JPH0634208A - Cooling device of electric article box of air conditioner - Google Patents

Cooling device of electric article box of air conditioner

Info

Publication number
JPH0634208A
JPH0634208A JP19392092A JP19392092A JPH0634208A JP H0634208 A JPH0634208 A JP H0634208A JP 19392092 A JP19392092 A JP 19392092A JP 19392092 A JP19392092 A JP 19392092A JP H0634208 A JPH0634208 A JP H0634208A
Authority
JP
Japan
Prior art keywords
refrigerant
electric
auxiliary cooler
valve
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19392092A
Other languages
Japanese (ja)
Inventor
Koji Ishikawa
孝治 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19392092A priority Critical patent/JPH0634208A/en
Publication of JPH0634208A publication Critical patent/JPH0634208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To obtain a cooling device of an electric article box of an air conditioner which makes it possible to prevent dew formation in the electric article box and to simplify a refrigerant circuit. CONSTITUTION:A refrigerant circuit 13 is constructed of a compressor 14, a four-way valve 15, a nonuse-side heat exchanger 16, a use-side heat exchanger 17, an accumulator 18, a pressure reducing device 19 and an intake piping 20. A number 22 denotes an auxiliary cooler provided as an attachment so as to enable execution of heat exchange for an electric article box 21, and a bypass circuit 23 is connected by piping to the intake piping 20 from a refrigerant branch port 25 through the auxiliary cooler 22. An electric expansion valve 24 is provided between the refrigerant branch port 25 and the auxiliary cooler 22 and a construction is made so that the opening of the electric expansion valve 24 is controlled in accordance with each operation mode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、インバータで圧縮機
の容量制御を行う空気調和機の電気品箱冷却装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric box cooling device for an air conditioner in which the capacity of a compressor is controlled by an inverter.

【0002】[0002]

【従来の技術】従来より、圧縮機の容量を制御するため
にトランジスタインバータを用いた空気調和機がある。
インバータを構成するパワートランジスタ、ダイオード
モジュール、コンデンサなどは、発熱により温度が上昇
するため、長寿命並びに性能の劣化防止の観点より冷却
が必要である。冷却方法としては、風によって強制冷却
を行うのが最も一般的である。
2. Description of the Related Art Conventionally, there is an air conditioner using a transistor inverter to control the capacity of a compressor.
The power transistors, diode modules, capacitors, and the like that form the inverter need to be cooled from the viewpoint of long life and prevention of deterioration of performance because the temperature rises due to heat generation. The most general cooling method is forced cooling with wind.

【0003】しかしながら、この風冷却方式の場合、冷
却風中のほこりが電気部品の表面に付着し易く、部品の
信頼性が低下するという問題がある。また、空気調和機
の非利用側熱交換器が機械室に設置される場合には、風
冷却方式では、周囲温度の上昇を招くのみで、十分な冷
却効果が得られないという問題がある。
However, in the case of this air cooling system, there is a problem that dust in the cooling air is apt to adhere to the surface of the electric component, which lowers the reliability of the component. Further, when the non-use side heat exchanger of the air conditioner is installed in the machine room, the wind cooling method causes a rise in ambient temperature and has a problem that a sufficient cooling effect cannot be obtained.

【0004】そこで、空気調和機自体の冷媒を利用し
て、効率のよい冷却を行わせることが提案されており、
例えば実開昭55−1156号公報に開示された図6に
示すようなものがある。図において、1はインバータに
より駆動される容量可変の圧縮機、2は四方弁、3は非
利用側熱交換器、4は暖房用減圧装置、5は冷房用減圧
装置、6は利用側熱交換器、7はアキュムレータ、8、
9は逆止弁である。また、10は前記減圧装置4、5を
接続する配管より補助クーラ11を介してアキュムレー
タ7に到る開路に設けた毛細管、12は補助クーラ11
と熱交換可能な電気品箱である。
Therefore, it has been proposed to use the refrigerant of the air conditioner itself to perform efficient cooling,
For example, there is one as shown in FIG. 6 disclosed in Japanese Utility Model Laid-Open No. 55-1156. In the figure, 1 is a variable capacity compressor driven by an inverter, 2 is a four-way valve, 3 is a non-use side heat exchanger, 4 is a heating decompression device, 5 is a cooling decompression device, and 6 is a use side heat exchange. Vessel, 7 is accumulator, 8,
9 is a check valve. Further, 10 is a capillary tube provided in an open path from the pipe connecting the pressure reducing devices 4 and 5 to the accumulator 7 via the auxiliary cooler 11, and 12 is the auxiliary cooler 11.
It is an electrical box that can exchange heat with.

【0005】なお、実線矢印は冷房運転時の冷媒の流れ
方向を示し、破線矢印は暖房運転時の冷媒の流れ方向を
示す。
The solid arrow indicates the flow direction of the refrigerant during the cooling operation, and the broken arrow indicates the flow direction of the refrigerant during the heating operation.

【0006】次に動作について説明する。まず、冷房運
転時には、圧縮機1にて圧縮された高温高圧のガス冷媒
は、四方弁2を介して非利用側熱交換器3に入り、大気
などに放熱し凝縮液化して高圧の液冷媒となる。この高
圧の液冷媒は逆止弁8を介して冷房用減圧装置5に導か
れ、減圧されて低圧の気液二相冷媒となり、利用側熱交
換器6に入り、室内空気より採熱して冷房すると共に、
冷媒は蒸発して低圧のガス冷媒となり、アキュムレータ
7を介して圧縮機1に吸入される。
Next, the operation will be described. First, during the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 enters the non-use side heat exchanger 3 through the four-way valve 2 and radiates heat to the atmosphere to be condensed and liquefied to form a high-pressure liquid refrigerant. Becomes This high-pressure liquid refrigerant is guided to the cooling decompression device 5 through the check valve 8 and is decompressed to become a low-pressure gas-liquid two-phase refrigerant, which enters the use side heat exchanger 6 and collects heat from the indoor air to cool it. Along with
The refrigerant evaporates to a low-pressure gas refrigerant and is sucked into the compressor 1 via the accumulator 7.

【0007】暖房運転時には、四方弁2を切換えること
により、圧縮機1から吐出される高温高圧のガス冷媒
は、利用側熱交換器6に入り、室内空気に放熱して暖房
すると共に、冷媒自体は凝縮して高圧の液冷媒となる。
高圧液冷媒は、逆止弁9を介して暖房用減圧装置4で減
圧され、低圧の気液二相冷媒となり、非利用側熱交換器
3で蒸発してアキュムレータ7を介して圧縮機1に吸入
される。
During the heating operation, by switching the four-way valve 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 enters the heat exchanger 6 on the use side and radiates heat to indoor air to heat the refrigerant, and at the same time, the refrigerant itself. Is condensed into a high-pressure liquid refrigerant.
The high-pressure liquid refrigerant is decompressed by the heating decompression device 4 via the check valve 9, becomes a low-pressure gas-liquid two-phase refrigerant, is evaporated in the non-use side heat exchanger 3, and is accumulated in the compressor 1 via the accumulator 7. Inhaled.

【0008】次に電気品箱12に付設された補助クーラ
11への冷媒供給について説明する。圧縮機1の運転中
は、冷房用減圧装置5と暖房用減圧装置4とを接続する
配管部は高圧液冷媒となっているため、毛細管10で減
圧され低圧の気液二相冷媒が補助クーラ11に入り、電
気品箱12より採熱して電気品箱12を冷却する。
Next, the supply of the refrigerant to the auxiliary cooler 11 attached to the electric component box 12 will be described. While the compressor 1 is in operation, the pipe portion connecting the cooling decompression device 5 and the heating decompression device 4 is a high-pressure liquid refrigerant, so the low-pressure gas-liquid two-phase refrigerant decompressed by the capillary tube 10 is an auxiliary cooler. 11, the heat is taken from the electric component box 12 to cool the electric component box 12.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来の空気調
和機は、補助クーラ11の冷却性能を左右する冷媒流量
を調節する機能を毛細管10で持たせていたので、圧縮
機1の負荷変動に対して適性に調節できない。つまり、
毛細管10を通過する冷媒流量は、毛細管10の流入部
の高圧圧力により支配されるので、圧縮機1の容量に無
関係にほぼ一定となるが、電気品箱12に収納される電
気発熱部品(図示せず)の発熱量は圧縮機1の容量にほ
ぼ比例する。このため、圧縮機1の容量低下時には冷却
性能が過大となり、電気品箱12内で結露が生じるとい
う問題があった。
However, in the conventional air conditioner, since the capillary tube 10 has the function of adjusting the refrigerant flow rate that influences the cooling performance of the auxiliary cooler 11, the load fluctuation of the compressor 1 is prevented. On the other hand, it cannot be adjusted appropriately. That is,
Since the flow rate of the refrigerant passing through the capillary tube 10 is governed by the high pressure of the inflow portion of the capillary tube 10, it is almost constant regardless of the capacity of the compressor 1, but the electric heat-generating component (Fig. The calorific value of (not shown) is almost proportional to the capacity of the compressor 1. Therefore, when the capacity of the compressor 1 is reduced, the cooling performance becomes excessive, and there is a problem that dew condensation occurs in the electrical component box 12.

【0010】また、冷房運転時に比べて暖房運転時の周
囲温度は低下するので、補助クーラ11での必要冷却性
能は小さくてよいが、調節機能がなく前述と同様の問題
があった。
Further, since the ambient temperature during the heating operation is lower than that during the cooling operation, the required cooling performance of the auxiliary cooler 11 may be small, but there is no adjusting function and there is the same problem as described above.

【0011】さらに、冷房運転時でも暖房運転時でも補
助クーラ11へ冷媒を供給する必要があるため、いずれ
の運転モードでも常時高圧液冷媒部分を構成する必要が
あり、冷媒回路が複雑になるという問題もあった。
Further, since it is necessary to supply the refrigerant to the auxiliary cooler 11 during both the cooling operation and the heating operation, it is necessary to always form the high-pressure liquid refrigerant portion in any operation mode, which complicates the refrigerant circuit. There was also a problem.

【0012】この発明の目的は、電気品箱内に結露が生
じるのを防止でき、かつ冷媒回路の簡略化が図れる空気
調和機の電気品箱冷却装置を提供することにある。
An object of the present invention is to provide an electric component box cooling device for an air conditioner capable of preventing dew condensation in the electric component box and simplifying the refrigerant circuit.

【0013】[0013]

【課題を解決するための手段】この発明は、上記のよう
な目的を達成するために、次のような構成にしてある。
すなわち、容量可変の圧縮機、四方弁、非利用側熱交換
器、減圧装置、利用側熱交換器およびアキュムレータか
らなる冷媒回路と、電気発熱部品を収納した電気品箱
と、この電気品箱に熱交換可能に付設した補助クーラ
と、前記非利用側熱交換器と前記減圧装置とを接続する
冷媒配管の途中に設けた冷媒分岐口から前記補助クーラ
を通り前記アキュムレータの吸入配管に接続して前記補
助クーラに冷媒を供給可能としたバイパス回路と、この
バイパス回路において前記冷媒分岐口と前記補助クーラ
との間に設けた電気式膨張弁と、この電気式膨張弁の弁
開度制御する弁開度制御装置とを備え、前記圧縮機の運
転容量並びに空気調和機の冷房・暖房・デフロストの各
運転モードに応じて前記電気式膨張弁の弁開度を制御す
るようにした構成である。
The present invention has the following constitution in order to achieve the above-mentioned object.
That is, a compressor having a variable capacity, a four-way valve, a heat exchanger on the non-use side, a pressure reducing device, a refrigerant circuit consisting of a heat exchanger on the use side and an accumulator, an electric component box storing electric heating components, and an electric component box. An auxiliary cooler attached for heat exchange, and a refrigerant branch port provided in the middle of the refrigerant pipe connecting the non-use side heat exchanger and the pressure reducing device, through the auxiliary cooler and connected to the suction pipe of the accumulator. A bypass circuit capable of supplying refrigerant to the auxiliary cooler, an electric expansion valve provided between the refrigerant branch port and the auxiliary cooler in the bypass circuit, and a valve for controlling the valve opening degree of the electric expansion valve An opening control device is provided, and the valve opening of the electric expansion valve is controlled according to the operating capacity of the compressor and each operation mode of cooling, heating, and defrosting of the air conditioner. .

【0014】また、容量可変の圧縮機、四方弁、非利用
側熱交換器、減圧装置、利用側熱交換器およびアキュム
レータからなる冷媒回路と、電気発熱部品を収納した電
気品箱と、この電気品箱に熱交換可能に付設した補助ク
ーラと、前記非利用側熱交換器と前記減圧装置とを接続
する冷媒配管の途中に設けた冷媒分岐口から前記補助ク
ーラを通り前記アキュムレータの吸入配管に接続して前
記補助クーラに冷媒を供給可能としたバイパス回路と、
このバイパス回路において前記冷媒分岐口と前記補助ク
ーラとの間に設けた電気式膨張弁と、この電気式膨張弁
の弁開度制御する弁開度制御装置と、前記電気品箱の周
囲温度を検出する温度検出手段とを備え、前記弁開度制
御装置が前記温度検出手段による検出温度に基づき前記
電気式膨張弁の弁開度を補正制御するようにした構成で
ある。
Further, a refrigerant circuit comprising a variable capacity compressor, a four-way valve, a non-use side heat exchanger, a pressure reducing device, a use side heat exchanger and an accumulator, an electric component box accommodating electric heating components, and this electric An auxiliary cooler attached to the product box for heat exchange, and a refrigerant branch port provided in the middle of a refrigerant pipe connecting the non-use side heat exchanger and the pressure reducing device, to the suction pipe of the accumulator through the auxiliary cooler. Bypass circuit that can be connected to supply a refrigerant to the auxiliary cooler,
In this bypass circuit, an electric expansion valve provided between the refrigerant branch port and the auxiliary cooler, a valve opening control device that controls the valve opening of the electric expansion valve, and the ambient temperature of the electrical component box And a temperature detecting means for detecting the temperature, and the valve opening control device corrects and controls the valve opening of the electric expansion valve based on the temperature detected by the temperature detecting means.

【0015】また、容量可変の圧縮機、四方弁、非利用
側熱交換器、減圧装置、利用側熱交換器およびアキュム
レータからなる冷媒回路と、電気発熱部品を収納した電
気品箱と、この電気品箱に熱交換可能に付設した補助ク
ーラと、前記非利用側熱交換器と前記減圧装置とを接続
する冷媒配管の途中に設けた冷媒分岐口から前記補助ク
ーラを通り前記アキュムレータの吸入配管に接続して前
記補助クーラに冷媒を供給可能としたバイパス回路と、
このバイパス回路において前記冷媒分岐口と前記補助ク
ーラとの間に設けた毛細管と、この毛細管に並列接続さ
れた電磁弁と、この電磁弁を開閉制御する弁開閉制御装
置とを備え、暖房運転中は前記電磁弁を開路し、冷房運
転中およびデフロスト運転中は前記電磁弁を閉路するよ
うにした構成である。
Further, a refrigerant circuit comprising a variable capacity compressor, a four-way valve, a non-use side heat exchanger, a pressure reducing device, a use side heat exchanger and an accumulator, an electric component box accommodating electric heating components, and this electric An auxiliary cooler attached to the product box for heat exchange, and a refrigerant branch port provided in the middle of a refrigerant pipe connecting the non-use side heat exchanger and the pressure reducing device, to the suction pipe of the accumulator through the auxiliary cooler. Bypass circuit that can be connected to supply a refrigerant to the auxiliary cooler,
In this bypass circuit, a capillary tube provided between the refrigerant branch port and the auxiliary cooler, an electromagnetic valve connected in parallel to the capillary tube, and a valve opening / closing control device that controls opening / closing of the electromagnetic valve are provided, and a heating operation is performed. Is a configuration in which the solenoid valve is opened and the solenoid valve is closed during the cooling operation and the defrost operation.

【0016】更には、容量可変の圧縮機、四方弁、非利
用側熱交換器、減圧装置、利用側熱交換器およびアキュ
ムレータからなる冷媒回路と、電気発熱部品を収納した
電気品箱と、この電気品箱に熱交換可能に付設した補助
クーラと、前記非利用側熱交換器と前記減圧装置とを接
続する冷媒配管の途中に設けた冷媒分岐口から前記補助
クーラを通り前記アキュムレータの吸入配管に接続して
前記補助クーラに冷媒を供給可能としたバイパス回路
と、このバイパス回路において前記冷媒分岐口と前記補
助クーラとの間に設けた毛細管と、この毛細管に並列接
続された電磁弁と、この電磁弁を開閉制御する弁開閉制
御装置とを備え、前記弁開閉制御装置が、前記圧縮機の
起動後所定時間、前記電磁弁を閉路するようにした構成
である。
Further, a refrigerant circuit comprising a variable capacity compressor, a four-way valve, a non-use side heat exchanger, a pressure reducing device, a use side heat exchanger and an accumulator, and an electric component box accommodating an electric heating component, Auxiliary cooler attached to the electrical equipment box so that heat can be exchanged, and a suction pipe of the accumulator passing through the auxiliary cooler from a refrigerant branch port provided in the middle of a refrigerant pipe connecting the non-use side heat exchanger and the pressure reducing device. A bypass circuit capable of supplying a refrigerant to the auxiliary cooler by connecting to, a capillary tube provided between the refrigerant branch port and the auxiliary cooler in the bypass circuit, and a solenoid valve connected in parallel to the capillary tube, A valve opening / closing control device for controlling the opening / closing of the electromagnetic valve is provided, and the valve opening / closing control device is configured to close the electromagnetic valve for a predetermined time after the activation of the compressor.

【0017】[0017]

【作用】請求項1の空気調和機の電磁品箱冷却装置によ
ると、容量可変の圧縮機を有する冷媒回路と、電気発熱
部品を収納した電気品箱とからなり、バイパス回路を非
利用側熱交換器と減圧装置の間の冷媒分岐口から電気式
膨張弁を介して電気品箱に付設した補助クーラを通して
アキュムレータの吸入配管に接続したので、補助クーラ
へ供給される冷媒量が適正に制御される。また、圧縮機
の運転容量並びに冷房・暖房・デフロストの各運転モー
ドにより異なってくる必要冷却量に応じて、補助クーラ
の供給冷媒量の制御が可能となる。
According to the electromagnetic product box cooling device for an air conditioner of the first aspect, the bypass circuit is composed of a refrigerant circuit having a variable capacity compressor and an electric product box accommodating electric heat-generating components. Since the refrigerant branch port between the exchanger and the pressure reducing device was connected to the intake pipe of the accumulator through the auxiliary cooler attached to the electrical component box via the electric expansion valve, the amount of refrigerant supplied to the auxiliary cooler was properly controlled. It In addition, the amount of refrigerant supplied to the auxiliary cooler can be controlled according to the operating capacity of the compressor and the required cooling amount that varies depending on the cooling / heating / defrosting operation modes.

【0018】請求項2の空気調和機の電気品箱冷却装置
によると、電気品箱の周囲温度により変化する必要冷却
量に応じて、補助クーラへの供給冷媒量の制御が可能と
なる。
According to the electric component box cooling device for an air conditioner of the second aspect, it is possible to control the amount of refrigerant supplied to the auxiliary cooler in accordance with the required cooling amount which changes depending on the ambient temperature of the electric component box.

【0019】請求項3の空気調和機の電気品箱冷却装置
によると、容量可変の圧縮機を有する冷媒回路と、電気
発熱部品を収納した電気品箱とからなり、バイパス回路
を非利用熱交換器と減圧装置の間を冷媒分岐口から毛細
管と電磁弁の並列回路を介し電気品箱に付設した補助ク
ーラを通してアキュムレータの吸入配管に接続したの
で、補助クーラへ供給される冷媒量が電磁弁を制御する
ことにより調節できる。また、暖房運転中は、電磁弁を
開路することにより比較的圧力差の少ない条件下でも補
助クーラに冷媒を供給でき、また冷房運転中およびデフ
ロスト運転中には、電磁弁を閉路して毛細管前後に発生
する比較的大きな圧力差により、毛細管のみにて補助ク
ーラへの冷媒供給が可能となる。
According to the electric component box cooling device of the air conditioner of the third aspect, the refrigerant circuit having the variable capacity compressor and the electric component box accommodating the electric heating component are used, and the bypass circuit does not use the heat exchange. Since the refrigerant branch port was connected from the refrigerant branch port to the intake pipe of the accumulator through the parallel circuit of the capillary tube and the solenoid valve through the auxiliary cooler attached to the electrical equipment box, the amount of refrigerant supplied to the auxiliary cooler was controlled by the solenoid valve. It can be adjusted by controlling. Also, during heating operation, by opening the solenoid valve, the refrigerant can be supplied to the auxiliary cooler even under the condition where the pressure difference is relatively small, and during the cooling operation and the defrost operation, the solenoid valve is closed to close the capillary tube. Due to the relatively large pressure difference generated in the subcooler, the refrigerant can be supplied to the auxiliary cooler only by the capillary tube.

【0020】請求項4の空気調和機の電気品箱冷却装置
によると、暖房運転中の圧縮機起動時の所定時間は、電
磁弁を閉路するように制御したので、圧縮機起動に伴う
急激な圧力変化がある場合でも補助クーラに流れる冷媒
流量を抑圧できる。
According to the electric component box cooling device of the air conditioner of the fourth aspect, the solenoid valve is controlled to be closed for a predetermined time when the compressor is started during the heating operation. Even if the pressure changes, the flow rate of the refrigerant flowing through the auxiliary cooler can be suppressed.

【0021】[0021]

【実施例】【Example】

実施例1.この発明の一実施例を図1に示す、図におい
て、13は冷媒回路であり、インバータにより駆動され
る容量可変な圧縮機14、四方弁15、非利用側熱交換
器16、利用側熱交換器17、アキュムレータ18、減
圧装置19、アキュムレータ18の吸入配管20によっ
て構成されている。なお、21は電気発熱部品を収納し
た電気品箱、22は電気品箱21に対して熱交換可能と
なるように付設した補助クーラである。また、23は非
利用側熱交換器16と減圧装置19とを接続する冷媒配
管途中に設けた冷媒分岐口25から補助クーラ22を介
してアキュムレータ18の吸入配管20に配管接続した
バイパス回路である。冷媒分岐口25と補助クーラ22
との間には、電気式膨張弁24が設けられている。さら
に、26は電気式膨張弁24の弁開度を制御する弁開度
制御装置、30は電気品箱21の周囲温度を検出する温
度検出手段である。
Example 1. An embodiment of the present invention is shown in FIG. 1. In the figure, 13 is a refrigerant circuit, and a variable capacity compressor 14 driven by an inverter, a four-way valve 15, a non-use side heat exchanger 16, a use side heat exchange. The container 17, the accumulator 18, the pressure reducing device 19, and the suction pipe 20 of the accumulator 18 are included. Reference numeral 21 is an electric component box that houses an electric heating component, and 22 is an auxiliary cooler that is attached to the electric component box 21 so that heat can be exchanged. Reference numeral 23 is a bypass circuit pipe-connected to a suction pipe 20 of the accumulator 18 from a refrigerant branch port 25 provided in the middle of the refrigerant pipe connecting the non-use side heat exchanger 16 and the pressure reducing device 19 via an auxiliary cooler 22. . Refrigerant branch port 25 and auxiliary cooler 22
An electric expansion valve 24 is provided between the two. Further, 26 is a valve opening control device for controlling the valve opening of the electric expansion valve 24, and 30 is temperature detecting means for detecting the ambient temperature of the electric component box 21.

【0022】図中、実線矢印は冷房運転時の冷媒流れ方
向を示し、破線矢印は暖房運転時の冷媒流れ方向を示し
ている。冷房運転時には、圧縮機14により圧縮された
高温高圧のガス冷媒は、四方弁15を介して非利用側熱
交換器16に入り、大気などに放熱し凝縮液化して高圧
の液冷媒となる。この高圧の液冷媒は、減圧装置19で
減圧されて低圧の気液二相冷媒となり、利用側熱交換器
17に入り、室内空気より採熱して冷房すると共に、冷
媒は蒸発して低圧のガス冷媒となり、アキュムレータ1
8を介して圧縮機14に吸入される。暖房運転時には、
四方弁15を切り換えることにより、圧縮機14から吐
出される高温高圧のガス冷媒は、利用側熱交換器17に
入り、室内空気に放熱して暖房すると共に、冷媒自体は
凝縮して高圧の液冷媒となる。高圧液冷媒は減圧装置1
9で減圧され、低圧の気液二相冷媒となり、非利用側熱
交換気16で蒸発して、アキュムレータ18を介して圧
縮機14に吸入される。
In the figure, solid arrows indicate the direction of refrigerant flow during cooling operation, and broken arrows indicate the direction of refrigerant flow during heating operation. During the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 14 enters the non-use side heat exchanger 16 through the four-way valve 15 and radiates heat to the atmosphere to be condensed and liquefied to become a high-pressure liquid refrigerant. This high-pressure liquid refrigerant is decompressed by the decompression device 19 to become a low-pressure gas-liquid two-phase refrigerant, enters the use-side heat exchanger 17, collects heat from the indoor air and cools it, and evaporates the refrigerant to form a low-pressure gas. Becomes refrigerant and accumulator 1
8 and is sucked into the compressor 14 via. During heating operation,
By switching the four-way valve 15, the high-temperature and high-pressure gas refrigerant discharged from the compressor 14 enters the use-side heat exchanger 17 to radiate heat to indoor air to heat the refrigerant, and the refrigerant itself is condensed to form a high-pressure liquid. It becomes a refrigerant. High-pressure liquid refrigerant is a decompression device 1
It is decompressed at 9, becomes a low-pressure gas-liquid two-phase refrigerant, evaporates at the non-use side heat exchange gas 16, and is sucked into the compressor 14 via the accumulator 18.

【0023】次に、バイパス回路23における作用につ
いて説明する。非利用側熱交換器16と減圧装置19を
接続する冷媒配管途中に設けられた冷媒分岐口25にお
ける冷媒状態は、冷房運転時には高圧液冷媒、暖房時に
は低圧の気液二相冷媒となる。また、アキュムレータ1
8の吸入配管20における冷媒は低圧のガス冷媒状態で
あり、圧力的には冷媒分岐口25に比べて常に低い状態
となっている。したがってバイパス回路23において
は、冷媒分岐口25からアキュムレータ18の吸入配管
20に向かう冷媒流れが発生するので、補助クーラ22
に低温冷媒が供給され電気品箱21から採熱して冷却を
行う。なお、補助クーラ22への供給する冷媒量は、電
気膨張弁24により調節される。
Next, the operation of the bypass circuit 23 will be described. The refrigerant state at the refrigerant branch port 25 provided in the refrigerant pipe connecting the non-use side heat exchanger 16 and the pressure reducing device 19 becomes a high pressure liquid refrigerant during the cooling operation and a low pressure gas-liquid two-phase refrigerant during the heating operation. Also, accumulator 1
The refrigerant in the suction pipe 20 of No. 8 is in a low-pressure gas refrigerant state, and is always lower in pressure than the refrigerant branch port 25. Therefore, in the bypass circuit 23, a refrigerant flow from the refrigerant branch port 25 to the suction pipe 20 of the accumulator 18 is generated, so that the auxiliary cooler 22
A low-temperature refrigerant is supplied to the device to collect heat from the electrical component box 21 to cool it. The amount of refrigerant supplied to the auxiliary cooler 22 is adjusted by the electric expansion valve 24.

【0024】次に、前記電気式膨張弁24の弁開度制御
装置26における弁開度制御を図2、図3、図4に基づ
き説明する。図2は、電気式膨張弁24の弁開度を設定
・出力制御状態を示すフローチャートである。ステップ
31で圧縮機14が運転中であるか否かを判定し、運転
中の場合に限って電気式膨張弁24の弁開度制御を行な
い、圧縮機14が停止中の場合にはステップ39で弁開
度出力S=0、即ち全閉状態にする。圧縮機14が運転
中の場合には、ステップ32に進み、運転モードを判定
し、冷房の場合には、ステップ34〜38により電気式
膨張弁24の弁開度を制御する。つまり、ステップ34
では室内冷房負荷に応じて圧縮機14の運転容量を制御
する容量制御手段(図示せず)により設定された圧縮機
運転容量を読み込み、ステップ35で圧縮機運転容量に
より予め設定された冷房基準開度S1を算出する。更
に、ステップ36で電気品箱21の周囲温度を温度検出
手段30で検出し、この検出温度に基づきステップ37
で冷房開度補正値△S1を算出し、ステップ38におい
て前述の冷房基準開度S1と冷房開度補正値△S1によ
り弁開度出力“S=S1+△S1”を決定する。ステッ
プ32において、暖房運転の場合には、ステップ33に
進みデフロスト運転であるか否かを判定し、デフロスト
運転でない場合には、ステップ40〜44において冷房
運転の場合と同様に圧縮機運転容量並びに電気品箱21
の周囲温度に基づき弁開度出力“S=S2+△S2”を
決定する。なお、ステップ33でデフロスト運転の場合
には、ステップ45でデフロスト基準開度S3を設定
し、ステップ46に進んで弁開度出力“S=S3”を決
定する。
Next, the valve opening control in the valve opening control device 26 of the electric expansion valve 24 will be described with reference to FIGS. 2, 3 and 4. FIG. 2 is a flowchart showing a state in which the valve opening degree of the electric expansion valve 24 is set / output controlled. In step 31, it is determined whether or not the compressor 14 is in operation, and the valve opening control of the electric expansion valve 24 is performed only when the compressor 14 is in operation. When the compressor 14 is stopped, step 39 is performed. The valve opening output S = 0, that is, the valve is fully closed. When the compressor 14 is in operation, the process proceeds to step 32, the operation mode is determined, and in the case of cooling, the valve opening degree of the electric expansion valve 24 is controlled by steps 34 to 38. That is, step 34
Then, the compressor operating capacity set by the capacity control means (not shown) for controlling the operating capacity of the compressor 14 according to the indoor cooling load is read, and in step 35, the cooling reference opening preset by the compressor operating capacity is read. The degree S1 is calculated. Further, in step 36, the ambient temperature of the electrical component box 21 is detected by the temperature detecting means 30, and based on this detected temperature, step 37
The cooling opening correction value ΔS1 is calculated in step 38, and the valve opening output “S = S1 + ΔS1” is determined in step 38 based on the cooling reference opening S1 and the cooling opening correction value ΔS1. In step 32, in the case of heating operation, it is determined in step 33 whether or not it is defrost operation. If it is not defrost operation, in steps 40 to 44, the compressor operating capacity and Electrical box 21
The valve opening output “S = S2 + ΔS2” is determined on the basis of the ambient temperature of. If the defrost operation is performed in step 33, the defrost reference opening S3 is set in step 45, and the process proceeds to step 46 to determine the valve opening output "S = S3".

【0025】図3は、電気式膨張弁24の基準弁開度を
圧縮機14の運転容量に応じて設定する特性図である。
図において、S1は冷房基準開度線図、S2は暖房基準
開度線図であり、圧縮機運転容量の増加に応じて略比例
的に基準開度S1,S2も増加するように設定されてい
る。つまり、電気品箱21に収納された電気発熱部品の
発熱量は、圧縮機14の運転容量の増加により増大する
ので、電気品箱21の必要冷却量も増加する。従って、
圧縮機14の運転容量に基づき、電気式膨張弁24の基
準開度を設定すれば、補助クーラ22の供給冷媒量を適
正に制御できる。なお、電気式膨張弁24の入口冷媒状
態は、冷房の場合は高圧液冷媒、暖房の場合は低圧二相
冷媒であるため、冷房基準開度S1に比べて暖房基準開
度S2は図3に示す如く極端に大きく設定されている。
FIG. 3 is a characteristic diagram for setting the reference valve opening degree of the electric expansion valve 24 according to the operating capacity of the compressor 14.
In the figure, S1 is a cooling reference opening degree diagram, S2 is a heating reference opening degree diagram, and the reference opening degrees S1 and S2 are set so as to increase substantially proportionally as the compressor operating capacity increases. There is. That is, the amount of heat generated by the electric heating components housed in the electric component box 21 increases due to an increase in the operating capacity of the compressor 14, so the required cooling amount of the electric component box 21 also increases. Therefore,
By setting the reference opening degree of the electric expansion valve 24 based on the operating capacity of the compressor 14, the amount of refrigerant supplied to the auxiliary cooler 22 can be appropriately controlled. In addition, since the inlet refrigerant state of the electric expansion valve 24 is a high-pressure liquid refrigerant in the case of cooling, and a low-pressure two-phase refrigerant in the case of heating, the heating reference opening S2 is shown in FIG. 3 compared to the cooling reference opening S1. It is set extremely large as shown.

【0026】図4は、電気品箱21の周囲温度に基づき
電気式膨張弁24の弁開度の補正量を設定する特性図で
ある。図において、補正量は図3に示す基準開度に対す
る比率であり、冷房開度補正値△S1および暖房開度補
正値△S2が独立して設定される。なお、周囲温度が高
い場合には、電気品箱21の必要冷却量が増大するの
で、補正値△1および△2が大きくなるように設定され
ている。
FIG. 4 is a characteristic diagram for setting the correction amount of the valve opening degree of the electric expansion valve 24 based on the ambient temperature of the electric component box 21. In the figure, the correction amount is a ratio to the reference opening shown in FIG. 3, and the cooling opening correction value ΔS1 and the heating opening correction value ΔS2 are independently set. When the ambient temperature is high, the required cooling amount of the electric component box 21 increases, so the correction values Δ1 and Δ2 are set to be large.

【0027】実施例2.次にこの発明の他の実施例を図
5に示す。なお、前記実施例1と同一部分は同一符号を
付してその説明を省略する。
Example 2. Next, another embodiment of the present invention is shown in FIG. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0028】図中、27は冷媒分岐口25から補助クー
ラ22の間に設けられた毛細管であり、電磁弁28に対
して並列に接続されている。29は電磁弁28の開閉制
御を行う弁開閉制御装置である。
In the figure, 27 is a capillary tube provided between the refrigerant branch port 25 and the auxiliary cooler 22 and connected in parallel to the solenoid valve 28. Reference numeral 29 denotes a valve opening / closing control device that controls opening / closing of the solenoid valve 28.

【0029】次に動作について説明する。冷媒による冷
房運転時並びに暖房運転時の動作、並びに補助クーラ2
2による電気品箱21の冷却作用については、図1にて
示した実施例1と同様であるので説明を省略する。
Next, the operation will be described. Operation during cooling operation and heating operation with refrigerant, and auxiliary cooler 2
The cooling action of the electric component box 21 by 2 is the same as that of the first embodiment shown in FIG.

【0030】この実施例のバイパス回路23の作用を弁
開閉制御装置29による制御状態を含めて説明する。冷
房運転の場合には、電磁弁28は開路状態を維持し、毛
細管27のみを介して補助クーラ22へ冷媒は供給され
る。つまり、冷房運転の場合には、冷媒分岐口25は高
圧冷媒液であり、アキュムレータ18の吸入配管20は
低圧ガス冷媒であるため、毛細管27のみでも十分な冷
媒流量が確保でき、電気品箱21の冷却性能を発揮でき
る。また、暖房運転の場合には、電磁弁28は開路状態
とし、毛細管27および電磁弁28の並列開路を介して
補助クーラ22へ冷媒は供給される。つまり、暖房運転
時の場合には、冷媒分岐口25は低圧の気液二相冷媒で
あるため、毛細管27のみでは十分な冷媒流量が確保で
きないので、電磁弁28を開路して電気品箱21に必要
な冷却性能を得るに十分な冷媒流量を補助クーラ22に
供給する。なお、暖房運転の場合に発生するデフロスト
運転の場合には、冷房運転の場合の冷媒流れ(図中、実
線矢印)となるので電磁弁28を閉路して、補助クーラ
22への供給冷媒流量が過大とならないよう制御され
る。
The operation of the bypass circuit 23 of this embodiment will be described including the control state of the valve opening / closing control device 29. In the cooling operation, the electromagnetic valve 28 maintains the open circuit state, and the refrigerant is supplied to the auxiliary cooler 22 only via the capillary tube 27. That is, in the cooling operation, since the refrigerant branch port 25 is a high pressure refrigerant liquid and the suction pipe 20 of the accumulator 18 is a low pressure gas refrigerant, a sufficient refrigerant flow rate can be secured only by the capillary tube 27 and the electric component box 21. The cooling performance of can be demonstrated. Further, in the heating operation, the electromagnetic valve 28 is opened, and the refrigerant is supplied to the auxiliary cooler 22 via the parallel opening of the capillary tube 27 and the electromagnetic valve 28. That is, in the heating operation, since the refrigerant branch port 25 is a low-pressure gas-liquid two-phase refrigerant, it is not possible to secure a sufficient refrigerant flow rate only by the capillary tube 27. Therefore, the electromagnetic valve 28 is opened to open the electrical component box 21. The auxiliary cooler 22 is supplied with a sufficient flow rate of the refrigerant to obtain the required cooling performance. In the case of the defrost operation that occurs in the heating operation, the refrigerant flow in the cooling operation (indicated by the solid arrow in the figure) is set. Therefore, the electromagnetic valve 28 is closed and the flow rate of the refrigerant supplied to the auxiliary cooler 22 is reduced. It is controlled so that it does not become excessive.

【0031】また、圧縮機14の起動直後においては、
アキュムレータ18の吸入配管20では急激な圧力低下
が発生するので、毛細管27のみで十分な冷媒流量が確
保できる。従って暖房運転で圧縮機14の起動直後より
電磁弁28を開路すると、冷媒流量が過大となるので、
起動直後より所定時間は電磁弁28に閉路状態となるよ
うに制御される。
Immediately after starting the compressor 14,
Since a rapid pressure drop occurs in the suction pipe 20 of the accumulator 18, a sufficient refrigerant flow rate can be secured only by the capillary tube 27. Therefore, if the solenoid valve 28 is opened immediately after the compressor 14 is started in the heating operation, the refrigerant flow rate becomes excessive.
The solenoid valve 28 is controlled to be closed for a predetermined time immediately after the start.

【0032】[0032]

【発明の効果】以上、この発明に係る請求項1に記載の
空気調和機の電気品箱冷却装置によると、容量可変の圧
縮機を有した冷媒回路と、電気発熱部品を収納した電気
品箱とからなり、バイパス回路を冷媒回路の非利用側熱
交換器と減圧装置の間の冷媒分岐口より、電気式膨張弁
を介して電気品箱に付設した補助クーラを通してアキュ
ムレータの吸入配管に接続すると共に、電気式膨張弁の
弁開度を圧縮機の運転容量並びに冷房・暖房・デフロス
トの各運転モードに応じて制御する弁開度制御装置を設
けたので、圧縮機の容量に応じて補助クーラへ供給され
る冷媒量が変化し、電気品箱内に結露が生じるのを防止
出来る。また、電気品箱を冷却するためのバイパス回路
を、空気調和機の運転モードにより圧力状態が変化する
冷媒分岐口からアキュムレータの吸入配管の間に接続
し、電気式膨張弁の弁開度で供給冷媒量を制御でき、冷
媒回路の簡略化が図れる。
As described above, according to the electric component box cooling device for an air conditioner according to claim 1 of the present invention, an electric component box containing a refrigerant circuit having a variable capacity compressor and an electric heating component. The bypass circuit is connected to the intake pipe of the accumulator from the refrigerant branch port between the non-use side heat exchanger of the refrigerant circuit and the pressure reducing device through the auxiliary expansion cooler attached to the electrical component box via the electric expansion valve. At the same time, a valve opening control device was installed to control the valve opening of the electric expansion valve according to the operating capacity of the compressor and each operating mode of cooling, heating, and defrosting. It is possible to prevent the occurrence of dew condensation in the electric component box due to a change in the amount of the refrigerant supplied to the electric component box. In addition, a bypass circuit for cooling the electrical component box is connected between the refrigerant branch port whose pressure changes depending on the operation mode of the air conditioner and the intake pipe of the accumulator, and is supplied at the valve opening of the electric expansion valve. The amount of refrigerant can be controlled, and the refrigerant circuit can be simplified.

【0033】この発明に係る請求項2に記載の空気調和
機の電気品箱冷却装置によると、電気品箱の周囲温度を
検出する温度検出装置による検出温度に基づき、電気式
膨張弁の弁開度を補正制御するので、周囲温度により変
化する電気品箱の必要冷却量に応じて、補助クーラへの
供給冷媒量を適正に制御できる。
According to the electric component box cooling device for an air conditioner according to a second aspect of the present invention, the valve of the electric expansion valve is opened based on the temperature detected by the temperature detecting device for detecting the ambient temperature of the electric component box. Since the degree is corrected and controlled, the amount of refrigerant supplied to the auxiliary cooler can be appropriately controlled according to the required cooling amount of the electrical component box that changes depending on the ambient temperature.

【0034】この発明に係る請求項3に記載の空気調和
機の電気品箱冷却装置によると、容量可変の圧縮機を有
した冷媒回路と、電気発熱部品を収納した電気品箱とか
らなり、バイパス回路を冷媒回路の非利用側熱交換器と
減圧装置の間の冷媒分岐口より、毛細管と電磁弁の並列
開路を介して電気品箱に付設した補助クーラを通してア
キュムレータの吸入配管に接続すると共に、電磁弁を暖
房運転中に開路し、冷房運転中およびデフロスト運転中
に閉路する弁開閉制御装置を設けたので、比較的簡単な
冷媒回路構成により補助クーラへの供給冷媒量を確保で
きる。
According to a third aspect of the present invention, there is provided an electric component box cooling device for an air conditioner, which comprises a refrigerant circuit having a variable capacity compressor and an electric component box accommodating an electric heating component. The bypass circuit is connected from the refrigerant branch port between the heat exchanger on the unused side of the refrigerant circuit and the pressure reducing device to the suction pipe of the accumulator through the auxiliary open cooler attached to the electrical component box through the parallel opening of the capillary tube and the solenoid valve. Since the solenoid valve is opened during the heating operation and is closed during the cooling operation and the defrost operation, the valve opening / closing control device is provided, so that the refrigerant supply amount to the auxiliary cooler can be secured by a relatively simple refrigerant circuit configuration.

【0035】この発明に係る請求項4に記載の空気調和
機の電気品箱冷却装置によると、圧縮機起動直後の所定
時間閉路するようにしたので、圧縮機起動に伴う急激な
圧力変化がある場合でも補助クーラに流れる冷媒量を抑
制できる。
According to the electric component box cooling device for an air conditioner according to a fourth aspect of the present invention, since the circuit is closed for a predetermined time immediately after the compressor is started, there is a sudden pressure change due to the start of the compressor. Even in this case, the amount of refrigerant flowing through the auxiliary cooler can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による空気調和機の全体構
成図である。
FIG. 1 is an overall configuration diagram of an air conditioner according to a first embodiment of the present invention.

【図2】図1における弁開度制御装置による制御状態を
示すフローチャートである。
FIG. 2 is a flow chart showing a control state by the valve opening control device in FIG.

【図3】図2における基準弁開度を圧縮機の運転容量に
応じて設定する特性図である。
FIG. 3 is a characteristic diagram for setting the reference valve opening degree in FIG. 2 according to the operating capacity of the compressor.

【図4】図2における弁開度補正値を周囲温度に応じて
設定する特性図である。
FIG. 4 is a characteristic diagram for setting a valve opening correction value in FIG. 2 according to ambient temperature.

【図5】この発明の実施例2による空気調和機の全体構
成図である。
FIG. 5 is an overall configuration diagram of an air conditioner according to a second embodiment of the present invention.

【図6】従来の空気調和機の全体構成図である。FIG. 6 is an overall configuration diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

13 冷媒回路 14 圧縮機 15 四方弁 16 非利用側熱交換器 17 利用側熱交換器 18 アキュムレータ 19 減圧装置 20 吸入配管 21 電気品箱 22 補助クーラ 23 バイパス回路 24 電気式膨張弁 25 冷媒分岐口 26 弁開度制御装置 27 毛細管 28 電磁弁 29 弁開閉制御装置 30 温度検出装置 13 Refrigerant circuit 14 Compressor 15 Four-way valve 16 Non-use side heat exchanger 17 Use side heat exchanger 18 Accumulator 19 Pressure reducing device 20 Suction pipe 21 Electric component box 22 Auxiliary cooler 23 Bypass circuit 24 Electric expansion valve 25 Refrigerant branch port 26 Valve opening control device 27 Capillary tube 28 Electromagnetic valve 29 Valve opening / closing control device 30 Temperature detection device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 容量可変の圧縮機、四方弁、非利用側熱
交換器、減圧装置、利用側熱交換器およびアキュムレー
タからなる冷媒回路と、電気発熱部品を収納した電気品
箱と、この電気品箱に熱交換可能に付設した補助クーラ
と、前記非利用側熱交換器と前記減圧装置とを接続する
冷媒配管の途中に設けた冷媒分岐口から前記補助クーラ
を通り前記アキュムレータの吸入配管に接続して前記補
助クーラに冷媒を供給可能としたバイパス回路と、この
バイパス回路において前記冷媒分岐口と前記補助クーラ
との間に設けた電気式膨張弁と、この電気式膨張弁の弁
開度制御する弁開度制御装置とを備え、前記圧縮機の運
転容量並びに空気調和機の冷房・暖房・デフロストの各
運転モードに応じて前記電気式膨張弁の弁開度を制御す
るようにしたことを特徴とする空気調和機の電気品箱冷
却装置。
1. A refrigerant circuit comprising a variable capacity compressor, a four-way valve, a non-use side heat exchanger, a pressure reducing device, a use side heat exchanger and an accumulator, an electric component box accommodating an electric heating component, and this electric An auxiliary cooler attached to the product box for heat exchange, and a refrigerant branch port provided in the middle of a refrigerant pipe connecting the non-use side heat exchanger and the pressure reducing device, to the suction pipe of the accumulator through the auxiliary cooler. A bypass circuit that is connected to supply the refrigerant to the auxiliary cooler, an electric expansion valve provided between the refrigerant branch port and the auxiliary cooler in the bypass circuit, and a valve opening degree of the electric expansion valve A valve opening control device for controlling the electric expansion valve is controlled according to the operating capacity of the compressor and the cooling, heating, and defrosting operation modes of the air conditioner. To A cooler for electric box of air conditioners.
【請求項2】 容量可変の圧縮機、四方弁、非利用側熱
交換器、減圧装置、利用側熱交換器およびアキュムレー
タからなる冷媒回路と、電気発熱部品を収納した電気品
箱と、この電気品箱に熱交換可能に付設した補助クーラ
と、前記非利用側熱交換器と前記減圧装置とを接続する
冷媒配管の途中に設けた冷媒分岐口から前記補助クーラ
を通り前記アキュムレータの吸入配管に接続して前記補
助クーラに冷媒を供給可能としたバイパス回路と、この
バイパス回路において前記冷媒分岐口と前記補助クーラ
との間に設けた電気式膨張弁と、この電気式膨張弁の弁
開度制御する弁開度制御装置と、前記電気品箱の周囲温
度を検出する温度検出手段とを備え、前記弁開度制御装
置が前記温度検出手段による検出温度に基づき前記電気
式膨張弁の弁開度を補正制御するようにしたことを特徴
とする空気調和機の電気品冷却装置。
2. A refrigerant circuit comprising a variable capacity compressor, a four-way valve, a heat exchanger on the non-use side, a pressure reducing device, a heat exchanger on the use side and an accumulator; An auxiliary cooler attached to the product box for heat exchange, and a refrigerant branch port provided in the middle of a refrigerant pipe connecting the non-use side heat exchanger and the pressure reducing device, to the suction pipe of the accumulator through the auxiliary cooler. A bypass circuit that is connected to supply the refrigerant to the auxiliary cooler, an electric expansion valve provided between the refrigerant branch port and the auxiliary cooler in the bypass circuit, and a valve opening degree of the electric expansion valve A valve opening control device for controlling and a temperature detecting means for detecting the ambient temperature of the electric component box, and the valve opening control device opens the valve of the electric expansion valve based on the temperature detected by the temperature detecting means. Degree An electric component cooling device for an air conditioner, which is characterized by performing correction control.
【請求項3】 容量可変の圧縮機、四方弁、非利用側熱
交換器、減圧装置、利用側熱交換器およびアキュムレー
タからなる冷媒回路と、電気発熱部品を収納した電気品
箱と、この電気品箱に熱交換可能に付設した補助クーラ
と、前記非利用側熱交換器と前記減圧装置とを接続する
冷媒配管の途中に設けた冷媒分岐口から前記補助クーラ
を通り前記アキュムレータの吸入配管に接続して前記補
助クーラに冷媒を供給可能としたバイパス回路と、この
バイパス回路において前記冷媒分岐口と前記補助クーラ
との間に設けた毛細管と、この毛細管に並列接続された
電磁弁と、この電磁弁を開閉制御する弁開閉制御装置と
を備え、暖房運転中は前記電磁弁を開路し、冷房運転中
およびデフロスト運転中は前記電磁弁を閉路するように
したことを特徴とする空気調和機の電気品箱冷却装置。
3. A refrigerant circuit comprising a variable capacity compressor, a four-way valve, a non-use side heat exchanger, a pressure reducing device, a use side heat exchanger and an accumulator, an electric component box accommodating an electric heat generating component, and this electric machine. An auxiliary cooler attached to the product box for heat exchange, and a refrigerant branch port provided in the middle of a refrigerant pipe connecting the non-use side heat exchanger and the pressure reducing device, to the suction pipe of the accumulator through the auxiliary cooler. A bypass circuit which is connected to supply the refrigerant to the auxiliary cooler, a capillary tube provided between the refrigerant branch port and the auxiliary cooler in the bypass circuit, and a solenoid valve connected in parallel to the capillary tube, A valve opening / closing control device for controlling opening / closing of a solenoid valve is provided, wherein the solenoid valve is opened during a heating operation, and the solenoid valve is closed during a cooling operation and a defrost operation. Cooling device for electric box of air conditioner.
【請求項4】 容量可変の圧縮機、四方弁、非利用側熱
交換器、減圧装置、利用側熱交換器およびアキュムレー
タからなる冷媒回路と、電気発熱部品を収納した電気品
箱と、この電気品箱に熱交換可能に付設した補助クーラ
と、前記非利用側熱交換器と前記減圧装置とを接続する
冷媒配管の途中に設けた冷媒分岐口から前記補助クーラ
を通り前記アキュムレータの吸入配管に接続して前記補
助クーラに冷媒を供給可能としたバイパス回路と、この
バイパス回路において前記冷媒分岐口と前記補助クーラ
との間に設けた毛細管と、この毛細管に並列接続された
電磁弁と、この電磁弁を開閉制御する弁開閉制御装置と
を備え、前記弁開閉制御装置が、前記圧縮機の起動後所
定時間、前記電磁弁を閉路するようにしたことを特徴と
する空気調和機の電気品箱冷却装置。
4. A refrigerant circuit comprising a variable capacity compressor, a four-way valve, a non-use side heat exchanger, a pressure reducing device, a use side heat exchanger and an accumulator, an electric component box accommodating an electric heat generating component, and this electric component. An auxiliary cooler attached to the product box for heat exchange, and a refrigerant branch port provided in the middle of a refrigerant pipe connecting the non-use side heat exchanger and the pressure reducing device, to the suction pipe of the accumulator through the auxiliary cooler. A bypass circuit which is connected to supply the refrigerant to the auxiliary cooler, a capillary tube provided between the refrigerant branch port and the auxiliary cooler in the bypass circuit, and a solenoid valve connected in parallel to the capillary tube, A valve opening / closing control device for controlling opening / closing of a solenoid valve, wherein the valve opening / closing control device is configured to close the solenoid valve for a predetermined time after the compressor is activated. Class box cooler.
JP19392092A 1992-07-21 1992-07-21 Cooling device of electric article box of air conditioner Pending JPH0634208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19392092A JPH0634208A (en) 1992-07-21 1992-07-21 Cooling device of electric article box of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19392092A JPH0634208A (en) 1992-07-21 1992-07-21 Cooling device of electric article box of air conditioner

Publications (1)

Publication Number Publication Date
JPH0634208A true JPH0634208A (en) 1994-02-08

Family

ID=16315943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19392092A Pending JPH0634208A (en) 1992-07-21 1992-07-21 Cooling device of electric article box of air conditioner

Country Status (1)

Country Link
JP (1) JPH0634208A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878589A (en) * 1996-04-10 1999-03-09 Denso Corporation Vehicular air conditioning system for electric vehicles
US6345512B1 (en) * 2001-06-15 2002-02-12 Marconi Communications, Inc. Power efficient, compact DC cooling system
JP2004044818A (en) * 2002-07-05 2004-02-12 Hitachi Home & Life Solutions Inc Air conditioner
JP2006170537A (en) * 2004-12-16 2006-06-29 Daikin Ind Ltd Heat exchange system
WO2009037809A1 (en) * 2007-09-19 2009-03-26 Daikin Industries, Ltd. Refrigeration piping unit
JP2010144948A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Water heat exchange device
WO2010113313A1 (en) * 2009-04-03 2010-10-07 三菱電機株式会社 Air-conditioning device
WO2011077720A1 (en) * 2009-12-22 2011-06-30 ダイキン工業株式会社 Refrigeration device
JP2011133133A (en) * 2009-12-22 2011-07-07 Daikin Industries Ltd Refrigerating device
JP2013234817A (en) * 2012-05-10 2013-11-21 Sharp Corp Heat pump type heating device
EP2821719A1 (en) * 2005-02-03 2015-01-07 Daikin Industries, Limited Outdoor unit of air conditioner
CN104596142A (en) * 2015-01-21 2015-05-06 广东美的制冷设备有限公司 Air conditioner and control method thereof
EP2766667A4 (en) * 2011-06-07 2015-07-08 Lg Electronics Inc Air conditioner with a cooling module
WO2018100711A1 (en) * 2016-12-01 2018-06-07 三菱電機株式会社 Refrigeration device
JPWO2017145276A1 (en) * 2016-02-24 2018-09-13 三菱電機株式会社 Air conditioner
DE102020211295A1 (en) 2020-09-09 2022-03-10 Robert Bosch Gesellschaft mit beschränkter Haftung Heat pump system and method of operating a heat pump system
KR20220073414A (en) * 2020-11-26 2022-06-03 엘지전자 주식회사 Multi-air conditioner for heating and cooling operations

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878589A (en) * 1996-04-10 1999-03-09 Denso Corporation Vehicular air conditioning system for electric vehicles
US6345512B1 (en) * 2001-06-15 2002-02-12 Marconi Communications, Inc. Power efficient, compact DC cooling system
JP2004044818A (en) * 2002-07-05 2004-02-12 Hitachi Home & Life Solutions Inc Air conditioner
JP2006170537A (en) * 2004-12-16 2006-06-29 Daikin Ind Ltd Heat exchange system
EP2821719A1 (en) * 2005-02-03 2015-01-07 Daikin Industries, Limited Outdoor unit of air conditioner
WO2009037809A1 (en) * 2007-09-19 2009-03-26 Daikin Industries, Ltd. Refrigeration piping unit
JP2009074710A (en) * 2007-09-19 2009-04-09 Daikin Ind Ltd Refrigerant piping unit
JP2010144948A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Water heat exchange device
JPWO2010113313A1 (en) * 2009-04-03 2012-10-04 三菱電機株式会社 Air conditioner
WO2010113313A1 (en) * 2009-04-03 2010-10-07 三菱電機株式会社 Air-conditioning device
EP2416078A1 (en) * 2009-04-03 2012-02-08 Mitsubishi Electric Corporation Air-conditioning device
US8997514B2 (en) 2009-04-03 2015-04-07 Mitsubishi Electric Corporation Air-conditioning apparatus with a control unit operating as an evaporator
EP2416078A4 (en) * 2009-04-03 2014-05-21 Mitsubishi Electric Corp Air-conditioning device
JP5147990B2 (en) * 2009-04-03 2013-02-20 三菱電機株式会社 Air conditioner
WO2011077720A1 (en) * 2009-12-22 2011-06-30 ダイキン工業株式会社 Refrigeration device
JP5516602B2 (en) * 2009-12-22 2014-06-11 ダイキン工業株式会社 Refrigeration equipment
JP2011133133A (en) * 2009-12-22 2011-07-07 Daikin Industries Ltd Refrigerating device
CN102667368A (en) * 2009-12-22 2012-09-12 大金工业株式会社 Refrigeration device
EP2766667A4 (en) * 2011-06-07 2015-07-08 Lg Electronics Inc Air conditioner with a cooling module
JP2013234817A (en) * 2012-05-10 2013-11-21 Sharp Corp Heat pump type heating device
CN104596142A (en) * 2015-01-21 2015-05-06 广东美的制冷设备有限公司 Air conditioner and control method thereof
JPWO2017145276A1 (en) * 2016-02-24 2018-09-13 三菱電機株式会社 Air conditioner
WO2018100711A1 (en) * 2016-12-01 2018-06-07 三菱電機株式会社 Refrigeration device
DE102020211295A1 (en) 2020-09-09 2022-03-10 Robert Bosch Gesellschaft mit beschränkter Haftung Heat pump system and method of operating a heat pump system
KR20220073414A (en) * 2020-11-26 2022-06-03 엘지전자 주식회사 Multi-air conditioner for heating and cooling operations

Similar Documents

Publication Publication Date Title
JPH0634208A (en) Cooling device of electric article box of air conditioner
KR100465723B1 (en) A cooling drive method of air-conditioner
WO2003084300A1 (en) Cooling device
JP2002130148A (en) Method and apparatus for controlling at least one compressor of cooling system having variable speed drive
US20060150667A1 (en) Heat exchanger and air conditioner using the same
JP2000146328A (en) Refrigerating and air-conditioning device
JP3334601B2 (en) Air conditioner with natural circulation
JP2009210213A (en) Air conditioner for railway vehicle
JPH05157372A (en) Electric part box cooler for air conditioner
JPH1096545A (en) Air conditioner and control method thereof
CN210035811U (en) Refrigeration system
JPH05157287A (en) Electric instrument box
JP3021987B2 (en) Refrigeration equipment
JP3354882B2 (en) Indirect outside air cooling system
JP2508043B2 (en) Compressor capacity control device for refrigeration equipment
JP3352400B2 (en) Indirect outside air cooling system
JP3291886B2 (en) Air conditioner and control method thereof
JPS63290352A (en) Heat pump type air conditioner
JPH01312358A (en) Air conditioner
JPH01208667A (en) Multi-type air conditioner
JPS6383556A (en) Refrigeration cycle
JPH0351673A (en) Heat pump type cooling or heating device
JPS63290353A (en) Heat pump type air conditioner
JPH0351667A (en) Separate type air conditioner
CN114857664A (en) Multi-split system