JPH06342669A - Fuel cell generating device - Google Patents

Fuel cell generating device

Info

Publication number
JPH06342669A
JPH06342669A JP5130847A JP13084793A JPH06342669A JP H06342669 A JPH06342669 A JP H06342669A JP 5130847 A JP5130847 A JP 5130847A JP 13084793 A JP13084793 A JP 13084793A JP H06342669 A JPH06342669 A JP H06342669A
Authority
JP
Japan
Prior art keywords
fuel cell
desulfurizer
fuel gas
reformer
desulfurizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5130847A
Other languages
Japanese (ja)
Other versions
JP3455991B2 (en
Inventor
Eiichi Yasumoto
栄一 安本
Koji Gamo
孝治 蒲生
Junji Niikura
順二 新倉
Kazuhito Hado
一仁 羽藤
Kunio Kimura
邦夫 木村
Yukiyoshi Ono
之良 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13084793A priority Critical patent/JP3455991B2/en
Publication of JPH06342669A publication Critical patent/JPH06342669A/en
Application granted granted Critical
Publication of JP3455991B2 publication Critical patent/JP3455991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell generating device provided with a desulfurizer, which has the simple structure and of which handling is easy and which can be recycled and in which a change of the desulfurizing agent is not required, by switching plural desulfurizers appropriately for use. CONSTITUTION:The raw fuel gas containing sulfur component is led into a reformer 4 through desulfurizers 1, 2, and the steam reforming is performed to the gas, and thereafter, it is supplied to a fuel cell. As the desulfurizing agent of the desulfurizers 1, 2, the material, which can be recycled by the oxidation decomposition, is used to obtain a compact device having a high efficiency, a high reliability and a long lifetime at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、脱硫器に都市ガス等の
原燃料ガス中の硫黄成分を吸着脱硫する機能と酸化分解
する機能とを有する脱硫剤を用いた燃料電池発電装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generator using a desulfurizing agent having a desulfurizer having a function of adsorbing desulfurization of sulfur components in raw fuel gas such as city gas and a function of oxidative decomposition.

【0002】[0002]

【従来の技術】燃料電池の中でも特に第2世代と呼ばれ
る溶融炭酸塩燃料電池は、作動温度が650℃と高く排
熱も利用すると高いエネルギー効率が期待できることが
知られている。これらの燃料としては、一般的に水素を
主成分とする燃料ガスが用いられる。このうち比較的大
規模な中央発電代替用と考えられているものは、石油ガ
スや天然ガスを原料とし、これを水蒸気改質した水素を
含む合成ガスが燃料として供給される。また比較的小規
模な燃料電池(オンサイト用)では、都市ガス(主成分
はメタン)を水蒸気改質して利用することができる。ど
ちらの場合も原料中に含まれる硫黄成分が改質触媒を被
毒するため、水蒸気改質する前にこの硫黄成分を除去し
て使用している。
2. Description of the Related Art It is known that, among the fuel cells, a molten carbonate fuel cell, which is called the second generation, has a high operating temperature of 650.degree. Fuel gas containing hydrogen as a main component is generally used as these fuels. Among them, what is considered to be a comparatively large-scale substitute for central power generation uses petroleum gas or natural gas as a raw material, and steam-reformed synthetic gas containing hydrogen is supplied as fuel. In a relatively small-scale fuel cell (for on-site use), city gas (main component is methane) can be steam-reformed and used. In both cases, the sulfur component contained in the raw material poisons the reforming catalyst, so the sulfur component is removed before use for steam reforming.

【0003】硫黄成分を除去する方法としては水添脱硫
法がある。これは、まず最初に水添触媒を用いて硫黄成
分を水素と反応させ硫化水素にしてから、これをZnO
等の吸着剤で吸着除去するものである。この方法では、
先の反応を起こすために300〜400℃程度の温度が
必要であり、使用する材料としても水添触媒と吸着剤の
2種類が必要である。また、反応に水素を必要とするた
めエネルギー効率的に不利である。
As a method for removing the sulfur component, there is a hydrodesulfurization method. This is because first of all, a hydrogenation catalyst is used to react a sulfur component with hydrogen to form hydrogen sulfide, which is then converted to ZnO.
It is adsorbed and removed by an adsorbent such as. in this way,
A temperature of about 300 to 400 ° C. is required to cause the above reaction, and two types of materials to be used, that is, a hydrogenation catalyst and an adsorbent are also required. Moreover, since hydrogen is required for the reaction, it is disadvantageous in terms of energy efficiency.

【0004】これ以外の脱硫の方法としては、例えば、
特開平2−302302号公報に開示されるように、水
添脱硫器と銅−亜鉛系脱硫剤を充填した脱硫器の2種類
からなる脱硫装置を用いたものがあるが、これは高精度
に硫黄成分を除去できるというメリットはあるが、装置
としてはかなり複雑化する。また、特開平1−1431
56号公報に開示されるように活性炭を脱硫剤に用いた
脱硫器を複数設け、適宜再生使用するものがあるが、水
添脱硫の操作を必要とせず工程が簡単になるが、この場
合触媒再生のために水蒸気が必要であるため、これを供
給する配管を設けなければならない。
Other desulfurization methods include, for example:
As disclosed in JP-A-2-302302, there is one using a desulfurization device composed of two types of a hydrodesulfurization device and a desulfurization device filled with a copper-zinc-based desulfurizing agent, which is highly accurate. Although it has the advantage that it can remove sulfur components, it complicates the device considerably. In addition, JP-A-1-1431
As disclosed in Japanese Patent Publication No. 56, a plurality of desulfurizers in which activated carbon is used as a desulfurizing agent are provided and appropriately regenerated, but there is no need for the operation of hydrodesulfurization, which simplifies the process. Since steam is required for regeneration, piping must be provided to supply it.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
脱硫の方法である水添脱硫法では、水添触媒と脱硫剤の
2つが必要であり、反応を起こすために水素ガスと30
0〜400℃の温度も必要であるため、エネルギー効率
的には不利で、装置自体も複雑になるという欠点があ
る。また、特開平2−302302号公報に開示される
ように水添脱硫器と銅−亜鉛系脱硫剤入りの脱硫器の2
つを持つものでは、装置がより複雑化してしまうという
欠点がある。さらに、特開平1−143156号公報に
開示される活性炭入りの脱硫器を用いるものでは、再生
使用するために水蒸気を必要とするので水蒸気配管を設
ける必要があり、配管系が複雑化するという欠点があ
る。
However, the conventional hydrodesulfurization method, which is a conventional desulfurization method, requires two hydrogenation catalysts and desulfurizing agents, and hydrogen gas and 30
Since a temperature of 0 to 400 ° C. is also required, it is disadvantageous in terms of energy efficiency and the apparatus itself becomes complicated. Further, as disclosed in JP-A-2-302302, a hydrodesulfurizer and a desulfurizer containing a copper-zinc-based desulfurizing agent are used.
The one having one has the drawback that the device becomes more complicated. Further, in the case of using the desulfurizer containing activated carbon disclosed in JP-A-1-143156, it is necessary to provide a steam pipe because the steam is required for recycling, and the piping system becomes complicated. There is.

【0006】本発明は、このような点に鑑みて、従来の
燃料電池に用いられている脱硫装置に代わり、装置の構
造がより簡単で、脱硫剤の交換の必要がなく、より長寿
命で脱硫効果の優れた脱硫装置を備えた燃料電池発電装
置を提供するものである。
In view of the above points, the present invention has a simpler structure of the desulfurization device used in the conventional fuel cell, does not require replacement of the desulfurization agent, and has a longer life. A fuel cell power generator provided with a desulfurization device having an excellent desulfurization effect.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、硫黄成分を含んだ原燃料ガスを脱硫する
ための脱硫器と、脱硫された原燃料ガスを水素を主成分
とする燃料ガスに水蒸気改質する改質器と、この改質器
から燃料が供給される燃料電池本体とを具備し、脱硫器
が酸化分解による脱硫剤の再生と吸着により脱硫を行う
構成とする。なお、本発明において脱硫剤の再生には、
燃料電池本体において発生する熱を利用する。
In order to solve the above problems, the present invention provides a desulfurizer for desulfurizing a raw fuel gas containing a sulfur component, and a desulfurized raw fuel gas containing hydrogen as a main component. A reformer for steam reforming the fuel gas and a fuel cell main body to which fuel is supplied from the reformer, and the desulfurizer is configured to perform desulfurization by regeneration and adsorption of a desulfurizing agent by oxidative decomposition. . In the present invention, the regeneration of the desulfurizing agent,
It utilizes the heat generated in the fuel cell body.

【0008】[0008]

【作用】本発明による燃料電池発電装置は燃料電池の作
動中、並列に配設した複数個の脱硫器を適宜切り換えて
使用することができる。つまり、一方の脱硫器が酸化分
解による再生を行っているときには、他方が吸着により
脱硫を行うことができる。また脱硫剤には、脱硫時に吸
着した硫黄成分を再生時に酸化分解して繰り返し使用で
きる材料を用いているため、脱硫剤を交換する必要がな
く、脱硫器を適宜切り換えることにより半永久的に脱硫
剤を使用することができる。これにより従来の水添脱硫
法を用いたものに比べ装置が簡単になり、コスト低下,
コンパクト化につながる。また、脱硫剤に活性炭を使用
したものに比べ水蒸気配管を設ける必要がないため、再
生使用がはるかに容易で、高信頼性,長寿命化が図れ
る。さらに、脱硫剤の再生に燃料電池本体において発生
する熱を利用することができるため装置としての効率も
上げることができる。
In the fuel cell power generator according to the present invention, a plurality of desulfurizers arranged in parallel can be appropriately switched and used during the operation of the fuel cell. That is, while one desulfurizer is performing regeneration by oxidative decomposition, the other desulfurizer can perform desulfurization by adsorption. The desulfurizing agent uses a material that can be repeatedly used by oxidizing and decomposing the sulfur component adsorbed during desulfurization during regeneration, so there is no need to replace the desulfurizing agent, and by switching the desulfurizer appropriately, the desulfurizing agent can be semipermanently. Can be used. This simplifies the equipment and reduces the cost compared to the conventional hydrodesulfurization method.
It leads to compactness. Further, as compared with the one using activated carbon as the desulfurizing agent, it is not necessary to provide a steam pipe, so that the recycling is much easier, the reliability is high and the life is long. Further, since the heat generated in the fuel cell main body can be used for the regeneration of the desulfurization agent, the efficiency of the device can be improved.

【0009】[0009]

【実施例】以下、本発明を用いた燃料電池発電システム
について図面を参照して述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A fuel cell power generation system using the present invention will be described below with reference to the drawings.

【0010】(実施例1)図1は、本発明を用いた溶融
炭酸塩型燃料電池発電装置の一実施例の装置の構成図を
示すもので、原燃料ガスとなる都市ガスは、脱硫器1あ
るいは2を通過した後、予熱器3で予熱され、水蒸気と
ともに改質器4に導入される。改質器4で改質された都
市ガスは、燃料電池5の燃料極7に供給され、電池反応
に用いられる。ここで使用されなかった未反応の燃料ガ
スは、ライン16からブロア9を通して、予熱器3およ
び脱硫器1で熱交換を行った後に改質器4の熱源として
使用される。また、改質器4からの排ガスは、燃料電池
5の空気極6の二酸化炭素供給源として、ライン14か
らの空気とともに空気極6に供給される。また空気極6
からの排ガスの一部はライン15からブロア8を通して
リサイクルされる。残りの空気極6からの排ガスは、ラ
イン17を経てタービン11を駆動するのに用いられ
る。タービン11には空気を供給するための圧縮機10
が直結されており、タービンで得た出力から圧縮機10
を動かすための動力を引いた分を電力として発電機12
を介して電力調整機13から燃料電池発電の電力ととも
に取り出すことができる。圧縮機10から供給される空
気は、ライン14を経て一部は、先に述べた空気極供給
用に、もう一部は、ライン16からの燃料排ガスととも
に改質器4の熱源に用いられる。また、脱硫剤の再利用
としても一部用いられる。
(Embodiment 1) FIG. 1 is a block diagram of an apparatus of an embodiment of a molten carbonate fuel cell power generator using the present invention, in which city gas as raw fuel gas is desulfurizer. After passing 1 or 2, it is preheated by the preheater 3 and introduced into the reformer 4 together with steam. The city gas reformed by the reformer 4 is supplied to the fuel electrode 7 of the fuel cell 5 and used for the cell reaction. The unreacted fuel gas that has not been used here is used as a heat source of the reformer 4 after performing heat exchange in the preheater 3 and the desulfurizer 1 through the line 16 and the blower 9. Further, the exhaust gas from the reformer 4 is supplied to the air electrode 6 together with the air from the line 14 as a carbon dioxide supply source of the air electrode 6 of the fuel cell 5. Air electrode 6
A part of the exhaust gas from the exhaust gas is recycled from the line 15 through the blower 8. The exhaust gas from the remaining cathode 6 is used to drive the turbine 11 via line 17. Compressor 10 for supplying air to turbine 11
Is directly connected to the compressor 10 from the output obtained from the turbine.
Generator 12 is used as electric power by subtracting the power for moving
It is possible to take out the electric power together with the electric power generated by the fuel cell from the electric power regulator 13 via the. The air supplied from the compressor 10 is used, via the line 14, for part of the air electrode supply described above, and part of the air together with the fuel exhaust gas from the line 16 for the heat source of the reformer 4. It is also used in part as a reuse of desulfurizing agent.

【0011】これらの燃料電池発電装置において、ここ
では原料ガスとなる都市ガスを予熱する前に空気中で酸
化分解して再生使用できる脱硫剤を充填した脱硫器1,
2が設けられている。これらの脱硫器1,2は、50℃
以下の温度で都市ガス中の硫黄成分を吸着脱硫すること
ができ、かつ脱硫器2を使用しているときには、脱硫器
1にライン14から空気を供給し、ライン16の未反応
の燃料ガスを熱交換して得られる熱を用いて300〜5
00℃で酸化分解して再生する。この動作を交互に繰り
返すことにより脱硫剤を交換することなく継続して運転
可能なシステムが構成できる。また、水添脱硫法を用い
たものに比べ、水素ガスを必要とする水添触媒が不要
で、よりコンパクトな燃料電池発電装置が構成できる。
また、脱硫剤の再生には、取り扱いの容易な空気を用い
ることができ、脱硫剤の交換を必要としない脱硫器を備
えた燃料電池発電システムを構成できる。
In these fuel cell power generators, here, a desulfurizer 1 filled with a desulfurizing agent that can be regenerated by oxidizing and decomposing in the air before preheating the raw material city gas.
Two are provided. These desulfurizers 1 and 2 have a temperature of 50 ° C.
When the desulfurizer 2 can be adsorbed and desulfurized in the city gas at the following temperature and the desulfurizer 2 is used, air is supplied to the desulfurizer 1 from the line 14 to remove unreacted fuel gas from the line 16. 300 to 5 using heat obtained by heat exchange
Regenerates by oxidative decomposition at 00 ° C. By repeating this operation alternately, a system that can be continuously operated without replacing the desulfurizing agent can be configured. Further, as compared with the one using the hydrodesulfurization method, a hydrogenation catalyst that requires hydrogen gas is not required, and a more compact fuel cell power generation device can be configured.
In addition, for the regeneration of the desulfurization agent, air that is easy to handle can be used, and a fuel cell power generation system including a desulfurizer that does not require replacement of the desulfurization agent can be configured.

【0012】また、脱硫器に入れる脱硫剤の形状は、通
常の触媒で用いられる球状あるいはペレット状でも良
く、この材料をハニカム状,円筒状,円筒中空状に成型
して用いることもできる。これ以外でも本発明で使用可
能な形状であればどんな形でも構わない。脱硫器の個数
に関しても、ここでは2つの場合を例に説明したが、本
発明で使用できるならば、いくつでも構わない。
The shape of the desulfurizing agent put in the desulfurizer may be a spherical shape or a pellet shape which is used in a usual catalyst, and this material may be molded into a honeycomb shape, a cylindrical shape or a cylindrical hollow shape for use. Other than this, any shape may be used as long as it can be used in the present invention. Regarding the number of desulfurizers, two cases have been described here as an example, but any number may be used as long as it can be used in the present invention.

【0013】ここでは、改質器を燃料電池の外部に設け
た外部改質方式の溶融炭酸塩燃料電池を例に述べたが、
改質の方式は内部改質方式でも良く、また燃料電池の種
類については、固体電解質型,リン酸型等ここで示した
方式を用いることができればどんなものでも構わない。
Although an example of an external reforming type molten carbonate fuel cell in which the reformer is provided outside the fuel cell has been described here,
The reforming method may be an internal reforming method, and the fuel cell may be of any type such as solid electrolyte type and phosphoric acid type as long as the method shown here can be used.

【0014】(実施例2)図2は、実際に実施例1で示
した脱硫器1,2の中に、銅ゼオライト(48wt
%),シリカ(30wt%),アルミナ(20wt
%),Pt(1wt%),Pd(1wt%)を含有する
材料Aを脱硫剤として入れたとき、改質器4を通過した
後のガス中の残メタン濃度(300時間後)を脱硫器の
使用温度に対して調べたものである。運転条件は、脱硫
器のSV=500h-1,改質器のSV=4000h-1
S/C=3.0,改質温度650℃で行った。この結
果、50℃以上の温度域で残メタン濃度が上昇し、改質
性能が低下していることが分かった。これは、50℃以
上の温度域では、脱硫剤の活性が低下し、脱硫剤で吸着
できなかった硫黄成分が改質触媒を被毒したためと考え
られた。実際、この後調べてみると改質触媒はかなり劣
化していた。よって、脱硫剤の使用温度は、50℃以下
にすることが望ましい。
(Embodiment 2) FIG. 2 shows that copper zeolite (48 wt.
%), Silica (30 wt%), alumina (20 wt)
%), Pt (1 wt%), and Pd (1 wt%) as a desulfurizing agent, the residual methane concentration (after 300 hours) in the gas after passing through the reformer 4 is determined by the desulfurizer. It was investigated at the operating temperature of. The operating conditions are as follows: desulfurizer SV = 500 h −1 , reformer SV = 4000 h −1 ,
S / C = 3.0, reforming temperature was 650 ° C. As a result, it was found that the residual methane concentration increased and the reforming performance decreased in the temperature range of 50 ° C. or higher. It is considered that this is because the activity of the desulfurization agent decreased in the temperature range of 50 ° C. or higher, and the sulfur component that could not be adsorbed by the desulfurization agent poisoned the reforming catalyst. In fact, the investigation after this revealed that the reforming catalyst had deteriorated considerably. Therefore, it is desirable that the use temperature of the desulfurizing agent be 50 ° C. or lower.

【0015】(実施例3)図3は、脱硫器の中に実施例
2の材料Aを入れた場合と従来から吸着剤として使用さ
れている活性炭を入れた場合、また脱硫器を用いず都市
ガスを直接改質器に入れた場合の各々について、改質器
を通った後のガス中の残メタン濃度を経時的に測定した
ものである。運転条件は、実施例1と同じとした。これ
より本発明を用いたものでは、約300時間後から残メ
タン濃度の上昇がなくなり、ほぼ一定になっている。こ
れに対し脱硫剤として活性炭を用いたものでは、脱硫器
を用いない場合に比べるとかなりメタン濃度の増加の割
合は小さくなっているものの、本発明に比べると残メタ
ン濃度の増加の割合いが大きく、500時間後では本発
明の約2倍程度の残メタン濃度になった。これは、活性
炭では吸着しきれなかった硫黄成分が改質触媒を徐々に
被毒し、性能が劣化したためと考えられた。
(Embodiment 3) FIG. 3 shows the case where the material A of Embodiment 2 is put into the desulfurizer and the case where activated carbon which has been conventionally used as an adsorbent is put in the desulfurizer and the desulfurizer is not used. The residual methane concentration in the gas after passing through the reformer was measured with time for each of the cases where the gas was directly introduced into the reformer. The operating conditions were the same as in Example 1. From this, in the case of using the present invention, the increase in the residual methane concentration disappeared after about 300 hours and became almost constant. On the other hand, in the case of using activated carbon as the desulfurizing agent, the rate of increase in the methane concentration is considerably smaller than that in the case where the desulfurizer is not used, but the rate of increase in the residual methane concentration is smaller than that of the present invention. After 500 hours, the residual methane concentration was about twice that of the present invention. This is considered to be because the sulfur component, which could not be adsorbed by the activated carbon, gradually poisoned the reforming catalyst and deteriorated the performance.

【0016】(実施例4)図4は、一度吸着脱硫した脱
硫剤を、100〜800℃で再生した後、再度脱硫器の
中に入れて使用したとき,改質器を通過した後のガス中
の残メタン濃度(300時間後)を再生処理温度に対し
て調べたものである。ここでも脱硫剤としては、実施例
2の材料Aを使用した。再生の方法としては、空気を流
しながらSV=1000h-1で、3h処理した。試験条
件は先と同条件で行った。これより300〜500℃で
再生処理したものが、再生処理する前とほぼ同じ残メタ
ン濃度を示している。よって、この材料を用いれば30
0〜500℃の温度範囲で再生することにより、繰り返
し使用することが可能となる。
(Embodiment 4) FIG. 4 shows the gas after passing through the reformer when the desulfurizing agent once adsorbed and desulfurized was regenerated at 100 to 800 ° C. and then put in the desulfurizer again. The residual methane concentration in the inside (after 300 hours) was examined with respect to the regeneration treatment temperature. Again, the material A of Example 2 was used as the desulfurizing agent. As a method of regeneration, the treatment was performed for 3 hours at SV = 1000 h −1 while flowing air. The test conditions were the same as above. As a result, the one subjected to the regeneration treatment at 300 to 500 ° C. shows almost the same residual methane concentration as that before the regeneration treatment. Therefore, if this material is used,
By regenerating in the temperature range of 0 to 500 ° C., it becomes possible to use repeatedly.

【0017】以上のことから、本発明の脱硫剤を50℃
以下の温度で使用すれば、従来使用されている活性炭を
用いるよりも高性能な脱硫器を備えた燃料電池発電シス
テムを構成することができる。また300〜500℃の
温度で再生することにより繰り返し使用可能な脱硫器を
備えた燃料電池発電システムを構成することができる。
From the above, the desulfurizing agent of the present invention is treated at 50 ° C.
When used at the following temperatures, it is possible to construct a fuel cell power generation system equipped with a desulfurizer having a higher performance than that of conventionally used activated carbon. Further, by regenerating at a temperature of 300 to 500 ° C., a fuel cell power generation system having a desulfurizer that can be repeatedly used can be configured.

【0018】(実施例5)実施例2の材料Aの構成材料
である貴金属Pt,Pdを別の貴金属(Rh,Ru,A
u)ないしこれらを組み合わせて使用したものに置き換
えて、実施例4と同様一度吸着脱硫を行い、400℃で
3時間再生した後、再度脱硫器の中に入れて使用したと
き、改質器を通過した後のガス中の残メタン濃度(30
0時間後)を調べ、まとめたのが(表1)である。貴金
属量は単独で用いる場合は、2wt%とし、2つを組み
合わせた場合はそれぞれ1wt%とした。これより貴金
属にPtあるいはPdを用いたものが、残メタン濃度が
いちばん少なくなっており、脱硫剤の構成材料の一つで
ある貴金属としてはPtあるいはPdを用いることが望
ましい。ただし、これ以外の貴金属が全く使用できない
ということはない。
(Embodiment 5) The precious metals Pt and Pd which are the constituent materials of the material A of the embodiment 2 are replaced with other precious metals (Rh, Ru, A).
u) or a combination of these, and once subjected to adsorptive desulfurization as in Example 4, regenerated at 400 ° C. for 3 hours, and then put into the desulfurizer again to use the reformer. Residual methane concentration in gas after passing (30
It is (Table 1) that was examined after 0 hours) and summarized. The amount of noble metal was 2 wt% when used alone, and 1 wt% when combined with each other. From this, the one using Pt or Pd as the noble metal has the lowest residual methane concentration, and it is desirable to use Pt or Pd as the noble metal which is one of the constituent materials of the desulfurizing agent. However, it does not mean that no other precious metals can be used.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例6)実施例2の材料Aの構成材料
である銅ゼオライトを別のイオン交換ゼオライト(N
a,Ca,Mg,Mn,Zn)に置き換えて実施例2と
同様に改質器を通過した後のガス中の残メタン濃度(3
00時間後)を調べてまとめたのが(表2)である。こ
れよりゼオライトとしてCuゼオライトを用いたもの
が、残メタン濃度が他のものに比べて著しく小さくなる
ことが分かった。よって脱硫剤の構成材料の一つである
ゼオライトとしては、銅ゼオライトを用いることが望ま
しい。
(Embodiment 6) The copper zeolite which is the constituent material of the material A of the embodiment 2 is replaced with another ion exchange zeolite (N
a, Ca, Mg, Mn, Zn) and the residual methane concentration (3) in the gas after passing through the reformer in the same manner as in Example 2.
It is (Table 2) that I examined after 00 hours and summarized. From this, it was found that the one using Cu zeolite as the zeolite had a significantly lower residual methane concentration than the other ones. Therefore, it is desirable to use copper zeolite as the zeolite which is one of the constituent materials of the desulfurizing agent.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】以上実施例の説明から明らかなように、
本発明の燃料電池発電装置によれば、脱硫剤として酸化
分解して繰り返し再生使用できる材料を用いた複数個の
脱硫器を適宜切り換えて使用できるようにしたため、従
来の水添脱硫法を用いたものに比べて、水素ガスを必要
とする水添触媒を用いる必要がなく、構成が簡単で、従
来用いられてきた脱硫剤の活性炭に比べて高性能で、取
り扱い易く、再生使用できるため脱硫剤の交換が不要な
脱硫器を備えた、信頼性の高い、また長寿命な燃料電池
発電装置を提供できる。
As is clear from the above description of the embodiments,
According to the fuel cell power generator of the present invention, the conventional hydrodesulfurization method is used because it is possible to appropriately switch and use a plurality of desulfurizers using a material that can be repeatedly regenerated by oxidative decomposition as a desulfurizing agent. Compared to other products, it is not necessary to use a hydrogenation catalyst that requires hydrogen gas, its structure is simple, its performance is higher than that of the conventionally used desulfurizing agent, activated carbon, and it is easy to handle and can be reused. It is possible to provide a highly reliable and long-life fuel cell power generator equipped with a desulfurizer that does not need to be replaced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の溶融炭酸塩燃料電池発電装
置の構成図である
FIG. 1 is a configuration diagram of a molten carbonate fuel cell power generator according to an embodiment of the present invention.

【図2】本発明の第2の実施例の脱硫器の使用温度と残
メタン濃度の関係を示す図である
FIG. 2 is a diagram showing a relationship between a working temperature and a residual methane concentration of a desulfurizer according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の脱硫剤を変えたときの
残メタン濃度を示す図である
FIG. 3 is a diagram showing a residual methane concentration when a desulfurizing agent according to a third embodiment of the present invention is changed.

【図4】本発明の第4の実施例の脱硫剤の再生処理温度
と残メタン濃度の関係を示す図である
FIG. 4 is a diagram showing a relationship between a temperature for regenerating a desulfurizing agent and a concentration of residual methane according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2 脱硫器 3 予熱器 4 改質器 5 燃料電池 6 空気極 7 燃料極 8,9 ブロア 10 圧縮機 11 タービン 12 発電機 13 電力調整機 14,15,16 ライン 1, 2 desulfurizer 3 preheater 4 reformer 5 fuel cell 6 air electrode 7 fuel electrode 8,9 blower 10 compressor 11 turbine 12 generator 13 power regulator 14, 15, 16 lines

───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 一仁 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 木村 邦夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小野 之良 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuhito Hato 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Kunio Kimura, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Nora Ono 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 硫黄成分を含んだ原燃料ガスを脱硫する
ための脱硫器と、脱硫された原燃料ガスを水素を主成分
とする燃料ガスに水蒸気改質する改質器と、この改質器
からの燃料ガスが供給される燃料電池本体とを具備し、
前記脱硫器は、非加熱時に硫黄成分を吸着する機能と加
熱時に酸化分解する機能とを有する脱硫剤で構成され、
かつ酸化分解を間欠的に行い前記脱硫剤を再生するよう
に構成したことを特徴とする燃料電池発電装置。
1. A desulfurizer for desulfurizing a raw fuel gas containing a sulfur component, a reformer for steam-reforming the desulfurized raw fuel gas into a fuel gas containing hydrogen as a main component, and the reformer. And a fuel cell main body to which fuel gas from the container is supplied,
The desulfurizer is composed of a desulfurizing agent having a function of adsorbing a sulfur component when not heated and a function of oxidative decomposition when heated,
In addition, the fuel cell power generation device is characterized in that the desulfurizing agent is regenerated by performing oxidative decomposition intermittently.
【請求項2】 硫黄成分を含んだ原燃料ガスを脱硫する
ための複数個の脱硫器と、脱硫された原燃料ガスを水素
を主成分とする燃料ガスに水蒸気改質する改質器と、こ
の改質器からの燃料ガスが供給される燃料電池本体とを
具備し、前記複数個の脱硫器を並列に配設し、一方が酸
化分解による脱硫剤の再生を行うときには、他方が吸着
により脱硫を行うことを特徴とする燃料電池発電装置。
2. A plurality of desulfurizers for desulfurizing a raw fuel gas containing a sulfur component, and a reformer for steam-reforming the desulfurized raw fuel gas into a fuel gas containing hydrogen as a main component. A fuel cell main body to which fuel gas from this reformer is supplied is provided, and the plurality of desulfurizers are arranged in parallel, and when one of the desulfurizers is regenerated by oxidative decomposition, the other is adsorbed. A fuel cell power generator characterized by performing desulfurization.
【請求項3】 硫黄成分を含んだ原燃料ガスを脱硫する
ための吸着を50℃以下で行い、かつ脱硫器の再生のた
めの酸化分解を300〜500℃で行うことを特徴とす
る請求項1または2記載の燃料電池発電装置。
3. The adsorption for desulfurizing a raw fuel gas containing a sulfur component at 50 ° C. or lower, and the oxidative decomposition for regeneration of a desulfurizer at 300 to 500 ° C. 1. The fuel cell power generator according to 1 or 2.
【請求項4】 脱硫剤が少なくともゼオライトとアルミ
ナと貴金属により構成されていることを特徴とする請求
項1または2記載の燃料電池発電装置。
4. The fuel cell power generator according to claim 1, wherein the desulfurizing agent is composed of at least zeolite, alumina and a noble metal.
【請求項5】 貴金属がPtあるいはPdにより構成さ
れていることを特徴とする請求項4記載の燃料電池発電
装置。
5. The fuel cell power generator according to claim 4, wherein the noble metal is composed of Pt or Pd.
【請求項6】 ゼオライトが銅ゼオライトにより構成さ
れていることを特徴とする請求項4記載の燃料電池発電
装置。
6. The fuel cell power generator according to claim 4, wherein the zeolite is composed of copper zeolite.
【請求項7】 硫黄成分を含んだ原燃料ガスを脱硫する
ための脱硫器と、脱硫された原燃料ガスを水素を主成分
とする燃料ガスに水蒸気改質する改質器と、この改質器
からの燃料が供給される燃料電池本体とを具備し、燃料
電池本体において発生する熱を脱硫剤の再生に用いるこ
とを特徴とする燃料電池発電装置。
7. A desulfurizer for desulfurizing a raw fuel gas containing a sulfur component, a reformer for steam-reforming the desulfurized raw fuel gas into a fuel gas containing hydrogen as a main component, and the reformer. And a fuel cell main body to which fuel from a vessel is supplied, wherein heat generated in the fuel cell main body is used for regeneration of a desulfurizing agent.
【請求項8】 燃料電池本体において発生する熱を脱硫
剤の再生に用いることを特徴とする請求項1または2記
載の燃料電池発電装置。
8. The fuel cell power generator according to claim 1, wherein heat generated in the fuel cell main body is used to regenerate the desulfurizing agent.
JP13084793A 1993-06-01 1993-06-01 Fuel cell generator Expired - Fee Related JP3455991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13084793A JP3455991B2 (en) 1993-06-01 1993-06-01 Fuel cell generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13084793A JP3455991B2 (en) 1993-06-01 1993-06-01 Fuel cell generator

Publications (2)

Publication Number Publication Date
JPH06342669A true JPH06342669A (en) 1994-12-13
JP3455991B2 JP3455991B2 (en) 2003-10-14

Family

ID=15044088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13084793A Expired - Fee Related JP3455991B2 (en) 1993-06-01 1993-06-01 Fuel cell generator

Country Status (1)

Country Link
JP (1) JP3455991B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525478A (en) * 2000-03-02 2004-08-19 株式会社荏原製作所 Fuel cell power generation method and fuel cell power generation system
JP2007258182A (en) * 2007-04-16 2007-10-04 Aisin Seiki Co Ltd Fuel cell system
WO2014097622A1 (en) * 2012-12-19 2014-06-26 パナソニック株式会社 Fuel cell system and method for operating fuel cell system
JP2017174574A (en) * 2016-03-23 2017-09-28 東邦瓦斯株式会社 Fuel cell system
JP2020161304A (en) * 2019-03-26 2020-10-01 大阪瓦斯株式会社 Fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519707B1 (en) * 2017-03-10 2019-02-15 Avl List Gmbh A fuel cell system and method of performing thermal regeneration of desulfurization adsorbates

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525478A (en) * 2000-03-02 2004-08-19 株式会社荏原製作所 Fuel cell power generation method and fuel cell power generation system
JP2007258182A (en) * 2007-04-16 2007-10-04 Aisin Seiki Co Ltd Fuel cell system
JP4653138B2 (en) * 2007-04-16 2011-03-16 アイシン精機株式会社 Fuel cell system
WO2014097622A1 (en) * 2012-12-19 2014-06-26 パナソニック株式会社 Fuel cell system and method for operating fuel cell system
JP2017174574A (en) * 2016-03-23 2017-09-28 東邦瓦斯株式会社 Fuel cell system
JP2020161304A (en) * 2019-03-26 2020-10-01 大阪瓦斯株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP3455991B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
EP1660215B1 (en) High-capacity sulfur adsorbent bed and gas desulfurization method
JP2004527367A (en) Gas purification
JP2016517613A (en) Manganese oxide containing materials for use in oxidative desulfurization in fuel cell systems
JP4676690B2 (en) METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
JP3455991B2 (en) Fuel cell generator
JPH0757756A (en) Fuel cell power generation system
JP2765950B2 (en) Fuel cell power generation system
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP2003524566A (en) Method for removing carbon monoxide based on renewable CO scavenger
WO2001004046A1 (en) Method for electric power generation using fuel cell and electric power generation system using fuel cell
JP3865479B2 (en) Carbon monoxide removal system and carbon monoxide removal method
JP2018108927A (en) Metal-supported zeolite molded body, production method of metal-supported zeolite molded body, absorbent for removing sulfur compound, production method of hydrogen, and fuel cell system
JP2003095612A (en) Hydrogen producing plant
JP4143028B2 (en) Fuel cell system and operation method thereof
JP3050850B2 (en) Fuel cell power generation system
JP4961102B2 (en) Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite
JP2005179083A (en) Hydrogen producing apparatus, fuel cell system, and its operatin method
JP4339134B2 (en) Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method
JP2016184550A (en) Gas manufacturing apparatus
JP2001325981A (en) Processed gas reforming mechanism, solid polymer fuel cell system, and processed gas reforming method
JP2016184456A (en) Gas manufacturing apparatus
JP4506429B2 (en) Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
JP2993507B2 (en) Fuel cell power generation system
JP2828661B2 (en) Method for producing fuel gas for phosphoric acid electrolyte fuel cell
JP4822692B2 (en) Desulfurization method, and operation method of fuel cell system and hydrogen production system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees