JP2002071707A - Semiconductor dynamic quantity sensor - Google Patents

Semiconductor dynamic quantity sensor

Info

Publication number
JP2002071707A
JP2002071707A JP2000259399A JP2000259399A JP2002071707A JP 2002071707 A JP2002071707 A JP 2002071707A JP 2000259399 A JP2000259399 A JP 2000259399A JP 2000259399 A JP2000259399 A JP 2000259399A JP 2002071707 A JP2002071707 A JP 2002071707A
Authority
JP
Japan
Prior art keywords
movable electrode
electrode
fixed
semiconductor
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000259399A
Other languages
Japanese (ja)
Inventor
Mineichi Sakai
峰一 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000259399A priority Critical patent/JP2002071707A/en
Priority to US09/925,021 priority patent/US6973829B2/en
Priority to DE10141867A priority patent/DE10141867B4/en
Publication of JP2002071707A publication Critical patent/JP2002071707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Abstract

PROBLEM TO BE SOLVED: To minimize changes in the detection interval between a mobile electrode and fixed electrodes attributed to a temperature change in a semiconductor dynamic quantity sensor for detecting an applied dynamic quantity, based on the changes in the detection interval between the mobile and the fixed electrodes each comprising a semiconductor supported on a support base board. SOLUTION: A rectangular opening part 21 is formed in a support base board 20 being opened on one side thereof, and a mobile electrode 30 and fixed electrodes 40 and 50 are supported at a rim facing the opening part 21. The direction of isolating two supports 34a and 34b facing each other at the mobile electrode 30 is made almost the same as the direction of isolating two supports 41a and 41b and those 51a and 51b respectively facing each other at the fixed electrodes 40 and 50.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、本発明は、支持基
板上に、可動電極と固定電極とを有する半導体よりなる
梁構造体を形成してなり、可動電極と固定電極との間隔
の変化に基づいて印加力学量を検出する半導体力学量セ
ンサに関し、例えば、加速度センサや角速度センサ等に
適用可能である。
The present invention relates to a beam structure comprising a semiconductor having a movable electrode and a fixed electrode formed on a support substrate, and a change in the distance between the movable electrode and the fixed electrode. The present invention relates to a semiconductor dynamic quantity sensor that detects an applied dynamic quantity based on, and can be applied to, for example, an acceleration sensor or an angular velocity sensor.

【0002】[0002]

【従来の技術】この種の半導体力学量センサとしては、
例えば、特開平11−326365号公報に記載のもの
が提案されている。図7に、この種の半導体力学量セン
サの一般的な構成図を示す。ここで、図7において、
(a)は概略平面図、(b)は(a)中のB−B断面図
である。
2. Description of the Related Art As a semiconductor dynamic quantity sensor of this kind,
For example, one disclosed in Japanese Patent Application Laid-Open No. H11-326365 has been proposed. FIG. 7 shows a general configuration diagram of this type of semiconductor dynamic quantity sensor. Here, in FIG.
(A) is a schematic plan view, (b) is BB sectional drawing in (a).

【0003】このものは、図7(b)に示す様に、第1
の半導体層201と第2の半導体層202との間に絶縁
層203を有する半導体基板に半導体製造技術を利用し
た周知のマイクロマシン加工を施すことにより形成され
る。ここで、例えば、両半導体層201、202はシリ
コン(Si)よりなり、絶縁層203はSi酸化膜より
なる。
[0003] As shown in FIG.
It is formed by subjecting a semiconductor substrate having an insulating layer 203 between the semiconductor layer 201 and the second semiconductor layer 202 to a known micromachining utilizing a semiconductor manufacturing technique. Here, for example, the two semiconductor layers 201 and 202 are made of silicon (Si), and the insulating layer 203 is made of a Si oxide film.

【0004】半導体基板の第2の半導体層202に溝を
形成することにより、力学量の印加に応じて変位する可
動電極204と、この可動電極204と検出間隔206
を有して対向する固定電極205と、よりなる梁構造体
が形成されている。図示例では、両電極204、205
は櫛歯状であり、可動電極204は、錘部207とこの
錘部207から突出する棒状部208を備えており、固
定電極205は、側面が可動電極205の棒状部208
の側面に検出間隔206を有して対向する棒状部209
を備えている。
[0004] By forming a groove in the second semiconductor layer 202 of the semiconductor substrate, a movable electrode 204 that is displaced in response to the application of a mechanical quantity, and a detection interval 206 between the movable electrode 204 and the movable electrode 204.
, And a beam structure including the opposing fixed electrode 205 is formed. In the illustrated example, both electrodes 204, 205
The movable electrode 204 includes a weight portion 207 and a rod-shaped portion 208 protruding from the weight portion 207. The fixed electrode 205 has a side surface of the rod-shaped portion 208 of the movable electrode 205.
Bar 209 facing each other with a detection interval 206 on the side surface of
It has.

【0005】ここで、第1の半導体層201及び絶縁層
203により支持基板を構成し、この支持基板には、第
2の半導体層202側の面に開口する開口部210が形
成されている。図示例では、当該支持基板における第1
の半導体層201及び絶縁層203の両層を厚み方向に
貫通するように矩形状の開口部210が形成されてい
る。
Here, a support substrate is formed by the first semiconductor layer 201 and the insulating layer 203, and the support substrate has an opening 210 formed on the surface on the second semiconductor layer 202 side. In the illustrated example, the first in the support substrate
A rectangular opening 210 is formed to penetrate both layers of the semiconductor layer 201 and the insulating layer 203 in the thickness direction.

【0006】そして、錘部207の両端部が、上記開口
部210の縁部のうち対向する1組の辺にて弾性的に支
持固定され、可動電極204は、開口部210上にて印
加力学量(加速度等)に応じて、図7(a)中の矢印X
方向に変位するようになっている。また、固定電極20
5の支持部211は、開口部210の縁部のうち上記1
組の辺とは異なる他の組の辺にて支持基板に支持固定さ
れている。
[0006] Both ends of the weight portion 207 are elastically supported and fixed at a pair of opposing sides of the edge of the opening 210, and the movable electrode 204 is applied on the opening 210 with a dynamic force applied thereto. Arrow X in FIG. 7A according to the amount (acceleration, etc.)
It is displaced in the direction. In addition, the fixed electrode 20
5 support portion 211 is one of the edges of the opening portion 210.
The other side of the set different from the side of the set is supported and fixed to the support substrate.

【0007】かかる半導体力学量センサは、力学量の印
加に応じて可動電極204が変位したとき、検出間隔2
06の変化に基づいて印加力学量を検出するようになっ
ている。例えば、図7(a)中の左側の検出間隔206
に形成される容量を第1の検出容量CS1、右側の検出
間隔206に形成される容量を第2の検出容量CS2と
すると、印加力学量による可動電極204の変位に応じ
て、検出間隔206即ち各検出容量CS1、CS2が変
化し、これを両検出容量CS1、CS2の差分として検
出(差動検出)することにより、印加力学量を検出する
ことができる。
In the semiconductor dynamic quantity sensor, when the movable electrode 204 is displaced in response to the application of the dynamic quantity, the detection interval is set to two.
The applied dynamic quantity is detected on the basis of the change of 06. For example, the detection interval 206 on the left side in FIG.
Is the first detection capacitance CS1 and the capacitance formed in the right detection interval 206 is the second detection capacitance CS2, the detection interval 206, that is, the displacement of the movable electrode 204 due to the applied physical quantity. Each of the detection capacitors CS1 and CS2 changes, and by detecting this as a difference between the two detection capacitors CS1 and CS2 (differential detection), the applied dynamic quantity can be detected.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、本発明
者の検討によれば、この種のセンサにおいては、使用温
度が変化したとき、支持基板201、203や梁構造体
204、205の各部の熱膨張係数の差によって、これ
ら各部が変形するため、可動電極と固定電極との検出間
隔206が伸びたり縮んだりして変化するため、温度特
性が悪化するという問題があることがわかった。
However, according to the study by the present inventors, in this type of sensor, when the operating temperature changes, the heat of each part of the support substrates 201 and 203 and the beam structures 204 and 205 is reduced. It has been found that there is a problem that the temperature characteristics are deteriorated because the respective portions are deformed due to the difference in expansion coefficient, and the detection interval 206 between the movable electrode and the fixed electrode is changed by extending or contracting.

【0009】特に、図7(b)に示す様に、この種のセ
ンサにおいては、支持基板201、203は、その下側
(第1の半導体層201側)が支持基板よりも熱膨張係
数の大きい例えばセラミック(例えばアルミナ等)より
なるパッケージ212に接合されて、該パッケージ21
2に接着剤(例えばポリイミド樹脂等)213を介して
接着固定される。
In particular, as shown in FIG. 7B, in this type of sensor, the supporting substrates 201 and 203 have a lower thermal expansion coefficient on the lower side (on the first semiconductor layer 201 side) than the supporting substrate. The package 21 is joined to a large package 212 made of, for example, ceramic (for example, alumina or the like).
2 are bonded and fixed via an adhesive (for example, polyimide resin) 213.

【0010】そのため、Si、Si酸化膜、接着剤、パ
ッケージ間の熱膨張の差により、図7中の(c)及び
(d)に示す様な変形が起こる。例えば、室温から低温
にした場合、支持基板下のセラミックパッケージ212
の収縮が支持基板よりも大きいので、支持基板201、
203は絶縁層203側へ凸状となるように変形する
(図7(d)参照)。このような支持基板の凸形変形
は、図7(a)中の矢印X方向及びこのX方向と直交す
る方向に沿って発生する。
[0010] For this reason, due to the difference in thermal expansion between Si, the Si oxide film, the adhesive, and the package, the deformation as shown in (c) and (d) in FIG. 7 occurs. For example, when the temperature is changed from room temperature to low temperature, the ceramic package 212 under the support substrate is used.
Of the support substrate 201,
203 is deformed so as to be convex toward the insulating layer 203 (see FIG. 7D). Such a convex deformation of the support substrate occurs along the arrow X direction in FIG. 7A and a direction orthogonal to the X direction.

【0011】この場合、可動電極204は、上記矢印X
方向に沿って伸びるように変形するのに対し、固定電極
205は、可動電極204とは異なり、扇状に変形す
る。つまり、図7(c)中に示す様に、検出間隔206
は、上記矢印X方向の両端に位置する固定電極の棒状部
209のうち一端側(図中、上方側)の棒状部209a
において縮み、他端側(図中、下方側)の棒状部209
bにおいて伸びる。
In this case, the movable electrode 204 corresponds to the arrow X
In contrast to the movable electrode 204, the fixed electrode 205 deforms in a fan shape while being deformed so as to extend along the direction. That is, as shown in FIG.
Is a rod-shaped part 209a on one end side (upper side in the figure) of the rod-shaped parts 209 of the fixed electrode located at both ends in the arrow X direction.
At the other end (the lower side in the figure) of the rod-shaped portion 209.
It stretches at b.

【0012】以上のように、従来の半導体力学量センサ
においては、可動電極、固定電極、支持基板、更には、
このセンサが配設されるパッケージ等の各構成材料の熱
膨張係数の差により、可動電極と固定電極が温度変化に
よる変形を受けるが、可動電極と固定電極とで変形の仕
方が異なるため、検出間隔が変位してしまう。
As described above, in a conventional semiconductor dynamic quantity sensor, a movable electrode, a fixed electrode, a support substrate, and
The movable electrode and the fixed electrode undergo deformation due to a temperature change due to the difference in the thermal expansion coefficients of the constituent materials of the package and the like in which the sensor is provided. However, the deformation method differs between the movable electrode and the fixed electrode. The gap is displaced.

【0013】そこで、本発明は上記問題に鑑み、支持基
板と、支持基板に支持された半導体よりなる可動電極及
び固定電極とを有し、これら可動及び固定電極の間の検
出間隔の変化に基づいて印加力学量を検出するようにし
た半導体力学量センサにおいて、温度変化による可動電
極と固定電極との検出間隔の変化を極力抑制することを
目的とする。
In view of the above problems, the present invention has a support substrate, a movable electrode and a fixed electrode made of a semiconductor supported on the support substrate, and based on a change in a detection interval between the movable and fixed electrodes. An object of the present invention is to minimize a change in a detection interval between a movable electrode and a fixed electrode due to a temperature change in a semiconductor dynamic quantity sensor configured to detect an applied dynamic quantity.

【0014】[0014]

【課題を解決するための手段】本発明は、上記した温度
変化による可動電極及び固定電極の変形は、これら電極
の支持基板への支持部から応力を受け、この応力方向に
変形が発生することから、この電極支持部の配置構成を
工夫し、可動電極と固定電極の変形方向を極力同一方向
とすることに着目してなされたものである。
According to the present invention, the deformation of the movable electrode and the fixed electrode due to the above-mentioned temperature change is caused by receiving a stress from a support portion of the electrode to the supporting substrate and causing a deformation in the direction of the stress. Accordingly, the arrangement of the electrode support is devised so that the deformation direction of the movable electrode and the fixed electrode is made to be the same direction as much as possible.

【0015】即ち、請求項1記載の発明では、一面側に
開口する開口部(21)が形成された支持基板(20)
と、この支持基板に支持され開口部上にて力学量の印加
に応じて変位する半導体よりなる可動電極(30)と、
支持基板に支持され開口部上にて可動電極と検出間隔
(60)を有して対向する半導体よりなる固定電極(4
0、50)とを備え、力学量の印加に応じて可動電極が
変位したとき検出間隔の変化に基づいて印加力学量を検
出する半導体力学量センサにおいて、可動電極の支持基
板への支持部(34a、34b)および固定電極の支持
基板への支持部(41a、41b、51a、51b)を
それぞれ、対向する開口部の両縁部に位置させ、可動電
極における両支持部を隔てる方向と、固定電極における
両支持部を隔てる方向とを、略同一としたことを特徴と
している。
That is, according to the first aspect of the present invention, the support substrate (20) in which the opening (21) opening on one side is formed.
A movable electrode (30) made of a semiconductor supported by the support substrate and displaced on the opening in response to the application of a mechanical quantity;
A fixed electrode (4) made of a semiconductor supported by the support substrate and opposed to the movable electrode on the opening with a detection interval (60).
0, 50), wherein the movable electrode is displaced in response to the application of the dynamic quantity, and the applied dynamic quantity is detected based on a change in the detection interval. 34a, 34b) and the support portions (41a, 41b, 51a, 51b) of the fixed electrode to the support substrate are respectively located at both edges of the opposing opening, and the direction in which the two support portions of the movable electrode are separated from each other is fixed. It is characterized in that the direction separating the two support portions in the electrode is substantially the same.

【0016】本発明によれば、可動電極の両支持部、固
定電極の両支持部は共に、開口部を挟んで略同一方向に
隔てられているため、支持基板の変形によって支持部か
ら加わる応力の方向が、可動電極と固定電極とで略同一
となる。つまり、温度変化が発生しても可動電極及び固
定電極は互いに、それぞれの両支持部の間で略同一方向
に伸びたり縮んだりするように変形する。
According to the present invention, since both support portions of the movable electrode and both support portions of the fixed electrode are separated in substantially the same direction with the opening therebetween, the stress applied from the support portion due to the deformation of the support substrate. Are substantially the same for the movable electrode and the fixed electrode. That is, even if a temperature change occurs, the movable electrode and the fixed electrode deform so as to extend and contract in substantially the same direction between the respective support portions.

【0017】そのため、温度変化による可動電極の変形
の方向と固定電極の変形の方向とが略同一となり、結果
的に、本発明によれば、温度変化による可動電極と固定
電極との検出間隔の変化を極力抑制することができる。
Therefore, the direction of the deformation of the movable electrode due to the temperature change is substantially the same as the direction of the deformation of the fixed electrode. As a result, according to the present invention, the detection interval between the movable electrode and the fixed electrode due to the temperature change is reduced. The change can be suppressed as much as possible.

【0018】また、請求項2記載の発明では、可動電極
(30)における両支持部(34a、34b)を結ぶ軸
と、固定電極(40、50)における両支持部(41
a、41b、51a、51b)を結ぶ軸とが平行である
ことを特徴としている。
Further, according to the second aspect of the present invention, the axis connecting the two support portions (34a, 34b) of the movable electrode (30) and the two support portions (41) of the fixed electrode (40, 50) are provided.
a, 41b, 51a, 51b) are parallel to an axis connecting them.

【0019】それによれば、支持基板の変形によって支
持部から加わる応力の方向を、可動電極と固定電極とで
一致させることができるため、より高レベルにて請求項
1の発明の効果を実現することができる。
According to this, since the direction of the stress applied from the supporting portion due to the deformation of the supporting substrate can be made to coincide between the movable electrode and the fixed electrode, the effect of the first aspect of the present invention is realized at a higher level. be able to.

【0020】また、請求項3記載の発明のように、開口
部(21)を矩形とした場合には、可動電極(30)に
おける両支持部(34a、34b)、固定電極(40、
50)における両支持部(41a、41b、51a、5
1b)を共に、開口部の縁部のうち対向する同一組の辺
に位置して隔てられるように配置することができる。
When the opening (21) is rectangular as in the third aspect of the present invention, both the support portions (34a, 34b) of the movable electrode (30) and the fixed electrode (40,
50) (41a, 41b, 51a, 5)
1b) can be arranged so as to be located and separated on the same set of opposing sides of the edge of the opening.

【0021】また、請求項4記載の発明は、可動電極及
び固定電極の具体的構成を提供するものであり、可動電
極(30)は、その両端がそれぞれ支持基板(20)へ
の支持部(34a、34b)に連結された錘部(31)
とこの錘部から突出する棒状部(32)とよりなり、固
定電極(40、50)は、その両端がそれぞれ支持基板
への支持部(41a、41b、51a、51b)に連結
された連結部(42、52)とこの連結部から突出し側
面が可動電極の棒状部の側面に検出間隔(60)を有し
て対向する棒状部(43、53)とよりなるものとする
ことができる。
The invention according to claim 4 provides a specific configuration of the movable electrode and the fixed electrode, and the movable electrode (30) has both ends of the support portion (20) to the support substrate (20). Weight portion (31) connected to the first and second weight portions (34a, 34b)
And the rod-shaped portion (32) protruding from the weight portion, and the fixed electrodes (40, 50) are connected at both ends to the support portions (41a, 41b, 51a, 51b) to the support substrate, respectively. (42, 52) and a bar-shaped portion (43, 53) that protrudes from the connecting portion and whose side surface faces the side surface of the rod-shaped portion of the movable electrode with a detection interval (60).

【0022】さらに、請求項4のような電極構成とした
場合には、請求項5記載の発明のように、連結部(4
2、52)の途中部に、可動電極(30)における支持
部(34a、34b)へ向かうように曲がった曲がり部
(44、54)を形成することが好ましい。。
Further, in the case of the electrode configuration as in the fourth aspect, as in the fifth aspect of the invention, the connecting portion (4
It is preferable to form a bend (44, 54) in the middle of (2, 52) in such a manner as to be bent toward the support (34a, 34b) of the movable electrode (30). .

【0023】それによれば、固定電極における連結部の
両端を、曲がり部を介して可動電極における支持部へ近
づけることができる。そのため、固定電極における支持
部を、可動電極における支持部に極力近接させることが
でき、両電極において支持部から加わる応力の大きさを
極力同程度とすることができ好ましい。
According to this, both ends of the connection portion of the fixed electrode can be brought closer to the support portion of the movable electrode via the bent portion. Therefore, the supporting portion of the fixed electrode can be made as close as possible to the supporting portion of the movable electrode, and the magnitude of the stress applied from the supporting portion in both electrodes can be made as small as possible.

【0024】なお、上記各手段の括弧内の符号は、後述
する実施形態に記載の具体的手段との対応関係を示す一
例である。
The reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in the embodiments described later.

【0025】[0025]

【発明の実施の形態】以下、本発明を図に示す実施形態
について説明する。本実施形態は、半導体力学量センサ
として、差動容量式の半導体加速度センサについて本発
明を適用したものである。図1に半導体加速度センサ1
00の平面構成を示し、図2に図1中のA−A線に沿っ
た模式的な断面構造を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention. In the present embodiment, the present invention is applied to a differential capacitance type semiconductor acceleration sensor as a semiconductor dynamic quantity sensor. FIG. 1 shows a semiconductor acceleration sensor 1
FIG. 2 shows a schematic cross-sectional structure along the line AA in FIG.

【0026】半導体加速度センサ(以下、単にセンサと
いう)100は、上記図7に示した従来のセンサと同
様、半導体基板に周知のマイクロマシン加工を施すこと
により形成される。センサ100を構成する半導体基板
は、図2に示す様に、第1の半導体層としての第1シリ
コン基板11と第2の半導体層としての第2シリコン基
板12との間に絶縁層としての酸化膜13を有する矩形
状のSOI基板10である。ここで、第1シリコン基板
11及び酸化膜13が本発明でいう支持基板20に相当
する。
A semiconductor acceleration sensor (hereinafter, simply referred to as a sensor) 100 is formed by subjecting a semiconductor substrate to a known micromachining process, similarly to the conventional sensor shown in FIG. As shown in FIG. 2, a semiconductor substrate constituting the sensor 100 includes an oxidation layer serving as an insulating layer between a first silicon substrate 11 serving as a first semiconductor layer and a second silicon substrate 12 serving as a second semiconductor layer. This is a rectangular SOI substrate 10 having a film 13. Here, the first silicon substrate 11 and the oxide film 13 correspond to the support substrate 20 in the present invention.

【0027】支持基板20には、第2シリコン基板12
側の面(支持基板の一面)に開口する開口部21が形成
されている。また、第2シリコン基板12には、トレン
チエッチング等によって溝を形成することにより、可動
電極30及び固定電極40、50よりなる梁構造体(本
例では櫛歯形状)が形成されている。本例では、開口部
21は、支持基板20のうち上記梁構造体30〜50が
形成される領域を、異方性エッチング等によって厚み方
向に貫通するように矩形状に除去した部分として構成さ
れている。
The support substrate 20 includes a second silicon substrate 12
An opening 21 is formed on the side surface (one surface of the support substrate). Further, a beam structure (in this example, a comb-like shape) including the movable electrode 30 and the fixed electrodes 40 and 50 is formed in the second silicon substrate 12 by forming a groove by trench etching or the like. In the present example, the opening 21 is formed as a portion of the support substrate 20 in which a region where the beam structures 30 to 50 are formed is rectangularly removed so as to penetrate in the thickness direction by anisotropic etching or the like. ing.

【0028】半導体(本例ではシリコン)よりなる可動
電極30は、支持基板20に支持され開口部21上にて
力学量の印加に応じて変位するものである。本例では、
可動電極30は、開口部21の縁部のうち対向する1組
の辺の間にて開口部21上を横断するように配置されて
いる。この可動電極30は、錘部(本例では矩形状)3
1とこの錘部31から突出する棒状部(以下、可動棒状
部という)32とより構成されている。
The movable electrode 30 made of a semiconductor (in this example, silicon) is supported by the support substrate 20 and is displaced on the opening 21 in response to the application of a physical quantity. In this example,
The movable electrode 30 is disposed so as to cross over the opening 21 between a pair of opposing sides of the edge of the opening 21. The movable electrode 30 has a weight (a rectangular shape in this example) 3
1 and a rod-shaped portion (hereinafter, referred to as a movable rod-shaped portion) 32 protruding from the weight portion 31.

【0029】錘部31の両端は、梁部(本例では矩形枠
状)33を介してアンカー部34a及び34bに一体に
連結した構成となっている。つまり、これら両アンカー
部34a及び34bは、対向する開口部21の両縁部に
位置して支持基板20に支持固定されており、各々のア
ンカー部34a、34bは本発明でいう可動電極の支持
基板への支持部として構成されている。
Both ends of the weight 31 are integrally connected to anchors 34a and 34b via beams 33 (in this example, rectangular frames). That is, the anchor portions 34a and 34b are supported and fixed to the support substrate 20 at both edges of the opening 21 facing each other, and the anchor portions 34a and 34b support the movable electrode in the present invention. It is configured as a support for the substrate.

【0030】また、本例では、錘部31から突出する可
動棒状部32は、可動電極の変位方向Xと直交する方向
にて、錘部31の両側面から互いに反対方向へ延びるよ
うに複数個(図示例では4個ずつ)突出形成されてい
る。そして、これら可動棒状部32は、例えば断面矩形
の梁状に形成されている。
In this embodiment, a plurality of movable rods 32 protruding from the weight 31 extend in opposite directions from both sides of the weight 31 in a direction orthogonal to the displacement direction X of the movable electrode. The projections are formed (four in the illustrated example). These movable rod-shaped portions 32 are formed, for example, in a beam shape having a rectangular cross section.

【0031】ここで、梁部33は、その梁の長手方向と
直交する方向に変位するバネ機能を有し、図1中の矢印
X方向の成分を含む加速度を受けたときに錘部31を矢
印X方向へ変位させるとともに、加速度の消失に応じて
元の状態に復元させる。よって、可動電極30は、加速
度の印加に応じて開口部21上にて変位可能となってい
る。以下、図1中の矢印X方向を可動電極の変位方向X
という。
Here, the beam portion 33 has a spring function of being displaced in a direction perpendicular to the longitudinal direction of the beam, and when receiving an acceleration including a component in the direction of the arrow X in FIG. Displaced in the direction of arrow X, and restored to the original state according to the disappearance of the acceleration. Therefore, the movable electrode 30 can be displaced on the opening 21 in response to the application of the acceleration. Hereinafter, the direction of arrow X in FIG.
That.

【0032】半導体(本例ではシリコン)よりなる固定
電極40、50は、支持基板20に支持され開口部21
上にて可動電極30と検出間隔60を有して対向するも
のである。本例では、固定電極40は、可動電極30の
変位方向Xを軸として両側(図1では可動電極の左右両
側)に設けられている。ここで、可動電極30の左側を
第1の固定電極40、可動電極30の右側を第2の固定
電極50とする。
The fixed electrodes 40 and 50 made of a semiconductor (silicon in this example) are supported by the support substrate 20 and have openings 21.
It is opposed to the movable electrode 30 with a detection interval 60 above. In this example, the fixed electrodes 40 are provided on both sides (the left and right sides of the movable electrode in FIG. 1) with the displacement direction X of the movable electrode 30 as an axis. Here, the left side of the movable electrode 30 is a first fixed electrode 40, and the right side of the movable electrode 30 is a second fixed electrode 50.

【0033】各固定電極40、50はそれぞれ、可動電
極20と同一方向へ開口部21上を横断するように配置
されており、その両端がアンカー部41a、41b、5
1a、51bを介して支持基板20に支持固定されてい
る。つまり、各固定電極40、50における両アンカー
部は、開口部21の縁部のうち上記可動電極30のアン
カー部34a、34bが位置する箇所と同じ組の対向辺
に位置して隔てられており、本発明でいう固定電極の支
持基板への支持部として構成されている。
Each of the fixed electrodes 40, 50 is disposed so as to cross over the opening 21 in the same direction as the movable electrode 20, and both ends thereof are anchor portions 41a, 41b, 5b.
It is supported and fixed to the support substrate 20 via 1a and 51b. In other words, both anchor portions of the fixed electrodes 40 and 50 are separated by being located on the same set of opposing sides of the edge portion of the opening 21 as the location where the anchor portions 34a and 34b of the movable electrode 30 are located. , Is configured as a supporting portion of the fixed electrode to the supporting substrate in the present invention.

【0034】各固定電極40、50は、その両端がそれ
ぞれアンカー部41a、41b、51a、51bに連結
された連結部42、52と、この連結部42、52から
突出する棒状部(以下、固定棒状部という)43、53
とより構成されている。また、この固定棒状部43は、
その側面が可動棒状部32の側面に上記検出間隔60を
有して対向している。
Each of the fixed electrodes 40, 50 has a connecting portion 42, 52 whose both ends are connected to anchor portions 41a, 41b, 51a, 51b, respectively, and a rod-like portion (hereinafter, fixed) protruding from the connecting portion 42, 52. 43, 53
It is composed of In addition, this fixed rod-shaped portion 43
The side faces the side face of the movable rod 32 with the above-mentioned detection interval 60.

【0035】本例では、各固定電極40、50におい
て、各固定棒状部43、53は、可動電極の変位方向X
と直交する方向にて連結部42、52から延びるよう
に、複数個(図示例では4個ずつ)形成されている。そ
して、これら固定棒状部43、53は、例えば断面矩形
の梁状に形成されている。
In this example, in each of the fixed electrodes 40 and 50, each of the fixed rod-shaped portions 43 and 53 is moved in the displacement direction X of the movable electrode.
A plurality (four in the illustrated example) is formed so as to extend from the connecting portions 42 and 52 in a direction perpendicular to the direction. And these fixed bar-shaped parts 43 and 53 are formed in the shape of a beam with a rectangular cross section, for example.

【0036】また、本例では、各連結部42、52の途
中部には、可動電極30の各アンカー部34a、34b
へ向かうように曲がった曲がり部(図示例ではL字状に
曲がっている)44、54が形成されている。
In the present embodiment, each of the anchor portions 34a, 34b of the movable electrode 30 is provided in the middle of each of the connecting portions 42, 52.
Bent portions (bent in an L-shape in the illustrated example) 44 and 54 are formed so as to bend toward.

【0037】このように、本実施形態では、可動電極3
0のアンカー部34a、34bおよび固定電極40、5
0のアンカー部41a、41b、51a、51bをそれ
ぞれ、対向する開口部21の両縁部に位置させるととも
に、可動電極30において互いに対向する両アンカー部
34a、34bを隔てる方向と、第1の固定電極40に
おいて互いに対向する両アンカー部41a、41bを隔
てる方向と、第2の固定電極50において互いに対向す
る両アンカー部51a、51bを隔てる方向とを、略同
一としている。
As described above, in the present embodiment, the movable electrode 3
0 anchor portions 34a, 34b and fixed electrodes 40, 5
0 anchor portions 41a, 41b, 51a, and 51b are respectively located at both edges of the opening 21 facing each other, and the direction in which the opposite anchor portions 34a, 34b are separated from each other in the movable electrode 30, and the first fixing The direction separating the two anchor portions 41a and 41b facing each other in the electrode 40 is substantially the same as the direction separating the two anchor portions 51a and 51b facing each other in the second fixed electrode 50.

【0038】換言すれば、可動電極30の両アンカー部
34a、34bが開口部21を挟んで並んでいる方向
(並び方向)と、第1の固定電極40の両アンカー部4
1a、41bの並び方向と、第2の固定電極50の両ア
ンカー部51a、51bの並び方向とが略同一となって
いる。
In other words, the direction (arrangement direction) in which the anchor portions 34a and 34b of the movable electrode 30 are arranged with the opening 21 interposed therebetween, and the both anchor portions 4 of the first fixed electrode 40
The arrangement direction of 1a, 41b and the arrangement direction of both anchor portions 51a, 51b of the second fixed electrode 50 are substantially the same.

【0039】この構成を好適に実現するために、特に、
本例では、開口部21を矩形としており、可動電極30
における両アンカー部34a、34b、各固定電極4
0、50における両アンカー部41aと41b、51a
と51bを共に、開口部21の縁部のうち対向する同一
組の辺に位置して隔てられるように配置している。
In order to suitably realize this configuration, in particular,
In this example, the opening 21 is rectangular, and the movable electrode 30
Anchor portions 34a, 34b and fixed electrodes 4
Both anchor portions 41a and 41b, 51a at 0, 50
And 51b are arranged so as to be located and separated on the same set of opposing sides of the edge of the opening 21.

【0040】さらに、本例では、図1に示す様に、可動
電極30における両アンカー部34aと34bを結ぶ軸
と、各固定電極40、50における両アンカー部41a
と41b、51aと51bを結ぶ軸とを平行となるよう
にしている。つまり、これら各軸が上記可動電極の変位
方向Xと平行となっている。
Further, in this embodiment, as shown in FIG. 1, an axis connecting both anchor portions 34a and 34b of the movable electrode 30 and both anchor portions 41a of the fixed electrodes 40 and 50 are provided.
And 41b, and the axis connecting 51a and 51b is made parallel. That is, these axes are parallel to the displacement direction X of the movable electrode.

【0041】また、可動電極30、第1の固定電極4
0、第2の固定電極50は、各々電気的に独立してお
り、可動棒状部32と各固定棒状部43、53との間、
即ち検出間隔60には容量(検出容量)が形成される。
ここで、可動棒状部32と第1の固定電極40の固定棒
状部43との検出間隔60に形成される容量を第1の検
出容量CS1、可動棒状部32と第2の固定電極50の
固定棒状部53との検出間隔60に形成される容量を第
2の検出容量CS2とする。
The movable electrode 30 and the first fixed electrode 4
0, the second fixed electrode 50 is electrically independent of each other, between the movable rod 32 and each of the fixed rods 43, 53,
That is, a capacitance (detection capacitance) is formed at the detection interval 60.
Here, the capacitance formed at the detection interval 60 between the movable rod 32 and the fixed rod 43 of the first fixed electrode 40 is defined as the first detection capacitance CS1, and the movable rod 32 and the second fixed electrode 50 are fixed. The capacitance formed at the detection interval 60 with respect to the rod 53 is referred to as a second detection capacitance CS2.

【0042】また、支持基板20上の所定位置には、可
動電極30と導通する可動電極パッド35、第1の固定
電極40と導通する第1の固定電極パッド45、及び、
第2の固定電極50と導通する第2の固定電極パッド5
5が形成されている。図1に示す例では、これら各パッ
ド35、45、55はそれぞれ、各電極30、40、5
0の両アンカー部のうち図1中の下側のアンカー部34
b、41b、51bと導通するように配置され、例えば
アルミニウム等により形成される。
Further, at predetermined positions on the support substrate 20, a movable electrode pad 35 which is electrically connected to the movable electrode 30, a first fixed electrode pad 45 which is electrically connected to the first fixed electrode 40, and
Second fixed electrode pad 5 conducting to second fixed electrode 50
5 are formed. In the example shown in FIG. 1, these pads 35, 45, and 55 are respectively connected to the electrodes 30, 40, 5,
0 of the two anchor portions of FIG.
b, 41b, and 51b, and are formed, for example, by aluminum or the like.

【0043】更に、錘部31、可動棒状部32及び各固
定棒状部43、53には、開口部21側から反対側に貫
通する矩形状の貫通孔70が複数形成されており、これ
ら貫通孔70により、矩形枠状部を複数組み合わせた所
謂ラーメン構造形状が形成されている。これにより、可
動電極30、各固定電極40、50の軽量化、捩じり強
度の向上がなされている。
Further, a plurality of rectangular through-holes 70 penetrating from the opening 21 side to the opposite side are formed in the weight portion 31, the movable rod-shaped portion 32, and the fixed rod-shaped portions 43, 53. By 70, a so-called ramen structure shape in which a plurality of rectangular frame portions are combined is formed. As a result, the weight of the movable electrode 30 and each of the fixed electrodes 40 and 50 are reduced, and the torsional strength is improved.

【0044】また、図2に示す様に、本センサ100
は、第1シリコン基板11の裏面(酸化膜13とは反対
側の面)側において接着剤(例えばポリイミド樹脂等)
81を介してパッケージ80に接着固定されている。
Further, as shown in FIG.
Is an adhesive (for example, polyimide resin or the like) on the back surface (the surface opposite to the oxide film 13) of the first silicon substrate 11
It is adhesively fixed to the package 80 via 81.

【0045】このパッケージ80は、例えばアルミナ等
のセラミックよりなるものであり、後述する回路手段9
0が収納されている。そして、この回路手段90と上記
の各電極パッド35、45、55とは、金もしくはアル
ミニウムのワイヤボンディング等により形成されたワイ
ヤ(図示せず)等により電気的に接続されている。
This package 80 is made of, for example, a ceramic such as alumina, and has a circuit means 9 to be described later.
0 is stored. The circuit means 90 is electrically connected to each of the electrode pads 35, 45, and 55 by a wire (not shown) formed by gold or aluminum wire bonding or the like.

【0046】次に、上記のように構成されたセンサ10
0の作動について述べる。本センサ100は加速度の印
加に応じて可動電極30が変位方向Xへ変位したとき、
上記した第1の検出容量(CS1)と第2の検出容量
(CS2)との差分に基づいて印加加速度を検出する差
動容量式の加速度センサである。図3は、センサ100
の上記検出回路90を示す図(検出回路図)である。
Next, the sensor 10 constructed as described above is used.
The operation of 0 will be described. When the movable electrode 30 is displaced in the displacement direction X in response to the application of acceleration,
This is a differential capacitance type acceleration sensor that detects applied acceleration based on the difference between the first detection capacitance (CS1) and the second detection capacitance (CS2). FIG.
FIG. 3 is a diagram (detection circuit diagram) showing the detection circuit 90 of FIG.

【0047】検出回路90において、91はスイッチド
キャパシタ回路(SC回路)であり、このSC回路91
は、容量がCfであるコンデンサ92、スイッチ93及
び差動増幅回路94を備え、入力された容量差(CS1
−CS2)を電圧に変換するものである。
In the detection circuit 90, reference numeral 91 denotes a switched capacitor circuit (SC circuit).
Includes a capacitor 92 having a capacitance of Cf, a switch 93, and a differential amplifier circuit 94.
−CS2) into a voltage.

【0048】また、この検出回路90に対するタイミン
グチャートの一例を図4に示す。上記センサ100にお
いては、例えば、第1の固定電極パッド45から搬送波
1(例えば、周波数100kHz、振幅0〜5V)、第
2の固定電極パッド55から搬送波1と位相が180°
ずれた搬送波2(例えば、周波数100kHz、振幅5
〜0V)を入力し、SC回路91のスイッチ93を図に
示すタイミングで開閉する。そして、印加加速度は、下
記の数式1に示す様に、電圧値V0として出力される。
FIG. 4 shows an example of a timing chart for the detection circuit 90. In the sensor 100, for example, the carrier wave 1 (for example, frequency 100 kHz, amplitude 0 to 5 V) from the first fixed electrode pad 45 and the carrier wave 1 from the second fixed electrode pad 55 are 180 ° in phase.
Shifted carrier 2 (eg, frequency 100 kHz, amplitude 5
00 V), and the switch 93 of the SC circuit 91 is opened and closed at the timing shown in FIG. Then, the applied acceleration is output as a voltage value V0 as shown in the following Expression 1.

【0049】[0049]

【数1】V0=(CS1−CS2)・V/Cf ここで、Vは両固定電極パッド45、55の間の電圧差
である。こうして出力される電圧値V0により上記可動
電極の変位方向Xに沿った印加加速度が検出される。
V0 = (CS1−CS2) · V / Cf Here, V is a voltage difference between the fixed electrode pads 45 and 55. The applied acceleration along the displacement direction X of the movable electrode is detected from the voltage value V0 output in this manner.

【0050】ところで、本センサ100においては、使
用温度が変化したとき、可動及び固定電極40、50、
支持基板20、接着剤81、パッケージ80を構成する
各材料(半導体、酸化膜、樹脂、セラミック)の熱膨張
係数の差により、支持基板20には反り等の変形が生じ
る。
In the present sensor 100, when the operating temperature changes, the movable and fixed electrodes 40, 50,
Due to the difference in the thermal expansion coefficients of the materials (semiconductor, oxide film, resin, ceramic) constituting the support substrate 20, the adhesive 81, and the package 80, the support substrate 20 is deformed such as warpage.

【0051】例えば、支持基板20が梁構造体30〜5
0の形成面側に凸となるように変形した場合を考える。
図5は、このような変形が起きた場合における本実施形
態の作用を説明するための図であり、図6は、上記図7
に示した従来の半導体力学量センサにおける固定電極へ
の応力印加方向を示す図である。
For example, when the support substrate 20 is formed of the beam structures 30 to 5
Consider a case where the shape is deformed so as to be convex toward the surface on which 0 is formed.
FIG. 5 is a diagram for explaining the operation of the present embodiment when such a deformation occurs, and FIG.
FIG. 7 is a diagram showing a direction in which stress is applied to a fixed electrode in the conventional semiconductor dynamic quantity sensor shown in FIG.

【0052】本実施形態では、可動電極30の両アンカ
ー部(両支持部)34aと34b、各固定電極40、5
0の両アンカー部(両支持部)41aと41b、51a
と51bは共に、開口部21を挟んで略同一方向に隔て
られている(並んでいる)ため、支持基板20の変形に
よってアンカー部から加わる応力の方向が、可動電極3
0と固定電極40、50とで略同一となるつまり、図5
(a)、(b)に示す様に、温度変化が発生して支持基
板20が凸状に変形しても、可動電極30、第1の固定
電極40、第2の固定電極50は、それぞれの両アンカ
ー部34aと34bとの間、両アンカー部41aと41
bとの間、両アンカー部51aと51bとの間で略同一
方向(本例では、可動電極の変位方向X、図5中の白抜
き矢印方向)に沿って伸びたり縮んだりするように変形
する。
In the present embodiment, both anchor portions (both support portions) 34a and 34b of the movable electrode 30 and the fixed electrodes 40, 5
0 Both anchor portions (both support portions) 41a and 41b, 51a
And 51b are both separated (arranged) in substantially the same direction across the opening 21, so that the direction of the stress applied from the anchor portion by the deformation of the support substrate 20 is
0 and the fixed electrodes 40 and 50 are substantially the same.
As shown in (a) and (b), even if a temperature change occurs and the support substrate 20 is deformed in a convex shape, the movable electrode 30, the first fixed electrode 40, and the second fixed electrode 50 Between both anchor portions 34a and 34b, and both anchor portions 41a and 41b.
b, and between the anchor portions 51a and 51b so as to expand or contract in substantially the same direction (in this example, the displacement direction X of the movable electrode, the direction of the outlined arrow in FIG. 5). I do.

【0053】そのため、本実施形態によれば、温度変化
による可動電極30の変形の方向と固定電極40、50
の変形の方向とが略同一となり、結果的に、本実施形態
によれば、温度変化による可動電極30と固定電極4
0、50との検出間隔60の変化を極力抑制することが
できる。
Therefore, according to the present embodiment, the direction of the deformation of the movable electrode 30 due to the temperature change and the fixed electrodes 40, 50
Of the movable electrode 30 and the fixed electrode 4 due to the temperature change.
A change in the detection interval 60 between 0 and 50 can be suppressed as much as possible.

【0054】ちなみに、本実施形態に対して、従来のセ
ンサ固定電極205の支持部211は、開口部210の
縁部のうち可動電極204の位置する対向辺とは異なる
組の対向辺に位置している(上記図7参照)。そのた
め、支持基板201、203が凸状に反ると、固定電極
205には、支持部211から図6中の白抜き矢印に示
す様に、可動電極とは異なる方向へも応力が加わる。よ
って、従来のセンサでは、可動電極と固定電極とで変形
の仕方が異なるため、検出間隔が変位してしまう。
Incidentally, in contrast to the present embodiment, the support portion 211 of the conventional sensor fixed electrode 205 is located on a different set of opposing sides of the edge of the opening 210 from the opposing side where the movable electrode 204 is located. (See FIG. 7 above). Therefore, when the support substrates 201 and 203 are warped in a convex shape, stress is applied to the fixed electrode 205 from the support portion 211 in a direction different from that of the movable electrode as shown by a white arrow in FIG. Therefore, in the conventional sensor, the detection interval is displaced because the manner of deformation differs between the movable electrode and the fixed electrode.

【0055】特に、本実施形態においては、上記図1に
示した様に、可動電極30における両アンカー部34a
と34bを結ぶ軸と、各固定電極40、50における両
アンカー部41aと41b、51aと51bを結ぶ軸と
を平行とすることが好ましい。それにより、支持基板2
0の変形によってアンカー部から加わる応力の方向を、
可動電極と固定電極とで一致させることができるため、
より高レベルにて検出間隔60の変化抑制の効果を実現
することができる。
In particular, in this embodiment, as shown in FIG. 1, both anchor portions 34a of the movable electrode 30 are provided.
It is preferable that the axis connecting the fixed electrodes 40b and 34b and the axis connecting the two anchor portions 41a and 41b and 51a and 51b of the fixed electrodes 40 and 50 are parallel to each other. Thereby, the supporting substrate 2
The direction of the stress applied from the anchor part by the deformation of 0
Because the movable electrode and the fixed electrode can be matched,
At a higher level, the effect of suppressing the change in the detection interval 60 can be realized.

【0056】また、本センサ100では、可動電極30
を錘部31と棒状部32より構成し、固定電極40、5
0を連結部42、52と棒状部43、53とより構成し
た場合において、上記図1に示す様に、各連結部42、
52の途中部に、可動電極30の各アンカー部34a、
34bへ向かうように曲がった曲がり部44、54を形
成した好ましい形態を採用している。
In the present sensor 100, the movable electrode 30
Are composed of a weight portion 31 and a rod-shaped portion 32, and the fixed electrodes 40, 5
In the case where 0 is composed of connecting portions 42, 52 and rod-shaped portions 43, 53, as shown in FIG.
52, each anchor portion 34a of the movable electrode 30;
A preferred form in which the bent portions 44 and 54 bent toward the direction 34b are adopted.

【0057】それによれば、各連結部42、52の両端
を、曲がり部44、54を介して可動電極30の各アン
カー部34a、34bへ近づけることができる。そのた
め、固定電極40、50におけるアンカー部41a等
を、可動電極30の各アンカー部34a、34bに極力
近接させた形を実現でき、可動電極30と固定電極4
0、50とで、アンカー部34a、41a等から加わる
応力の大きさを極力同程度とすることができ好ましい。
According to this, both ends of the connecting portions 42 and 52 can be brought closer to the anchor portions 34a and 34b of the movable electrode 30 via the bent portions 44 and 54. Therefore, the anchor portions 41a and the like of the fixed electrodes 40 and 50 can be realized as close as possible to the anchor portions 34a and 34b of the movable electrode 30.
The values of 0 and 50 are preferable because the magnitude of the stress applied from the anchor portions 34a and 41a can be made as much as possible.

【0058】(他の実施形態)なお、一面側に開口する
開口部が形成された支持基板としては、シリコン等の半
導体でなくてもガラスやセラミック等の材料でも良い。
また、開口部の開口形状も矩形に限定されるものではな
く、円形、四角以外の多角形等であっても良い。
(Other Embodiments) The support substrate having an opening formed on one surface side is not limited to a semiconductor such as silicon, but may be a material such as glass or ceramic.
The shape of the opening is not limited to a rectangle, but may be a circle, a polygon other than a square, or the like.

【0059】さらに、開口部は支持基板を貫通するもの
でなくとも、一面側に開口した凹部であっても良い。例
えば、上記図2に示されるSOI(シリコン−オン−イ
ンシュレータ)基板10おいて、開口部の形成領域に位
置する酸化膜13を犠牲層エッチング等によって除去
し、第1シリコン基板11は残すようにして、凹部とし
ての開口部を形成しても良い。
Further, the opening does not have to penetrate the support substrate, but may be a concave opening on one side. For example, in the SOI (silicon-on-insulator) substrate 10 shown in FIG. 2, the oxide film 13 located in the formation region of the opening is removed by sacrifice layer etching or the like so that the first silicon substrate 11 remains. Thus, an opening as a recess may be formed.

【0060】また、可動電極、固定電極は上記図1に示
す櫛歯形状以外にも、互いの電極が検出間隔を有して対
向するような形状であれば、任意の幾何学的形状を採用
することができる。また、検出間隔も複数個でなく1個
でも良い。
The movable electrode and the fixed electrode may have any geometric shape other than the comb shape shown in FIG. 1 as long as the electrodes face each other with a detection interval. can do. Also, the number of detection intervals may be one instead of a plurality.

【0061】また、本発明は、加速度センサ以外にも、
角速度センサ、圧力センサ等の力学量を検出する半導体
力学量センサに適用することができる。
Further, the present invention provides a method other than the acceleration sensor,
The present invention can be applied to a semiconductor dynamic quantity sensor that detects a dynamic quantity such as an angular velocity sensor and a pressure sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る半導体加速度センサの
概略平面図である。
FIG. 1 is a schematic plan view of a semiconductor acceleration sensor according to an embodiment of the present invention.

【図2】図1中のA−A断面図である。FIG. 2 is a sectional view taken along the line AA in FIG.

【図3】図1に示す半導体加速度センサの検出回路図で
ある。
FIG. 3 is a detection circuit diagram of the semiconductor acceleration sensor shown in FIG.

【図4】図3に示す検出回路に対するタイミングチャー
トの一例を示す図である。
4 is a diagram showing an example of a timing chart for the detection circuit shown in FIG. 3;

【図5】上記実施形態の作用説明図である。FIG. 5 is an operation explanatory view of the embodiment.

【図6】従来の半導体力学量センサにおける固定電極へ
印加される応力方向の一例を示す図である。
FIG. 6 is a diagram illustrating an example of a direction of stress applied to a fixed electrode in a conventional semiconductor dynamic quantity sensor.

【図7】従来の半導体力学量センサの一般的な構成を示
す図である。
FIG. 7 is a diagram showing a general configuration of a conventional semiconductor dynamic quantity sensor.

【符号の説明】[Explanation of symbols]

20…支持基板、21…開口部、30…可動電極、31
…錘部、32…棒状部(可動棒状部)、34a、34b
…可動電極のアンカー部、40…第1の固定電極、41
a、41b…第1の固定電極のアンカー部、42…第1
の固定電極の連結部、43…第1の固定電極の棒状部
(固定棒状部)、44、54…曲がり部、50…第2の
固定電極、51a、51b…第2の固定電極のアンカー
部、52…第2の固定電極の連結部、53…第2の固定
電極の棒状部(固定棒状部)、60…検出間隔。
Reference numeral 20: support substrate, 21: opening, 30: movable electrode, 31
... weight part, 32 ... rod-shaped part (movable rod-shaped part), 34a, 34b
... anchor part of movable electrode, 40 ... first fixed electrode, 41
a, 41b: anchor portion of first fixed electrode, 42: first
Connecting portions of fixed electrodes, 43: rod-shaped portion (fixed bar-shaped portion) of first fixed electrode, 44, 54: bent portion, 50: second fixed electrode, 51a, 51b: anchor portion of second fixed electrode , 52... A connecting portion of the second fixed electrode, 53... A bar portion (fixed bar portion) of the second fixed electrode, 60.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一面側に開口する開口部(21)が形成
された支持基板(20)と、 この支持基板に支持され前記開口部上にて力学量の印加
に応じて変位する半導体よりなる可動電極(30)と、 前記支持基板に支持され前記開口部上にて前記可動電極
と検出間隔(60)を有して対向する半導体よりなる固
定電極(40、50)とを備え、 力学量の印加に応じて前記可動電極が変位したとき、前
記検出間隔の変化に基づいて印加力学量を検出する半導
体力学量センサにおいて、 前記可動電極の前記支持基板への支持部(34a、34
b)および前記固定電極の前記支持基板への支持部(4
1a、41b、51a、51b)はそれぞれ、対向する
前記開口部の両縁部に位置しており、 前記可動電極における前記両支持部を隔てる方向と、前
記固定電極における前記両支持部を隔てる方向とが、略
同一となっていることを特徴とする半導体力学量セン
サ。
1. A support substrate (20) having an opening (21) opened on one surface side, and a semiconductor supported by the support substrate and displaced on the opening in response to application of a physical quantity. A movable electrode (30), and a fixed electrode (40, 50) made of a semiconductor supported by the support substrate and opposed to the movable electrode at the opening with a detection interval (60), and When the movable electrode is displaced in response to the application of a force, a semiconductor dynamic quantity sensor that detects an applied dynamic quantity based on a change in the detection interval, wherein a support portion (34a, 34) of the movable electrode to the support substrate
b) and a support portion (4) of the fixed electrode to the support substrate.
1a, 41b, 51a, and 51b) are located at both edges of the opening facing each other, and a direction separating the two support portions of the movable electrode and a direction separating the two support portions of the fixed electrode. Are substantially the same.
【請求項2】 前記可動電極(30)における前記両支
持部(34a、34b)を結ぶ軸と、前記固定電極(4
0、50)における前記両支持部(41a、41b、5
1a、51b)を結ぶ軸とが、平行であることを特徴と
する請求項1に記載の半導体力学量センサ。
2. The fixed electrode (4), wherein an axis connecting the supporting portions (34a, 34b) of the movable electrode (30) and the fixed electrode (4).
0, 50) at the two support portions (41a, 41b, 5).
The semiconductor physical quantity sensor according to claim 1, wherein an axis connecting 1a and 51b) is parallel.
【請求項3】 前記開口部(21)は矩形であり、 前記可動電極(30)における前記両支持部(34a、
34b)、前記固定電極(40、50)における前記両
支持部(41a、41b、51a、51b)は共に、前
記開口部の縁部のうち対向する同一組の辺に位置して隔
てられていることを特徴とする請求項1または2に記載
の半導体力学量センサ。
3. The opening (21) is rectangular, and the support portions (34a, 34a,
34b), both of the support portions (41a, 41b, 51a, 51b) of the fixed electrode (40, 50) are located and separated on the same set of opposing sides of the edge of the opening. The semiconductor dynamic quantity sensor according to claim 1 or 2, wherein:
【請求項4】 前記可動電極(30)は、その両端がそ
れぞれ前記支持基板(20)への支持部(34a、34
b)に連結された錘部(31)と、この錘部から突出す
る棒状部(32)とよりなり、 前記固定電極(40、50)は、その両端がそれぞれ前
記支持基板への支持部(41a、41b、51a、51
b)に連結された連結部(42、52)と、この連結部
から突出し側面が前記可動電極の棒状部の側面に前記検
出間隔(60)を有して対向する棒状部(43、53)
とよりなることを特徴とする請求項1ないし3のいずれ
か1つに記載の半導体力学量センサ。
4. Both ends of the movable electrode (30) are supported by the support portions (34a, 34a) to the support substrate (20).
The fixed electrode (40, 50) comprises a weight portion (31) connected to the support substrate (b) and a rod-shaped portion (32) protruding from the weight portion. 41a, 41b, 51a, 51
(b) a connecting portion (42, 52) connected to the movable electrode, and a side bar (43, 53) projecting from the connecting portion and having a side face facing the side surface of the bar portion of the movable electrode with the detection interval (60).
4. The semiconductor physical quantity sensor according to claim 1, wherein
【請求項5】 前記連結部(42、52)の途中部に
は、前記可動電極(30)における前記支持部(34
a、34b)へ向かうように曲がった曲がり部(44、
54)が形成されていることを特徴とする請求項4に記
載の半導体力学量センサ。
5. The support portion (34) of the movable electrode (30) is provided at an intermediate portion of the connection portion (42, 52).
a, 34b).
The semiconductor physical quantity sensor according to claim 4, wherein (54) is formed.
JP2000259399A 2000-08-29 2000-08-29 Semiconductor dynamic quantity sensor Pending JP2002071707A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000259399A JP2002071707A (en) 2000-08-29 2000-08-29 Semiconductor dynamic quantity sensor
US09/925,021 US6973829B2 (en) 2000-08-29 2001-08-09 Semiconductor dynamic quantity sensor with movable electrode and fixed electrode supported by support substrate
DE10141867A DE10141867B4 (en) 2000-08-29 2001-08-27 Semiconductor sensor for dynamic quantities with movable electrodes and fixed electrodes on a supporting substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259399A JP2002071707A (en) 2000-08-29 2000-08-29 Semiconductor dynamic quantity sensor

Publications (1)

Publication Number Publication Date
JP2002071707A true JP2002071707A (en) 2002-03-12

Family

ID=18747580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259399A Pending JP2002071707A (en) 2000-08-29 2000-08-29 Semiconductor dynamic quantity sensor

Country Status (1)

Country Link
JP (1) JP2002071707A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189431A (en) * 2004-12-29 2006-07-20 Commiss Energ Atom Micro factory comb capacity accelerometer
JP2009002947A (en) * 2007-06-20 2009-01-08 Headway Technologies Inc Sensing unit and method of making the same
JP2009229189A (en) * 2008-03-21 2009-10-08 Denso Corp Capacitive physical quantity sensor
DE102004013583B4 (en) * 2003-03-20 2013-01-31 Denso Corporation Sensor for a physical size with a bar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004013583B4 (en) * 2003-03-20 2013-01-31 Denso Corporation Sensor for a physical size with a bar
DE102004013583B8 (en) * 2003-03-20 2013-05-02 Denso Corporation Sensor for a physical size with a bar
JP2006189431A (en) * 2004-12-29 2006-07-20 Commiss Energ Atom Micro factory comb capacity accelerometer
JP2009002947A (en) * 2007-06-20 2009-01-08 Headway Technologies Inc Sensing unit and method of making the same
JP2014038103A (en) * 2007-06-20 2014-02-27 Headway Technologies Inc Sensing unit
JP2009229189A (en) * 2008-03-21 2009-10-08 Denso Corp Capacitive physical quantity sensor

Similar Documents

Publication Publication Date Title
JP2002131331A (en) Semiconductor dynamical quantity sensor
JPH0823564B2 (en) Accelerometer having fine mechanism and manufacturing method thereof
JPH11344507A (en) Constituting element of micro machine
JP4134853B2 (en) Capacitive mechanical sensor device
US6973829B2 (en) Semiconductor dynamic quantity sensor with movable electrode and fixed electrode supported by support substrate
US6502462B2 (en) Capacitance type dynamic quantity sensor having displacement portion and formed by wire bonding
JP2004340608A (en) Capacity type dynamic quantity sensor unit
JP2003240798A (en) Capacitive physical quantity sensor
US6430999B2 (en) Semiconductor physical quantity sensor including frame-shaped beam surrounded by groove
JP2004069562A (en) Capacitance type mechanical quantity sensor
US6308568B1 (en) Angular velocity sensor
JP5531806B2 (en) Capacitive inertial force sensor
JP2002071707A (en) Semiconductor dynamic quantity sensor
JP2001091535A (en) Capacitor type physical-quantity detecting apparatus
JP2001041973A (en) Semiconductor dynamic-quantity sensor
JP2005227089A (en) Dynamics quantity sensor apparatus
JP2001044450A (en) Semiconductor dynamic quantity sensor
JP2004347499A (en) Semiconductor dynamical quantity sensor
JP2002365306A (en) Dynamic-response sensor
JP2002005954A (en) Semiconductor dynamical quantity sensor
JP4466283B2 (en) Gyro sensor
JP2001165952A (en) Semiconductor kinetic quantity sensor
JP3139205B2 (en) Acceleration sensor
JP2002299640A (en) Dynamical amount sensor
JP2003014777A (en) Physical quantity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007