JP3036681B2 - Capacitive acceleration sensor - Google Patents

Capacitive acceleration sensor

Info

Publication number
JP3036681B2
JP3036681B2 JP7300650A JP30065095A JP3036681B2 JP 3036681 B2 JP3036681 B2 JP 3036681B2 JP 7300650 A JP7300650 A JP 7300650A JP 30065095 A JP30065095 A JP 30065095A JP 3036681 B2 JP3036681 B2 JP 3036681B2
Authority
JP
Japan
Prior art keywords
flexible substrate
substrate
capacitance
acceleration sensor
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7300650A
Other languages
Japanese (ja)
Other versions
JPH09119944A (en
Inventor
歩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP7300650A priority Critical patent/JP3036681B2/en
Publication of JPH09119944A publication Critical patent/JPH09119944A/en
Application granted granted Critical
Publication of JP3036681B2 publication Critical patent/JP3036681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、2軸以上の加速
度を同時に検出できる静電容量変化を利用した加速度セ
ンサの改良に係り、可撓基板を支持するビームを相互に
対向しないよう外周部に配置し、重錘体の接合を可撓基
板の中央部のみとし、さらに電極を各基板の外周部側に
配列することにより、周囲環境温度が変動しても、検出
加速度に対する出力が影響を受けない構成となし、使用
温度範囲が広く厳しい自動車等の用途に適用できる静電
容量型加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an acceleration sensor utilizing a change in capacitance capable of simultaneously detecting accelerations of two or more axes, and more particularly, to an outer peripheral portion of a beam supporting a flexible substrate so as not to face each other. By arranging and joining the weights only at the center of the flexible substrate and arranging the electrodes on the outer peripheral side of each substrate, the output with respect to the detected acceleration is affected even if the ambient temperature fluctuates. The present invention relates to a capacitance-type acceleration sensor that can be applied to applications such as automobiles that have a wide operating temperature range and that have no severe configuration.

【0002】[0002]

【従来の技術】静電容量型加速度センサとして、例え
ば、特開平4−148833号、特開平4−33743
1号、特開平5−188079号には、固定基板と可撓
基板との各対向面に電極を着設して対向配置される静電
容量素子を複数設け、該基板面に平行なXY平面を設定
しこれと直交するZ軸のX,Y,Z軸3次元方向の加速
度の変化を、複数の静電容量素子間の静電容量変化に基
づき各X,Y,Z軸方向成分の検出を行う構成が提案さ
れている。
2. Description of the Related Art For example, Japanese Patent Application Laid-Open Nos. 4-148833 and 4-33743 disclose capacitive acceleration sensors.
No. 1, Japanese Patent Application Laid-Open No. 5-188079 discloses a method in which a plurality of capacitance elements are provided opposite to each other by attaching electrodes to opposite surfaces of a fixed substrate and a flexible substrate, and an XY plane parallel to the substrate surface is provided. And a change in acceleration in a three-dimensional direction of the X, Y, and Z axes of the Z axis orthogonal to the X axis is detected based on a change in capacitance between a plurality of capacitance elements. Has been proposed.

【0003】例えば、図9Aの斜視図に示すように、可
撓基板10を支持するビーム11(中心線を示す)を矩
形の可撓基板を中央部を残して4分割する如く可撓基板
中心線上に十字型に配置する構成例では、所定の間隔を
設けて可撓基板に平行に配置した図示しない固定基板
と、図9Bに示すごとく、可撓基板10との各対向面に
それぞれ電極X1,X2,Y3,Y4,Zを着設して静電容
量素子C1〜C5を形成する構成からなる。また、可撓基
板の下面には適当な質量を有するガラス重錘体12を設
けてある。
For example, as shown in a perspective view of FIG. 9A, a beam 11 (showing a center line) supporting a flexible substrate 10 is divided into a rectangular flexible substrate by dividing the rectangular flexible substrate into four parts except for a central part. In the configuration example in which the electrodes are arranged in a cross shape on a line, a fixed substrate (not shown) arranged at a predetermined interval in parallel with the flexible substrate and, as shown in FIG. 1 , X 2 , Y 3 , Y 4 , and Z are attached to form capacitance elements C 1 to C 5 . Further, a glass weight body 12 having an appropriate mass is provided on the lower surface of the flexible substrate.

【0004】詳述するとここでは、該対向面間の外周部
に4個、中央部に1個の電極を設けて、静電容量素子C
1〜C5を形成した構成、すなわち、電極面にて直交する
X,Yの2軸上に配置された各々2つの静電容量素子C
1〜C4と、前2軸の中央に静電容量素子C5を配置した
構成からなる。
In detail, here, four electrodes are provided on the outer peripheral portion between the opposing surfaces and one electrode is provided on the central portion, and the capacitance element C is provided.
Configuration to form a 1 -C 5, i.e., perpendicular with the electrode surface X, each two capacitances arranged on two axes of Y element C
And 1 -C 4, consisting of construction of arranging the capacitive element C 5 in the middle of the previous two axes.

【0005】上記の構成において、例えば、X軸方向に
加速度が加わった場合、固定基板と可撓基板との対向面
間の各電極間距離が変化することから、各静電容量素子
1〜C4の静電容量が変化する。また、Z軸方向に加速
度が加わった場合も同様に各静電容量素子C1〜C4の静
電容量が変化する。
In the above configuration, for example, when acceleration is applied in the X-axis direction, the distance between the electrodes between the opposing surfaces of the fixed substrate and the flexible substrate changes, so that each of the capacitance elements C 1 to C 1 the capacitance of C 4 is changed. Similarly, when acceleration is applied in the Z-axis direction, the capacitance of each of the capacitance elements C 1 to C 4 also changes.

【0006】静電容量の変化より加速度の各成分の検出
は、例えば、X軸方向の加速度に対する出力として、静
電容量素子C1とC3の静電容量差(C1−C3)、Y軸方
向の加速度に対する出力として、静電容量素子C2とC4
の静電容量差(C2−C4)、Z軸方向の加速度に対する
出力として、静電容量素子C5の静電容量(C5)として
検出する。
[0006] The detection of each component of the acceleration based on the change in the capacitance is performed, for example, as an output with respect to the acceleration in the X-axis direction, as a capacitance difference (C 1 -C 3 ) between the capacitance elements C 1 and C 3 , As outputs for the acceleration in the Y-axis direction, the capacitance elements C 2 and C 4
Is detected as the capacitance (C 5 ) of the capacitance element C 5 as an output with respect to the capacitance difference (C 2 −C 4 ) and acceleration in the Z-axis direction.

【0007】かかる静電容量型センサは、可撓基板は加
わった加速度に対し大きな変位が得られるほどセンサの
感 度が向上するため、検出感度を向上させることを目
的として、低剛性の支持構造を有し、また、加わる加速
度を増幅することを目的に可撓基板の支持構造より下方
に重心 点をずらした適当な質量を有する重錘体が設け
てある。
In such a capacitance type sensor, since the sensitivity of the sensor increases as the displacement of the flexible substrate with respect to the applied acceleration increases, a low-rigidity support structure is provided for the purpose of improving the detection sensitivity. In addition, a weight body having an appropriate mass whose center of gravity is shifted below the support structure of the flexible substrate is provided for the purpose of amplifying the applied acceleration.

【0008】例えば、高感度を有する静電容量型加速度
センサの具体的な構成をとして、実開平7−14382
号、特開平5−264577号等があるが、これらにお
いては、前述した低剛性の支持構造を得るために、可撓
部を細く薄いビームにて構成することが提案されてい
る。
For example, as a specific configuration of a capacitance type acceleration sensor having a high sensitivity, Japanese Unexamined Utility Model Publication No.
And Japanese Patent Application Laid-Open No. 5-264577. In these, it has been proposed to form the flexible portion with a thin and thin beam in order to obtain the above-described low-rigidity support structure.

【0009】[0009]

【発明が解決しようとする課題】可撓基板は、低剛性支
持されているため加速度以外の外乱に対しても非常に敏
感である。具体的には、周囲温度の変動により支持構造
部に熱応力が発生しそれに起因する可撓基板の変位が発
生し加速度が作用していないにも関わらず見かけ上出力
が生じる問題がある。
Since the flexible substrate is supported with low rigidity, it is very sensitive to disturbances other than acceleration. Specifically, there is a problem in that thermal stress is generated in the supporting structure due to a change in the ambient temperature, and the displacement of the flexible substrate due to the thermal stress is generated, so that an apparent output is generated despite no acceleration.

【0010】十分な感度を得るためには加速度が作用し
たときの可撓基板の変形を大きくする必要から基板の質
量を大とする必要がある。このため可撓基板の厚さを厚
くする必要があるが、これを実施すると薄いビーム等の
支持構造を製作するに際し、下方より基板を深く掘り下
げる必要が生じ実製作上現実的でない。通常、より大き
な感度を得るために重錘体を別部品として可撓基板に接
合する構成が採用されるが、重錘体に基板とは熱膨張係
数の異なる素材を使用すると、周囲温度が変動したとき
接合面でのバイメタル現象により可撓基板にソリが生
じ、この結果、可撓基板の変位が発生し加速度が作用し
ていないにも関わらず見かけ上出力が生じる問題があ
る。
In order to obtain sufficient sensitivity, it is necessary to increase the deformation of the flexible substrate when acceleration is applied, so that it is necessary to increase the mass of the substrate. For this reason, it is necessary to increase the thickness of the flexible substrate. However, when this is performed, when manufacturing a support structure such as a thin beam, the substrate needs to be dug deeper from below, which is not practical in actual production. Normally, to obtain greater sensitivity, a configuration is adopted in which the weight is joined to a flexible substrate as a separate component, but if a material having a different thermal expansion coefficient from the substrate is used for the weight, the ambient temperature will fluctuate. Then, warping occurs in the flexible substrate due to the bimetal phenomenon at the joint surface, and as a result, there is a problem that the flexible substrate is displaced and an apparent output is generated despite no acceleration.

【0011】通常、静電容量型加速度センサは、小型化
のため所謂マイクロマシニング技術を応用して製造され
ることが多く、一般に上記重錘体にパイレックスガラス
(商品名)を使用し、陽極接合にてシリコン基板に接合
する手法が取られるが、これを実施した場合、シリコン
とガラスの熱膨張係数の違いにより前述した可撓基板に
ソリが生じて変位を生じる問題が発生する。
Usually, a capacitance type acceleration sensor is often manufactured by applying a so-called micro-machining technique for miniaturization. In general, Pyrex glass (trade name) is used for the above-mentioned weight, and anodic bonding is performed. However, when this method is implemented, a problem arises in that the above-mentioned flexible substrate is warped due to a difference in thermal expansion coefficient between silicon and glass, thereby causing displacement.

【0012】この発明は、2軸以上の加速度を同時に検
出できる静電容量変化を利用した加速度センサにおい
て、周囲環境温度が変動しても、検出加速度に対する出
力が影響を受けない構成となし、使用温度範囲が広く厳
しい自動車等の用途に最適な静電容量型加速度センサの
提供を目的とする。
According to the present invention, there is provided an acceleration sensor utilizing a change in capacitance capable of simultaneously detecting accelerations of two or more axes, wherein the output with respect to the detected acceleration is not affected even if the ambient environmental temperature fluctuates. It is an object of the present invention to provide a capacitance type acceleration sensor which is most suitable for applications such as automobiles having a wide temperature range and severe.

【0013】[0013]

【課題を解決するための手段】発明者は、周囲環境温度
が変動しても、検出加速度に対する出力が影響を受けな
い構成を目的に可撓基板のビームによる支持構造につい
て種々検討した結果、可撓基板のビームによる支持構造
を、従来の可撓基板中心線上に配置する構成から、これ
を外周部に配置する構成に変更することにより、温度変
化による可撓基板の熱変形を基板平面の回転方向に逃が
すことが可能で、基板厚みの上下方向の変位を低減でき
ることを知見し、この発明を完成した。
The inventor of the present invention has conducted various studies on the support structure of the flexible substrate with the beam for the purpose of a configuration in which the output with respect to the detected acceleration is not affected even if the ambient temperature fluctuates. By changing the support structure of the flexible substrate by the beam from the conventional arrangement on the center line of the flexible substrate to the configuration of arranging it on the outer peripheral portion, the thermal deformation of the flexible substrate due to the temperature change is caused by the rotation of the substrate plane. The present inventors have found that it is possible to escape in the direction and reduce the displacement of the substrate thickness in the vertical direction, and have completed the present invention.

【0014】また、発明者は、当該センサが基板と重錘
体を接合するためにバイメタル効果による変形が発生す
ることに着目し、これを低減あるいは実質的に悪影響を
及ぼすことがない構成を目的に種々検討した結果、可撓
基板と重錘体との陽極接合箇所を例えば、従来の基板下
面4ヶ所から中央部の1ヶ所のみに変更することにより
バイメタル効果による変形を低減できることを知見し、
さらに、所定の熱膨張係数差を想定して熱膨張係数の異
なる材質を接合した場合、その基板中央部の1ヶ所の接
合面積を最適値に調整することにより、バイメタル効果
及びビームの熱変形の相互作用により可撓基板上に静電
容量の増加の領域と減少の領域が設定されて静電容量の
増減がゼロとなり、バイメタル効果及びビームの熱変形
による可撓基板の変位による影響を実質的に防止したこ
とと等価になる、換言すれば、可撓基板上に静電容量の
増加の領域と減少の領域がほぼ同等に設定されて静電容
量の増減がゼロとなるように基板中央部の1ヶ所の可撓
基板と重錘体との接合面積を調整することにより、バイ
メタル効果及びビームの熱変形による可撓基板の変位を
実質的に防止できることを知見し、この発明を完成し
た。
Further, the inventor has paid attention to the fact that the sensor joins the substrate and the weight body to cause deformation due to the bimetal effect, and has an object to reduce the deformation or substantially have no adverse effect. As a result of various investigations, it was found that deformation by the bimetal effect can be reduced by changing the anodic bonding portion between the flexible substrate and the weight body, for example, from the conventional four lower surface of the substrate to only one central portion,
Furthermore, when materials having different coefficients of thermal expansion are joined assuming a predetermined difference in the coefficient of thermal expansion, the joint area at the central portion of the substrate is adjusted to an optimum value to reduce the bimetal effect and the thermal deformation of the beam. The interaction sets an increase and decrease area of the capacitance on the flexible substrate, and the increase and decrease of the capacitance becomes zero, thereby substantially reducing the influence of the bimetal effect and the displacement of the flexible substrate due to the thermal deformation of the beam. In other words, the central area of the substrate is set such that the area of increase and decrease of the capacitance are set substantially equal on the flexible substrate and the increase and decrease of the capacitance become zero. By adjusting the joint area between the flexible substrate and the weight at one location, it was found that displacement of the flexible substrate due to the bimetal effect and thermal deformation of the beam could be substantially prevented, and the present invention was completed.

【0015】さらに、発明者は、ビームによる支持構造
並びに可撓基板と重錘体との接合を上述のこの発明によ
る構成となして、周囲環境温度変化による可撓基板の熱
変形による影響を受けない具体的な構成について鋭意検
討した結果、電極の配置を、従来のX軸、Y軸加速度検
出用の4個を外周部に配置し、Z軸加速度検出用を中央
部に配置した構成から、X,Y,Z軸用の全ての電極を
中央部を除く外周部に配置することにより、目的を達成
できることを知見し、この発明を完成した。
Further, the inventor has made the support structure by the beam and the joint between the flexible substrate and the weight body according to the above-described structure of the present invention, and is affected by the thermal deformation of the flexible substrate due to a change in ambient temperature. As a result of diligent studies on the specific configuration, the four electrodes for the conventional X-axis and Y-axis acceleration detection were arranged on the outer periphery, and the configuration for the Z-axis acceleration detection was arranged at the center, The inventors have found that the object can be achieved by arranging all the electrodes for the X, Y, and Z axes on the outer peripheral portion except the central portion, and completed the present invention.

【0016】すなわち、この発明は、ビームによる支持
構造を有する可撓基板と固定基板との各対向面に電極を
着設して対向配置される静電容量素子を複数設け、該基
板面に平行なXY平面を設定しこれと直交するZ軸のX,Y,Z
軸3次元方向の加速度の変化を、複数の静電容量素子間
の静電容量変化に基づき各軸方向成分の検出を行う静電
容量型加速度センサにおいて、可撓基板の外周部にビー
配置する構成であって、さらに可撓基板に陽極接合
される重錘体の接合箇所が基板中央部一か所のみである
か、または基板の中央部を除く外周部に電極を配列した
構成からなる静電容量型加速度センサである。
That is, according to the present invention, a plurality of capacitance elements are provided opposite to each other by attaching electrodes to respective opposing surfaces of a flexible substrate having a beam-supporting structure and a fixed substrate, and are provided in parallel with the substrate surface. X, Y, Z of the Z axis perpendicular to this
In a capacitance-type acceleration sensor that detects changes in acceleration in three-dimensional directions on the axis based on changes in capacitance between a plurality of capacitance elements, a beam is placed on the outer periphery of a flexible substrate. Anodic bonding to a flexible substrate
Of the weight body to be bonded is only one place at the center of the substrate
Or, electrodes are arranged on the outer peripheral part except the central part of the substrate
This is a capacitance type acceleration sensor having a configuration.

【0017】また、この発明は、該静電容量型加速度セ
ンサにおいて、可撓基板の外周部にビームを配置する構
成であって、可撓基板に陽極接合される重錘体の接合箇
所が基板中央部一か所のみで、かつ基板の中央部を除く
外周部に電極を配列した構成からなる静電容量型加速度
センサを併せて提案するものである。
The present invention also relates to the capacitance type acceleration cell.
In the sensor, the beam is arranged on the outer periphery of the flexible substrate.
And a weight type body to be anodically bonded to the flexible substrate has only one bonding portion at the center of the substrate , and has a configuration in which electrodes are arranged on an outer peripheral portion excluding the center portion of the substrate. An acceleration sensor is also proposed.

【0018】[0018]

【発明の実施の形態】図1A,Bはこの発明による静電
容量型加速度センサの可撓基板を示す斜視図と正面説明
図であり、図2はその電極の配置を示す上面説明図であ
る。シリコンからなる略正方形の可撓基板1は、その外
周部に中心線で位置を示す4つのビーム2により支持さ
れる構成で、可撓基板1の下面には適当な質量を有する
矩形板状のガラス重錘体3を可撓基板1の下面中央部の
一か所のみで陽極接合してある。図2中の符号4が接合
部を示す。
1A and 1B are a perspective view and a front view showing a flexible substrate of a capacitance type acceleration sensor according to the present invention, and FIG. 2 is a top view showing the arrangement of its electrodes. . A substantially square flexible substrate 1 made of silicon is supported on its outer periphery by four beams 2 whose position is indicated by a center line, and the lower surface of the flexible substrate 1 is a rectangular plate having an appropriate mass. The glass weight 3 is anodically bonded only at a central portion of the lower surface of the flexible substrate 1. Reference numeral 4 in FIG. 2 indicates a joint.

【0019】所定の間隔を設けて可撓基板に平行に配置
した図示しない固定基板と、可撓基板1との各対向面に
それぞれ電極を着設して静電容量素子C1〜C5を形成す
る構成からなるが、ここでは図2に示すごとく、X軸、
Y軸用の略台形状の電極X1,X2,Y3,Y4を組み合せ
て可撓基板1の外周部に配置し、さらに、Z軸用電極Z
はX軸用電極とY軸用電極の間に配設してある。
Electrodes are attached to the fixed substrate (not shown) arranged in parallel with the flexible substrate at a predetermined interval and the opposing surfaces of the flexible substrate 1 to form the capacitance elements C 1 to C 5 . In this case, as shown in FIG.
The substantially trapezoidal electrodes X 1 , X 2 , Y 3 , and Y 4 for the Y axis are combined and arranged on the outer peripheral portion of the flexible substrate 1.
Is disposed between the X-axis electrode and the Y-axis electrode.

【0020】前述した図9に示す従来構造では、ビーム
11に熱変形が生じると、これら4本のビームは2本ず
つの2対が対向されて設置されているため、互いに押し
合いあるいは引き合いすることとなり、その結果、可撓
基板10が上下に大きく変位する。すなわち、雰囲気温
度を20℃から−40℃へ変化させた場合の熱変形をF
EM解析によりシミュレートした結果を図11、図12
に示すとおり、支持構造のビームの変形及びバイメタル
現象が観察でき、変形量は0.35μmと変形が大きい
ことがわかる。
In the conventional structure shown in FIG. 9 described above, when the beam 11 is thermally deformed, these four beams are pushed and attracted to each other because two pairs of two beams are installed facing each other. As a result, the flexible substrate 10 is largely displaced up and down. That is, when the ambient temperature is changed from 20 ° C. to −40 ° C., the thermal deformation is F
FIGS. 11 and 12 show the results of simulation by EM analysis.
As shown in FIG. 7, the deformation of the beam and the bimetal phenomenon of the support structure can be observed, and it can be seen that the deformation amount is as large as 0.35 μm.

【0021】これに対して、上述のビームを可撓基板の
中心線上に配置する従来構造から外周部に配置する構造
及び接合部を中央部一か所とする構造にした図1、図2
の構成からなるこの発明では、可撓基板における上述の
FEM解析によるシミュレートで、図3、図4に示すと
おり、変形量は0.038μmと変形が大幅に抑制され
ている。かかる効果は、ビームを外周部配置にしたこと
により図3、図4に示すとおり、ビームに変形(伸び、
縮み)が生じても互いに押し合い、引き合いが発生しな
いことに起因し、可撓基板は回転運動は生じても厚み方
向に変位することが抑制されており、又接合部を一か所
としたためバイメタル効果も抑制されているのがわか
る。
On the other hand, FIGS. 1 and 2 show a structure in which the above-described beam is arranged on the center line of the flexible substrate, and a structure in which the beam is arranged on the outer peripheral portion and a structure in which the joint is formed at one central portion.
In the present invention having the above structure, the deformation amount is 0.038 μm as shown in FIG. 3 and FIG. 4 in the simulation of the flexible substrate by the FEM analysis, and the deformation is largely suppressed. As shown in FIGS. 3 and 4, such an effect is obtained by deforming (elongating, elongating,
Due to the fact that no shrinkage occurs, they are pressed against each other and no attraction occurs, so that the flexible substrate is suppressed from being displaced in the thickness direction even when rotational movement occurs. It can be seen that the effect is also suppressed.

【0022】上記したこの発明の構成、すなわち、可撓
基板のビームによる支持構造を外周部に配置する構成に
変更することにより、温度変化による可撓基板の熱変形
を基板平面の回転方向に逃がすことが可能で、厚み方向
に変位することが抑制できる。さらに、接合箇所を中央
1ヶ所に変更してその面積を最適値に調整するとバイメ
タル効果による可撓基板の反りによる影響についても抑
制でき、従来構造に比べ可撓基板の熱変形による影響が
大きく改善されることが明らかになった。
By changing the structure of the present invention described above, that is, the structure in which the support structure of the flexible substrate by the beam is arranged at the outer peripheral portion, the thermal deformation of the flexible substrate due to the temperature change is released in the rotation direction of the substrate plane. It is possible to suppress displacement in the thickness direction. Furthermore, if the joint is changed to one center and its area is adjusted to the optimum value, the influence of the warpage of the flexible substrate due to the bimetal effect can be suppressed, and the effect of the thermal deformation of the flexible substrate is greatly improved compared to the conventional structure. It became clear that it would be.

【0023】しかし、上記したこの発明の構成、すなわ
ち、可撓基板のビームによる支持構造を外周部に配置す
る構成に変更すること、さらに、接合箇所を中央1ヶ所
に変更してその面積を最適値に調整することにより、従
来構造に比べ可撓基板の熱変形による影響は大きく改善
されたが、変形量が全くゼロになるものではないこと
は、図3、図4に示されるとおりである。さらに、この
発明は、この発明による上述の構造的変更によっても依
然として残る極僅かなこの変形について、図2に示すご
とく、電極をX,Y,Z軸用の全てを可撓基板の外周部
に領域分割線を跨いで配置することにより対処を行った
ことを特徴とする。本対処について以下に詳述する。
However, the structure of the present invention described above, that is, the structure in which the support structure of the flexible substrate by the beam is arranged at the outer peripheral portion is changed, and the joint is changed to one central portion to optimize the area. By adjusting the value to the above value, the influence of the thermal deformation of the flexible substrate is greatly improved as compared with the conventional structure, but the deformation amount is not completely zero, as shown in FIGS. . Further, according to the present invention, as shown in FIG. 2, the electrodes for X, Y and Z axes are all attached to the outer peripheral portion of the flexible substrate, as shown in FIG. The present invention is characterized in that a measure is taken by arranging over a region dividing line. This measure is described in detail below.

【0024】図5のBに可撓基板1の変形状態を模式的
に示すごとく、変形状態はビームの伸びもしくは縮みに
よる変形とバイメタル効果による変形が組み合わされた
状態となる。そこで、ビームによる支持構造を外周部に
配置する構成に変更し、可撓基板1のガラス重錘体3と
の接合面積を調整することにより、図5のAに示すごと
く、基板1上の適当な箇所を通るある領域分割線5(2
点鎖線で示す)を介して、例えば、温度上昇時、外側は
初期状態から上方へ変形(静電容量値が増加)、内側は
下方に変形(静電容量値が減少)するよう、もちろん温
度下降時は、逆方向に変形するように構成することによ
り、可撓基板1上に静電容量の増加の領域と減少の領域
が設定されて静電容量の増減がゼロとなり、上記の変形
を実質的にゼロとすることが可能である。
As schematically shown in FIG. 5B, the deformed state of the flexible substrate 1 is a state in which the deformation due to the expansion or contraction of the beam and the deformation due to the bimetal effect are combined. Therefore, by changing the structure in which the support structure by the beam is arranged on the outer peripheral portion and adjusting the bonding area of the flexible substrate 1 with the glass weight 3, as shown in FIG. Area dividing line 5 (2
For example, when the temperature rises, the outside deforms upward (the capacitance value increases) from the initial state, and the inside deforms downward (the capacitance value decreases). At the time of lowering, by configuring so as to deform in the opposite direction, an area where the capacitance increases and an area where the capacitance decreases are set on the flexible substrate 1, and the increase and decrease of the capacitance becomes zero. It can be substantially zero.

【0025】ここで、図5のAにおいて、可撓基板1平
面がX−Y軸上で基板厚み方向がZ軸方向であるとし、
可撓基板1の熱による変形状態がZ軸方向でZ=0の状
態の部分を表示したとすると、基板1上の2点鎖線で示
す部分となる。この発明ではかかる2点鎖線で示す部分
を領域分割線5という。
Here, in FIG. 5A, it is assumed that the plane of the flexible substrate 1 is on the XY axis and the substrate thickness direction is the Z axis direction.
Assuming that a portion where the deformation state of the flexible substrate 1 due to heat is Z = 0 in the Z-axis direction is displayed, the portion is indicated by a two-dot chain line on the substrate 1. In the present invention, such a portion indicated by a two-dot chain line is referred to as a region dividing line 5.

【0026】すなわち、図6Aに示すごとく、かかる領
域分割線が基板1の中心と各辺の中央よりやや外側を通
るように可撓基板1のガラス重錘体3との接合面積を調
整し、X軸、Y軸用の略台形状の電極X1,X2,Y3
4、及びX軸用電極とY軸用電極の間に配設するZ軸
用電極Zの配置を、それぞれ領域分割線5を跨いで配置
し、かつ領域分割線5の外側と内側の面積をほぼ等しく
設定した。かかる構成により一つの電極内で熱変形が生
じても、温度上昇時の挙動例では領域分割線5外側部の
静電容量値が増加、内側部の静電容量値が減少して差し
引きは、ほぼゼロとなり、実質的に熱変形による影響を
受けないセンサを実現することができる。
That is, as shown in FIG. 6A, the bonding area of the flexible substrate 1 with the glass weight 3 is adjusted so that the region dividing line passes slightly outside the center of the substrate 1 and the center of each side. Substantially trapezoidal electrodes X 1 , X 2 , Y 3 , X and Y axes
Y 4 , and the arrangement of the Z-axis electrode Z disposed between the X-axis electrode and the Y-axis electrode are arranged so as to straddle the region dividing line 5 and the area outside and inside the region dividing line 5. Were set approximately equal. Even if thermal deformation occurs in one electrode by such a configuration, in the example of the behavior at the time of temperature rise, the capacitance value on the outer side of the region dividing line 5 increases, and the capacitance value on the inner side decreases, so that subtraction is performed. It is possible to realize a sensor which becomes substantially zero and is not substantially affected by thermal deformation.

【0027】この発明による電極配置の他の実施例を説
明する。図6Bの電極配置は、図6AのX軸、Y軸用の
略台形状の電極X1,X2,Y3,Y4の中央部に、矩形の
Z軸用電極Zを配置した構成からなり、ここでも領域分
割線5を跨いで配置した各電極の領域分割線5の外側と
内側の面積をほぼ等しく設定してある。
Another embodiment of the electrode arrangement according to the present invention will be described. The electrode arrangement in FIG. 6B is different from the configuration in which a rectangular Z-axis electrode Z is arranged at the center of the substantially trapezoidal electrodes X 1 , X 2 , Y 3 , and Y 4 for the X axis and Y axis in FIG. 6A. In this case as well, the area outside and inside the region dividing line 5 of each electrode disposed across the region dividing line 5 is set to be substantially equal.

【0028】[0028]

【実施例】図1、図2に示すごとく、ビーム2を可撓基
板1の外周部に配置し、可撓基板1のガラス重錘体3と
の接合箇所を中央1ヶ所に変更して面積を最適値に調整
し、さらに電極をX,Y,Z軸用の全てを可撓基板の外
周部に配置した構成からなるこの発明による静電容量型
加速度センサに、実際に周囲温度を変動させて周囲温度
変動に伴う静電容量値の変化を測定し、加速度換算し
て、温度と0点温度ドリフトとの関係として図7に示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIGS. 1 and 2, a beam 2 is arranged on an outer peripheral portion of a flexible substrate 1, and a joint portion of the flexible substrate 1 with a glass weight 3 is changed to one central portion to reduce the area. Is adjusted to an optimum value, and furthermore, the ambient temperature is actually varied by the capacitance type acceleration sensor according to the present invention having a configuration in which the electrodes for the X, Y, and Z axes are all arranged on the outer periphery of the flexible substrate. FIG. 7 shows the relationship between the temperature and the zero-point temperature drift by measuring the change in the capacitance value due to the ambient temperature fluctuation and converting the value into acceleration.

【0029】また、上記の図1、図2の構成において、
電極配置のみを図9Bに示す従来の配置とし、ビーム配
置とガラス重錘体の接合をこの発明の構成とした静電容
量型加速度センサの周囲温度変動に伴う静電容量値の変
化を測定し、加速度換算して、温度と0点温度ドリフト
との関係として図8に示す。
Further, in the above-described configuration of FIGS. 1 and 2,
Only the electrode arrangement was the conventional arrangement shown in FIG. 9B, and the change in the capacitance value due to the ambient temperature fluctuation of the capacitance type acceleration sensor in which the beam arrangement and the joining of the glass weight were configured according to the present invention was measured. FIG. 8 shows the relationship between the temperature and the zero-point temperature drift in terms of acceleration.

【0030】さらに、図9に示す従来の静電容量型加速
度センサの周囲温度変動に伴う静電容量値の変化を測定
し、加速度換算して、温度と0点温度ドリフトとの関係
として図10に示す。なお、上記3種のセンサに用いた
可撓基板材料はシリコン、重錘体材料はパイレックスガ
ラスである。
Further, a change in capacitance value due to a change in ambient temperature of the conventional capacitance type acceleration sensor shown in FIG. 9 is measured, converted into acceleration, and the relationship between temperature and zero point temperature drift is shown in FIG. Shown in The flexible substrate material used for the above three types of sensors is silicon, and the weight material is Pyrex glass.

【0031】前述の図9に示された従来の構造では、図
10に示すごとく、温度の変動により容量値が変動し見
かけ上加速度が発生しているのがわかる。また、ビーム
配置とガラス重錘体の接合をこの発明の構成とした場合
は、図8に示すごとく、この発明の構成が有効に作用し
て温度特性が改良されていることがわかる。さらに、図
1、図2のビーム配置、ガラス重錘体の接合並びに電極
配置をこの発明の構成とした場合は、図7に示すごと
く、周囲環境温度が変動しても、検出加速度に対する出
力が影響を受けないことがわかる。
In the above-described conventional structure shown in FIG. 9, as shown in FIG. 10, it can be seen that the capacitance value fluctuates due to the fluctuation in temperature and apparent acceleration occurs. In addition, when the beam arrangement and the joining of the glass weight are configured according to the present invention, as shown in FIG. 8, it can be seen that the configuration according to the present invention works effectively and the temperature characteristics are improved. Further, when the beam arrangement, the bonding of the glass weight body, and the electrode arrangement in FIGS. 1 and 2 are configured according to the present invention, as shown in FIG. It turns out that it is not affected.

【0032】[0032]

【発明の効果】この発明による静電容量型加速度センサ
は、可撓基板を支持するビームを相互に対向しないよう
外周部に配置し、重錘体の接合を可撓基板の中央部のみ
とし、さらに電極を各基板の外周部側に配列することに
より、周囲環境温度が変動しても、検出加速度に対する
出力が影響を受けない構成であり、自動車用途等の周囲
温度変動の大きな用途で使用可能な高精度のセンサが提
供できる。また、この発明では、従来のセンサにおいて
必要であった電気回路による温度補償が不要となること
から、構成が簡単なセンサを安価に提供できる。
According to the capacitance type acceleration sensor of the present invention, the beams supporting the flexible substrate are arranged on the outer peripheral portion so as not to face each other, and the weight is joined only to the central portion of the flexible substrate. In addition, by arranging the electrodes on the outer peripheral side of each substrate, even if the ambient temperature fluctuates, the output with respect to the detected acceleration is not affected, and it can be used in applications with large ambient temperature fluctuations such as automobiles A highly accurate sensor can be provided. Further, according to the present invention, temperature compensation by an electric circuit, which is required in a conventional sensor, is not required, and thus a sensor having a simple configuration can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aはこの発明による静電容量型加速度センサの
可撓基板を示す斜視説明図であり、Bは可撓基板を示す
側面説明図である。
FIG. 1A is a perspective view illustrating a flexible substrate of a capacitive acceleration sensor according to the present invention, and FIG. 1B is a side view illustrating a flexible substrate.

【図2】この発明による静電容量型加速度センサの可撓
基板の電極の配置を示す平面説明図である。
FIG. 2 is an explanatory plan view showing an arrangement of electrodes on a flexible substrate of the capacitive acceleration sensor according to the present invention.

【図3】この発明による静電容量型加速度センサの温度
変化に伴う熱変形をFEM解析によりシミュレートした
結果を示す説明図であり、Aは斜視方向、Bは平面方向
の変形の説明図である。
FIG. 3 is an explanatory view showing the result of simulating the thermal deformation of the capacitance type acceleration sensor according to the present invention due to the temperature change by FEM analysis, wherein A is a perspective view and B is an explanatory view of a planar direction; is there.

【図4】この発明による静電容量型加速度センサの温度
変化に伴う熱変形をFEM解析によりシミュレートした
結果を示す説明図であり、Aは温度が20℃、Bは温度
が−40℃のとき、Z軸(図の上下方向)に1G(地球
重力)がかかった状態での変形を示す。
FIG. 4 is an explanatory view showing the result of simulating the thermal deformation of the capacitance type acceleration sensor according to the present invention due to the temperature change by FEM analysis, where A is a temperature of 20 ° C., and B is a temperature of −40 ° C. At this time, it shows a deformation in a state where 1 G (earth gravity) is applied to the Z axis (vertical direction in the figure).

【図5】静電容量型加速度センサの温度変化に伴う変形
状態を模式的に示す説明図であり、Aは平面、Bは厚み
方向の変形を示す。
FIGS. 5A and 5B are explanatory diagrams schematically showing a deformation state of the capacitance type acceleration sensor accompanying a temperature change, wherein A shows a plane and B shows a deformation in a thickness direction.

【図6】A,Bは、この発明による静電容量型加速度セ
ンサの可撓基板の電極の他の配置を示す平面説明図であ
る。
FIGS. 6A and 6B are explanatory plan views showing another arrangement of the electrodes on the flexible substrate of the capacitive acceleration sensor according to the present invention.

【図7】この発明による静電容量型加速度センサの周囲
温度変動に伴う静電容量値の変化を測定し、加速度換算
して、温度と0点温度ドリフトとの関係として示すグラ
フである。
FIG. 7 is a graph showing a relationship between a temperature and a zero-point temperature drift obtained by measuring a change in capacitance value due to a change in ambient temperature of a capacitance type acceleration sensor according to the present invention and converting the measured value into acceleration.

【図8】この発明による静電容量型加速度センサの周囲
温度変動に伴う静電容量値の変化を測定し、加速度換算
して、温度と0点温度ドリフトとの関係として示すグラ
フである。
FIG. 8 is a graph showing a relationship between a temperature and a zero-point temperature drift obtained by measuring a change in capacitance value due to a change in ambient temperature of a capacitance type acceleration sensor according to the present invention and converting the measured value into acceleration.

【図9】Aは従来の静電容量型加速度センサの可撓基板
を示す斜視説明図であり、Bは電極の配置を示す平面説
明図である。
FIG. 9A is a perspective view illustrating a flexible substrate of a conventional capacitive acceleration sensor, and FIG. 9B is a plan view illustrating an arrangement of electrodes.

【図10】従来の静電容量型加速度センサの周囲温度変
動に伴う静電容量値の変化を測定し、加速度換算して、
温度と0点温度ドリフトとの関係として示すグラフであ
る。
FIG. 10 measures a change in capacitance value due to a change in ambient temperature of a conventional capacitance-type acceleration sensor, converts the measured value into acceleration,
It is a graph shown as a relationship between temperature and zero point temperature drift.

【図11】従来の静電容量型加速度センサのの温度変化
に伴う熱変形をFEM解析によりシミュレートした結果
を示す説明図であり、Aは斜視方向、Bは平面方向の変
形の説明図である。
11A and 11B are explanatory diagrams showing the results of simulating the thermal deformation of a conventional capacitance-type acceleration sensor due to a temperature change by FEM analysis, where A is an explanatory diagram of a perspective direction and B is an explanatory diagram of a planar direction. is there.

【図12】従来の静電容量型加速度センサの温度変化に
伴う熱変形をFEM解析によりシミュレートした結果を
示す説明図であり、Aは温度が20℃、Bは温度が−4
0℃のとき、Z軸(図の上下方向)に1G(地球重力)
がかかった状態での変形を示す。
FIG. 12 is an explanatory view showing the result of simulating the thermal deformation of a conventional capacitive acceleration sensor due to a temperature change by FEM analysis, where A is a temperature of 20 ° C. and B is a temperature of -4.
At 0 ° C, 1G (Earth gravity) on the Z axis (vertical direction in the figure)
3 shows the deformation in the state of being shaded.

【符号の説明】[Explanation of symbols]

1,10 可撓基板 2,11 ビーム 3,12 ガラス重錘体 4 接合部 5 領域分割線 X1,X2,Y3,Y4,Z 電極 C1,C2,C3,C4,C5 静電容量素子1,10 flexible substrate 2,11 beam 3,12 glass weight body 4 junction 5 region division line X 1, X 2, Y 3 , Y 4, Z electrodes C 1, C 2, C 3 , C 4, C 5 capacitive element

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ビームによる支持構造を有する可撓基板
と固定基板を対向配置した静電容量型加速度センサにお
いて、可撓基板の外周部にビーム配置する構成で、可
撓基板に陽極接合される重錘体の接合箇所が基板中央部
一か所のみである静電容量型加速度センサ。
1. A capacitive acceleration sensor disposed facing the flexible substrate fixing substrate having a support structure by the beam, a configuration of placing a beam on an outer peripheral portion of the flexible substrate, variable
The joint of the weight body that is anodically bonded to the flexible substrate is at the center of the substrate
A capacitance type acceleration sensor that is only one place .
【請求項2】 ビームによる支持構造を有する可撓基板
と固定基板を対向配置した静電容量型加速度センサにお
いて、可撓基板の外周部にビームを配置する構成で、基
板の中央部を除く外周部に電極を配列した静電容量型加
速度センサ。
2. A flexible substrate having a beam support structure.
And a fixed substrate facing each other.
And the beam is arranged on the outer periphery of the flexible substrate.
An electrostatic capacitance type acceleration sensor in which electrodes are arranged on the outer peripheral part except the central part of the plate .
【請求項3】 ビームによる支持構造を有する可撓基板
と固定基板を対向配置した静電容量型加速度センサにお
いて、可撓基板の外周部にビームを配置する構成であ
り、可撓基板に陽極接合される重錘体の接合箇所が基板
中央部一か所のみで、基板の中央部を除く外周部に電極
を配列した静電容量型加速度センサ。
3. A flexible substrate having a beam support structure.
And a fixed substrate facing each other.
And the beam is arranged on the outer periphery of the flexible substrate.
The joint of the weight body that is anodically bonded to the flexible substrate is
An electrostatic capacitance type acceleration sensor in which electrodes are arranged only in a central portion and on an outer peripheral portion excluding a central portion of a substrate.
JP7300650A 1995-10-24 1995-10-24 Capacitive acceleration sensor Expired - Fee Related JP3036681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7300650A JP3036681B2 (en) 1995-10-24 1995-10-24 Capacitive acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7300650A JP3036681B2 (en) 1995-10-24 1995-10-24 Capacitive acceleration sensor

Publications (2)

Publication Number Publication Date
JPH09119944A JPH09119944A (en) 1997-05-06
JP3036681B2 true JP3036681B2 (en) 2000-04-24

Family

ID=17887418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7300650A Expired - Fee Related JP3036681B2 (en) 1995-10-24 1995-10-24 Capacitive acceleration sensor

Country Status (1)

Country Link
JP (1) JP3036681B2 (en)

Also Published As

Publication number Publication date
JPH09119944A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
He et al. Analytical study and compensation for temperature drifts of a bulk silicon MEMS capacitive accelerometer
CN110824196B (en) Stress insensitive MEMS capacitive Z-axis accelerometer
US7360455B2 (en) Force detector and acceleration detector and method of manufacturing the same
US6826960B2 (en) Triaxial acceleration sensor
JP5127464B2 (en) Pendulum in-plane MEMS accelerometer device
JP3240390B2 (en) Displacement detection sensor
KR0139506B1 (en) Self-diagnostic accelerometer with symmetric proof-mass and its preparation method
US20110174074A1 (en) Framed transducer device
US20040025591A1 (en) Accleration sensor
US20120160029A1 (en) Acceleration sensor
KR20090101884A (en) Sensor for detecting acceleration
JPH09113534A (en) Acceleration sensor
US10913652B2 (en) Micromechanical z-inertial sensor
Zhou et al. Analytical study of temperature coefficients of bulk MEMS capacitive accelerometers operating in closed-loop mode
CN108828265B (en) Capacitive micromechanical acceleration sensor
JP2654602B2 (en) Semiconductor dynamic quantity sensor
US7225675B2 (en) Capacitance type dynamic quantity sensor
Yazdi et al. A high sensitivity capacitive microaccelerometer with a folded-electrode structure
JP3036681B2 (en) Capacitive acceleration sensor
US10816568B2 (en) Closed loop accelerometer
US20050066704A1 (en) Method and device for the electrical zero balancing for a micromechanical component
WO2014156119A1 (en) Physical quantity sensor
EP3660519B1 (en) Resonant sensor device
US20110203372A1 (en) Out-of-plane comb-drive accelerometer
JPH0526754A (en) Sensor utilizing change in electrostatic capacitance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees