JPH06341944A - Light source of measuring machine - Google Patents

Light source of measuring machine

Info

Publication number
JPH06341944A
JPH06341944A JP15630693A JP15630693A JPH06341944A JP H06341944 A JPH06341944 A JP H06341944A JP 15630693 A JP15630693 A JP 15630693A JP 15630693 A JP15630693 A JP 15630693A JP H06341944 A JPH06341944 A JP H06341944A
Authority
JP
Japan
Prior art keywords
light
measured
light source
concave mirror
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15630693A
Other languages
Japanese (ja)
Inventor
Yutaka Nakanishi
豊 中西
Yoshiro Iwasaki
義郎 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAIKA GIJUTSU KENKYUSHO
Original Assignee
SAIKA GIJUTSU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAIKA GIJUTSU KENKYUSHO filed Critical SAIKA GIJUTSU KENKYUSHO
Priority to JP15630693A priority Critical patent/JPH06341944A/en
Publication of JPH06341944A publication Critical patent/JPH06341944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To utilize light energy effectively to the maximum extent by providing an elliptic concave mirror on the back of a light source lamp and providing the light source lamp at its focus position. CONSTITUTION:A part of beam emitted from a light source lamp 1 is directly directed toward an object to be measured A, and the remaining beam is once reflected by an elliptic concave mirror 2 and is directed toward the object to be measured A. Since these beams are regulated by an opening amount of a restriction 3 and only the beam which passes through an opening is directed toward the object to be measured A, it is possible to eliminate light which goes beyond the outside of the object to be measured A by adjusting the restriction 3 in accordance with the size of the object to be measured A. Also, as the lamp 1 is provided at a focal point of the concave mirror 2, the light reflected by the concave mirror 2 is converged at the other focus F of an ellipse. Consequently, it is possible to make the reflected light pass the opening securely even if the opening of the restriction 3 is small and utilize light energy of the lamp 1 effectively to the maximum extent. Also, as the object to be measured A is positioned farther from the focus, it is possible to prevent burning on a surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は可視光線や赤外線など
を、被測定物に照射し、その透過光や反射光を受光測定
することによって、被測定物の各種検査などを行う非接
触光学的測定機に用いる光源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a non-contact optical system for performing various inspections of an object to be measured by irradiating the object to be measured with visible light or infrared rays and receiving and measuring the transmitted light or reflected light thereof. The present invention relates to a light source used in a measuring machine.

【0002】[0002]

【従来の技術】従来の光学的測定機の光源は、通常、次
のような構成である。先ず、測定に必要な波長の光を発
する光源ランプを選択する。例えば、近赤外線を利用す
る場合にはハロゲンランプなどを選択する。そして、こ
のランプを光源の位置に置き、この光源ランプの背面に
凹面鏡を設置する。また、この凹面鏡には、ただ単に被
測定物の方に向う光量を増加させることだけを目的とし
ているので、球面などの極く普通の形状の凹面鏡を用い
ている。
2. Description of the Related Art The light source of a conventional optical measuring machine usually has the following structure. First, a light source lamp that emits light having a wavelength required for measurement is selected. For example, when using near infrared rays, a halogen lamp or the like is selected. Then, this lamp is placed at the position of the light source, and a concave mirror is installed on the back surface of this light source lamp. In addition, since the purpose of this concave mirror is merely to increase the amount of light directed toward the object to be measured, a concave mirror having an extremely ordinary shape such as a spherical surface is used.

【0003】[0003]

【発明が解決しようとする課題】ところが、例えば透過
光を利用する測定の場合には、光が被測定物の中を通過
する関係で、受光部での光量が極めて少なくなってい
る。従って、外光が僅かでも存在すると、その測定値に
大きな影響が出る。例えば、光の照射幅が広くて、光の
一部が被測定物から外側にはみ出すような場合には、こ
のはみ出し光線が他の機材などで反射して受光部に達
し、外乱光となる為、測定精度が悪くなる他、正確なレ
ファレンス取りができなくなるなどの問題がある。
However, in the case of measurement using transmitted light, for example, the amount of light at the light receiving portion is extremely small because the light passes through the object to be measured. Therefore, even a small amount of outside light has a great influence on the measured value. For example, when the irradiation width of light is wide and a part of the light sticks out from the object to be measured, this protruding light ray is reflected by other equipment and reaches the light receiving section, and becomes ambient light. However, there is a problem that the measurement accuracy deteriorates and accurate reference cannot be obtained.

【0004】従来、このような光のはみ出しを遮断する
には、光源を被測定物に接触させる方式がとられてい
る。しかし、この接触方式の場合には、発光照射部材を
被測定物の表面に接触させるための測定準備に時間がか
かり、その上、コンベアで移送中の被測定物を連続的に
測定するような場合には利用できないという欠点があ
る。この他、光のはみ出し防止の為に、被測定物の前に
絞りを設置する方式も従来提案されている。しかし、こ
こで用いている凹面鏡は、球面などの普通の形状である
ため、凹面鏡からの反射光が収束せず、反射光の一部が
絞りによって遮断されることになり、その分、光エネル
ギーを損失するという欠点がある。
Conventionally, a method of bringing a light source into contact with an object to be measured has been used to block such light protrusion. However, in the case of this contact method, it takes time to prepare the measurement for bringing the light emission irradiation member into contact with the surface of the object to be measured, and moreover, the object to be measured being conveyed by the conveyor is continuously measured. It has the drawback of not being available in some cases. In addition, a system in which a diaphragm is installed in front of the object to be measured has been proposed in order to prevent the light from protruding. However, since the concave mirror used here has an ordinary shape such as a spherical surface, the reflected light from the concave mirror does not converge, and a part of the reflected light is blocked by the diaphragm. Has the disadvantage of losing.

【0005】本発明は以上の点に鑑み、非接触方式で、
かつ、光線が被測定物の横にはみ出さず、その上、光エ
ネルギーを最大限有効に利用できる測定機用の光源を提
供せんとするものである。
In view of the above points, the present invention is a non-contact method,
Moreover, it is intended to provide a light source for a measuring machine, in which a light ray does not stick out to the side of an object to be measured and, moreover, light energy can be utilized to the maximum extent.

【0006】[0006]

【課題を解決するための手段】本発明の光源の技術的手
段は、光源ランプと、光源ランプの背面に設けられた楕
円凹面鏡と、光源ランプの前面に設けられた絞りとから
なり、光源ランプは楕円凹面鏡の焦点の位置に設置され
ていることにある。
The technical means of the light source of the present invention comprises a light source lamp, an elliptical concave mirror provided on the back surface of the light source lamp, and a diaphragm provided on the front surface of the light source lamp. Is located at the focal point of the elliptical concave mirror.

【0007】また、絞りの開口量を調節自在にしたり、
あるいは、絞りを光軸方向に移動自在にしたりすること
もできる。
Also, it is possible to adjust the aperture of the diaphragm,
Alternatively, the diaphragm may be movable in the optical axis direction.

【0008】[0008]

【作用】本発明の光源では、楕円凹面鏡が用いられ、か
つ、光源ランプは楕円凹面鏡の焦点の位置に設置されて
いるので、凹面鏡で反射した光は楕円凹面鏡の他方の焦
点に収束するようになる。また、光源ランプの前面には
絞りがあって、光線の照射範囲を絞っている。従って、
光源からの光は確実に被測定物上に照射され、被測定物
からはみ出して被測定物の横を通過する光は無くなる。
In the light source of the present invention, the elliptical concave mirror is used, and the light source lamp is installed at the focal point of the elliptic concave mirror, so that the light reflected by the concave mirror is focused on the other focal point of the elliptic concave mirror. Become. Further, there is a diaphragm on the front surface of the light source lamp to narrow the irradiation range of the light beam. Therefore,
The light from the light source is surely applied to the object to be measured, and there is no light that runs off the object to be measured and passes through the side of the object to be measured.

【0009】絞りの開口量を調節自在としたものでは、
被測定物の大きさに合わせて、開口量を変えることがで
きる。また、絞りの位置を移動自在にしたものでも、被
測定物の大きさに合わせての調節が可能である。従っ
て、このようなものでは、大きな被測定物に対しては照
射光量を増やし、透過光量の減少を補うことができる。
In the case where the aperture amount of the diaphragm is adjustable,
The opening amount can be changed according to the size of the object to be measured. Moreover, even if the position of the diaphragm is movable, it can be adjusted according to the size of the object to be measured. Therefore, with such a device, it is possible to increase the irradiation light amount for a large object to be measured and compensate for the decrease in the transmitted light amount.

【0010】[0010]

【実施例】本発明の測定機用の光源を図面の実施例につ
いて説明する。1は光源ランプで、希望の波長や光量の
ものを適宜選択して使用する。2は凹面鏡で、内面は楕
円曲面である。光源ランプ1は楕円曲面の一方の焦点の
位置に置かれている。従って、光源ランプ1から出て、
凹面鏡2で反射した光線は楕円曲面の他方の焦点に集ま
るようになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A light source for a measuring machine according to the present invention will be described with reference to the embodiments shown in the drawings. Reference numeral 1 denotes a light source lamp, which has a desired wavelength and light amount and is appropriately selected and used. Reference numeral 2 is a concave mirror, and the inner surface is an elliptic curved surface. The light source lamp 1 is placed at one focus position on the elliptic curved surface. Therefore, from the light source lamp 1,
The light rays reflected by the concave mirror 2 are focused on the other focus of the elliptic curved surface.

【0011】3は絞りで、開口量は調節自在であり、被
測定物Aの大きさに合わせて調節できる。なお、光線の
焦点Fに、被測定物Aの前表面が位置するようにセット
すると、光線が強い場合には被測定物が焦げるおそれが
あるので、被測定物Aのセット位置を焦点Fよりやや遠
方にずらせるのが好ましい。図中、4は集光レンズ、5
はスリット、6は受光センサである。
Reference numeral 3 is a diaphragm, the opening amount of which is adjustable, and can be adjusted according to the size of the object A to be measured. If the front surface of the object A to be measured is set at the focal point F of the light beam, the object to be measured may be scorched when the light beam is strong. It is preferable to shift it to a distance. In the figure, 4 is a condenser lens, 5
Is a slit, and 6 is a light receiving sensor.

【0012】次に、前記光源の光線照射について説明す
る。光源ランプ1から出た光線は、一部は直接、被測定
物Aの方に向い、残りは、一旦、凹面鏡2で反射して被
測定物の方に向う。また、光源ランプ1の前面に絞り3
が設けられている為、ランプから出た光は絞り3の開口
量によって規制され、開口を通過した光のみが被測定物
Aに向う。従って、被測定物Aの大きさに合わせて絞り
3を調節することにより、被測定物Aの外側をはみ出し
て通過する光を無くすことができる。
Next, the light irradiation of the light source will be described. A part of the light beam emitted from the light source lamp 1 is directly directed toward the object to be measured A, and the rest is once reflected by the concave mirror 2 toward the object to be measured. In addition, a diaphragm 3 is provided in front of the light source lamp 1.
Is provided, the light emitted from the lamp is regulated by the opening amount of the diaphragm 3, and only the light passing through the opening goes to the object A to be measured. Therefore, by adjusting the diaphragm 3 according to the size of the object to be measured A, it is possible to eliminate the light that passes through the outside of the object to be measured A.

【0013】更に凹面鏡2で反射した光は、光源ランプ
1が楕円凹面鏡2の一方の焦点に位置している為、楕円
の他方の焦点Fに収束する。従って、絞り3の開口が小
さい場合でも、凹面鏡2からの反射光を確実に通過させ
ることができ、ランプの光エネルギーを最大限有効に利
用でき、無駄を無くすことができる。また、被測定物A
は焦点Fよりやや遠方に位置させてあるので、表面の焦
げ付きを防止できる。
Further, the light reflected by the concave mirror 2 is focused on the other focus F of the ellipse because the light source lamp 1 is located at one focus of the elliptical concave mirror 2. Therefore, even when the aperture of the diaphragm 3 is small, the reflected light from the concave mirror 2 can be surely passed, the light energy of the lamp can be utilized to the maximum extent, and waste can be eliminated. Also, the object to be measured A
Is located at a distance from the focal point F, so that it is possible to prevent the surface from sticking.

【0014】このように光源から出た光は、間違いなく
被測定物Aに当たり、かつ、その中を通過し、その通過
の間に被測定物の内部性状による影響を受ける。従っ
て、この透過光をレンズ4で集光し、スリット5を通
し、センサ6で受光検知することにより、被測定物Aの
内部性状を知ることができる。
Thus, the light emitted from the light source definitely hits the object A to be measured, passes through the object A, and is affected by the internal properties of the object D during the passage. Therefore, the internal properties of the object to be measured A can be known by condensing the transmitted light with the lens 4, passing through the slit 5, and detecting the light reception with the sensor 6.

【0015】なお、本発明の光源は、前記の実施例に限
定されるものではなく、特許請求の範囲の記載の範囲内
で自由に変形実施可能である。特に、光線の種類や波
長、透過方式か反射方式かの測定方式の種類、受光部の
構成、何を検査するかの測定目的などは全く自由であ
る。更に、絞りの設置位置は焦点の前でも後でもよい。
また、被測定物の大きさによる調節は、前記の絞りの開
口量を変える方式の他、開口量を一定とし、絞りの位置
を光軸方向に前後に移動させる方式によっても達成可能
である
The light source of the present invention is not limited to the above embodiment, but can be freely modified within the scope of the claims. In particular, the type and wavelength of the light beam, the type of measurement method such as the transmission method or the reflection method, the configuration of the light receiving unit, and the purpose of measuring what is inspected are completely free. Further, the stop may be installed before or after the focus.
Further, the adjustment depending on the size of the object to be measured can be achieved not only by changing the opening amount of the diaphragm, but also by fixing the opening amount and moving the position of the diaphragm back and forth in the optical axis direction.

【0016】[0016]

【発明の効果】本発明の光源では、被測定物の大きさに
合わせて、照射される光の範囲が面積的に絞られている
ので、光源からの光は全て被測定物上に当たり、被測定
物の外側を通過する光が存在しない。従って、受光部で
は、はみ出し光による外乱影響を受けず、高精度の測定
が可能であり、レファレンス取りなども正確に行える。
更に、楕円凹面鏡を用いているので、光源のエネルギー
を最大限有効に利用できる。
According to the light source of the present invention, since the range of the irradiated light is narrowed in area according to the size of the object to be measured, all the light from the light source hits the object to be measured, There is no light passing outside the object. Therefore, the light-receiving unit is not affected by the disturbance caused by the protruding light, and can perform high-accuracy measurement, and can accurately perform reference acquisition and the like.
Furthermore, since the elliptical concave mirror is used, the energy of the light source can be utilized to the maximum extent.

【0017】請求項2のものでは、被測定物の大きさに
合わせて、絞りの開口量を調節できるので、被測定物が
大きくなるほど透過光量が少なくなるという点を、照射
光量の増加分でカバーでき、受光量の安定を図って、常
に高精度で測定を行うことができる。
According to the second aspect of the present invention, since the aperture amount of the diaphragm can be adjusted according to the size of the object to be measured, the amount of transmitted light decreases as the object to be measured increases. The cover can be provided, the amount of received light can be stabilized, and the measurement can always be performed with high accuracy.

【0018】請求項3のものでは、被測定物の大きさに
合わせて、絞りの位置を移動させることにより、前記請
求項2のものと同じ効果を達成できる。
According to the third aspect, the same effect as that of the second aspect can be achieved by moving the position of the diaphragm according to the size of the object to be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光源を用いた場合の光線照射状態を示
す図。
FIG. 1 is a diagram showing a light irradiation state when a light source of the present invention is used.

【符号の説明】[Explanation of symbols]

1 光源ランプ 2 楕円凹面鏡 3 絞り 4 レンズ 5 スリット 6 受光センサ 1 Light source lamp 2 Elliptical concave mirror 3 Aperture 4 Lens 5 Slit 6 Light receiving sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源ランプと、光源ランプの背面に設け
られた楕円凹面鏡と、光源ランプの前面に設けられた絞
りとからなり、光源ランプは楕円凹面鏡の焦点の位置に
設置されている測定機の光源。
1. A measuring instrument comprising a light source lamp, an elliptical concave mirror provided on the back surface of the light source lamp, and an aperture stop provided on the front surface of the light source lamp, the light source lamp being installed at the focal point of the elliptical concave mirror. Light source.
【請求項2】 絞りは開口量が調節自在である請求項1
記載の測定機の光源。
2. The aperture of the diaphragm is adjustable.
The light source of the measuring instrument described.
【請求項3】 絞りは、光軸方向に移動自在である請求
項1記載の測定機の光源。
3. The light source for a measuring machine according to claim 1, wherein the diaphragm is movable in the optical axis direction.
JP15630693A 1993-06-01 1993-06-01 Light source of measuring machine Pending JPH06341944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15630693A JPH06341944A (en) 1993-06-01 1993-06-01 Light source of measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15630693A JPH06341944A (en) 1993-06-01 1993-06-01 Light source of measuring machine

Publications (1)

Publication Number Publication Date
JPH06341944A true JPH06341944A (en) 1994-12-13

Family

ID=15624921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15630693A Pending JPH06341944A (en) 1993-06-01 1993-06-01 Light source of measuring machine

Country Status (1)

Country Link
JP (1) JPH06341944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168772A (en) * 2000-12-05 2002-06-14 Kubota Corp Spectroscope
JP2009244152A (en) * 2008-03-31 2009-10-22 Tokyo Electric Power Co Inc:The Surface lighting system using halogen light source
US9651478B2 (en) 2011-01-12 2017-05-16 Toshiba Medical Systems Corporation Analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168772A (en) * 2000-12-05 2002-06-14 Kubota Corp Spectroscope
JP2009244152A (en) * 2008-03-31 2009-10-22 Tokyo Electric Power Co Inc:The Surface lighting system using halogen light source
US9651478B2 (en) 2011-01-12 2017-05-16 Toshiba Medical Systems Corporation Analyzer

Similar Documents

Publication Publication Date Title
JP2518822B2 (en) Non-contact reflectivity measuring device
US4730917A (en) Method and an apparatus for determining the refraction
US6833909B2 (en) Device for optical distance measurement of distance over a large measuring range
US5064280A (en) Method of measuring the velocity and/or length of endless webs of textile material and apparatus for carrying out the method
US4816670A (en) Optical measuring head
US5067811A (en) Illuminance distribution measuring system
CA2527113A1 (en) Laser distance measuring device
JPH0921614A (en) Measuring device of distance in eyeball
US4713537A (en) Method and apparatus for the fine position adjustment of a laser beam
KR100425412B1 (en) A device for measuring the photometric and colorimetric characteristics of an object
US5258788A (en) Method for measuring the protein composition and concentration in the aqueous humor of the eye
US6061131A (en) Optical axis adjustment apparatus and method for particle size distribution measuring equipment
EP0223485B1 (en) Absorption gauge for determining the thickness, moisture content or other parameter of a film or coating
JPH06341944A (en) Light source of measuring machine
JPS60196605A (en) Scattering-light detecting optical device
JP2004198416A (en) Instrument for measuring thickness of thin layer
JPH0479522B2 (en)
JP2666032B2 (en) Measurement method of scattering light and scattering angle distribution
JPS5726704A (en) Measuring instrument for three-dimensional shape
JPH09229883A (en) Dark field type photothermal transduction spectrometer
JPS63145929A (en) Infrared temperature measuring apparatus
GB2121168A (en) X-ray device
US3822940A (en) Velocimeter
US20030133101A1 (en) Light monitoring device
JPS5752807A (en) Device for measuring film thickness