等、接合を必要と
するようなセンサへも応用することが可能である。
Further, in this embodiment, the case where the invention is applied to the acceleration sensor is shown, but the invention can be applied to a sensor such as a pressure sensor which requires joining.

【0025】[0025]

【発明の効果】以上のように、本発明の陽極接合方法に
よれば、構造材の熱膨張率の差により生ずる熱応力を緩
和することができるので、各種センサの精度面における
温度依存性を低減させることができる。従って、従来陽
極接合には適さなかったセンサ等へも陽極接合を適用す
ることができるようになり、その用途を拡大することが
できる。
As described above, according to the anodic bonding method of the present invention, the thermal stress caused by the difference in the coefficient of thermal expansion of the structural material can be relaxed, so that the temperature dependence of the accuracy of various sensors can be reduced. Can be reduced. Therefore, the anodic bonding can be applied to a sensor or the like which has not been suitable for the anodic bonding in the related art, and its application can be expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例における接合位置の説明図
である。
FIG. 1 is an explanatory diagram of a bonding position in a first embodiment of the present invention.

【図2】本発明の第2実施例における接合位置の説明図
である。
FIG. 2 is an explanatory diagram of a joining position in the second embodiment of the present invention.

【図3】本発明の第3実施例における接合位置の説明図
である。
FIG. 3 is an explanatory diagram of a joining position in a third embodiment of the present invention.

【図4】本発明の第4実施例における接合位置の説明図
である。
FIG. 4 is an explanatory diagram of a joining position in a fourth embodiment of the present invention.

【図5】本発明の第5実施例における接合位置の説明図
である。
FIG. 5 is an explanatory diagram of a joining position in a fifth embodiment of the present invention.

【図6】本発明の第6実施例における接合位置の説明図
である。
FIG. 6 is an explanatory diagram of a joining position in a sixth embodiment of the present invention.

【図7】本発明の第7実施例における接合位置の説明図
である。
FIG. 7 is an explanatory diagram of a joining position in a seventh embodiment of the present invention.

【図8】本発明の第7実施例における他の接合位置の説
明図である。
FIG. 8 is an explanatory diagram of another joining position in the seventh embodiment of the present invention.

【図9】従来の陽極接合方法における接合位置を示す説
明図である。
FIG. 9 is an explanatory diagram showing a bonding position in a conventional anodic bonding method.

【図10】容量型加速度センサの構成図である。FIG. 10 is a configuration diagram of a capacitive acceleration sensor.

【符号の説明】[Explanation of symbols]

1 上部構造材 2 下部構造材 3 接合部 5 重り部 6 梁状弾性ばね 7 可動電極 8 カバーガラス 9 固定電極 1 Upper Structural Material 2 Lower Structural Material 3 Joined Part 5 Weighted Part 6 Beam Elastic Spring 7 Movable Electrode 8 Cover Glass 9 Fixed Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 船橋 博文 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 島岡 敬一 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 藤吉 基弘 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 杉山 進 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 中川 稔章 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 鶴見 康昭 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hirofumi Funabashi, Aichi Prefecture, Aichi Prefecture, Nagakute Town, Oita, Nagakage 1 1 at 41 Yokochi, Toyota Central Research Institute Co., Ltd. 1 in 41 Chuo-dori, Toyota Central Research Institute Co., Ltd. (72) Inventor Motohiro Fujiyoshi, Nagakute-cho, Aichi-gun, Aichi Prefecture Nagatoji 1-41 in Toyota Chuo Research Laboratory (72) Inventor Susumu Sugiyama Aichi 1 in 41 Central Road, Nagakute, Nagakute Town, Aichi District, Toyota Central Research Institute Co., Ltd. (72) Inventor, Minoru Nakagawa 1 in 41 Central Road, Nagakute Town, Aichi District, Aichi County, Toyota Central Research Center Co., Ltd. (72) Inventor Yasuaki Tsurumi 1 41st Yokomichi, Nagakute-cho, Aichi-gun, Aichi-gun 1st of Yokomichi Toyota Central Research Institute Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体部材とガラス部材とを加熱及び電
圧印加により陽極接合する陽極接合方法であって、 陽極接合に先立ち少なくとも前記ガラス部材の熱応力が
直接影響を及ぼす領域に接合防止用金属膜を形成して前
記半導体部材と前記ガラス部材の前記接合防止用金属膜
が形成された領域での陽極接合を阻止し、前記接合防止
用金属膜が形成された領域以外で前記半導体部材と前記
ガラス部材を陽極接合することを特徴とする陽極接合方
法。
1. A anodic bonding method for anodic bonding a semiconductor member and a glass member by heating and applying a voltage, wherein a metal film for bonding prevention is formed at least in a region directly affected by thermal stress of the glass member prior to anodic bonding. To prevent anodic bonding in the region of the semiconductor member and the glass member in which the bonding prevention metal film is formed, and the semiconductor member and the glass in regions other than the region in which the bonding prevention metal film is formed. An anodic bonding method, characterized in that a member is anodically bonded.
JP14205793A 1993-06-14 1993-06-14 Anode joining method Pending JPH06345495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14205793A JPH06345495A (en) 1993-06-14 1993-06-14 Anode joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14205793A JPH06345495A (en) 1993-06-14 1993-06-14 Anode joining method

Publications (1)

Publication Number Publication Date
JPH06345495A true JPH06345495A (en) 1994-12-20

Family

ID=15306417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14205793A Pending JPH06345495A (en) 1993-06-14 1993-06-14 Anode joining method

Country Status (1)

Country Link
JP (1) JPH06345495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333407A (en) * 2006-06-12 2007-12-27 Denso Corp Sensor apparatus
WO2011161958A1 (en) * 2010-06-25 2011-12-29 パナソニック株式会社 Inertial-force detection element and inertial-force sensor using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333407A (en) * 2006-06-12 2007-12-27 Denso Corp Sensor apparatus
WO2011161958A1 (en) * 2010-06-25 2011-12-29 パナソニック株式会社 Inertial-force detection element and inertial-force sensor using same
US9164119B2 (en) 2010-06-25 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Angular velocity detection device and angular velocity sensor including the same
JP5906394B2 (en) * 2010-06-25 2016-04-20 パナソニックIpマネジメント株式会社 Inertial force detection element and inertial force sensor using the same
US9835641B2 (en) 2010-06-25 2017-12-05 Panasonic Intellectual Property Management Co., Ltd. Angular velocity detection device and angular velocity sensor including the same

Similar Documents

Publication Publication Date Title
US6223598B1 (en) Suspension arrangement for semiconductor accelerometer
US6997054B2 (en) Capacitance-type inertial detecting device
JP3544979B2 (en) Vibrating beam accelerometer using two masses
JP2896725B2 (en) Capacitive pressure sensor
JPH0823564B2 (en) Accelerometer having fine mechanism and manufacturing method thereof
JPH1151967A (en) Multi-axis acceleration sensor and its manufacture
US20120160029A1 (en) Acceleration sensor
JPH09113534A (en) Acceleration sensor
KR100514064B1 (en) Capacitive dynamic quantity sensor
US7225675B2 (en) Capacitance type dynamic quantity sensor
US20130283914A1 (en) Acceleration sensor
JPH06345495A (en) Anode joining method
US20050115318A1 (en) Angular velocity sensor
JP3218302B2 (en) Capacitive acceleration sensor
JP2002071707A (en) Semiconductor dynamic quantity sensor
JP3036681B2 (en) Capacitive acceleration sensor
JPH0571148B2 (en)
JP2003014777A (en) Physical quantity sensor
RU2753475C1 (en) Micromechanical accelerometer
JPH0792186A (en) Semiconductor acceleration sensor
JP2001165952A (en) Semiconductor kinetic quantity sensor
JP3287287B2 (en) Distortion detecting element and method of manufacturing the same
JP2000150916A (en) Semiconductor device
JPH0954113A (en) Acceleration sensor
JPH08178667A (en) Semiconductor angular velocity sensor