JPH06341799A - C-value deciding method for rodlike charge - Google Patents
C-value deciding method for rodlike chargeInfo
- Publication number
- JPH06341799A JPH06341799A JP18208291A JP18208291A JPH06341799A JP H06341799 A JPH06341799 A JP H06341799A JP 18208291 A JP18208291 A JP 18208291A JP 18208291 A JP18208291 A JP 18208291A JP H06341799 A JPH06341799 A JP H06341799A
- Authority
- JP
- Japan
- Prior art keywords
- charge
- length
- value
- rod
- unit block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Earth Drilling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、元米、一点集中装薬
を前提条件として成立するハウザーの公式This invention is based on Hauser's formula, which is based on the condition of ex-rice
【数1】が、実際の穿孔発破において穿孔長に沿って棒
状に装薬される現状に対応し得るように、そのc値すな
わち発破係数乃至破壊岩盤単位を合理的に決定する方法
に関する。[Mathematical formula-see original document] relates to a method for rationally determining the c value, that is, the blasting coefficient or the fractured rock unit, so as to be able to correspond to the current situation of charging rod-shaped along the drilling length in actual blasting.
【0002】[0002]
【従来の技術】図1で示すように、装薬量をL(k
g)、発破係数乃至破壊岩盤単位をc、最小抵抗線長を
W(m)とし、かつ、その最小抵抗線長W(m)を自由
面G、Lにおける破壊半径R(m)と等しく設定し、か
つ、装薬を一点集中と仮定した場合にハウザーの公式2. Description of the Related Art As shown in FIG.
g), the blast coefficient or fracture rock mass unit is c, the minimum resistance line length is W (m), and the minimum resistance line length W (m) is set equal to the fracture radius R (m) in the free planes G and L. And Hauser's formula if the charge is assumed to be concentrated
【数1】が成立することは周知である。It is well known that the following equation is established.
【0003】そこで、このTherefore, this
【数1】を変形して、c値を求めると、Transforming [Formula 1] to obtain the c value,
【数2】となる。[Equation 2]
【0004】他方において、上記の場合における破壊岩
盤体積V(m3)は、円錐の体積を求める公式からOn the other hand, the volume of fractured rock V (m 3 ) in the above case is calculated from the formula for determining the volume of a cone.
【数3】であり、しかも、W=RであるからRをWに置
き換えると、[Mathematical formula-see original document] Since W = R and R is replaced by W,
【数4】となる。そこで、[Equation 4] Therefore,
【数4】を[Formula 4]
【数2】に代入すると、c値はSubstituting into Equation 2, the c value is
【数5】として表示することもできる。It can also be displayed as:
【0005】これらの関係式で明らかなように、発破係
数c値は、前記As is clear from these relational expressions, the blast coefficient c value is
【数5】で示す破壊岩盤体積V、及び、前記The fractured rock volume V shown by
【数2】で示す最小抵抗線長Wの双方に関係し、影響を
及ぼしていることが理解される。It is understood that both are related to and have an influence on the minimum resistance wire length W shown by the following equation.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、前記ハ
ウザーの公式[Problems to be Solved by the Invention] However, the Hauser's formula
【数1】は、前述したように、装薬が一点に集中するも
のとの仮定、つまり、一点集中装薬方式を前提として成
立するのに対して、実際の発破作業における装薬は穿孔
の長さ方向に沿った任意の体積を有する棒状の装薬、つ
まり、棒状装薬方式が現実であって、設定条件によって
は両者間のc値に大幅な相違が生じ、ハウザーの公式を
使用して算出された理諭上のc値では飛石が生じない安
全値と認められるものが、実際の発破時に飛石が生じ
て、ときには人身事故を招くことがあるので、実際上の
c値は危険である場合が生じる。As described above, the expression (1) is established on the assumption that the charge is concentrated at one point, that is, the one-point concentrated charge method is premised, whereas the charge in the actual blasting work A rod-shaped charge having an arbitrary volume along the length direction, that is, a rod-shaped charge method is a reality, and depending on the setting conditions, there is a large difference in the c value between the two, and the Hauser's formula is used. Although the calculated c-value calculated from the above is recognized as a safe value that does not cause flying stones, flying stones may occur during actual blasting, sometimes leading to personal injury, so the actual c-value is dangerous. There are cases.
【0007】例えば、図2で示すように、穿孔長H=1
mに対して装薬長l=1m、穿孔径r=0.025m、
破壊岩盤体積V:1m3、火薬比重値0.83とした場
合に、装薬量L=0.41kgとなるから、破壊岩盤体
積Vとの関連から求めるcの理論値は、For example, as shown in FIG. 2, perforation length H = 1.
charging length l = 1 m, perforation diameter r = 0.025 m,
When the volume of destroyed rock mass V is 1 m 3 and the specific gravity of explosive is 0.83, the amount of charge L is 0.41 kg. Therefore, the theoretical value of c obtained from the relationship with the volume of broken rock mass is:
【数5】を使用して0.41が算出され、このc値であ
れば、一応安全と認められる。0.41 is calculated using the following equation, and if it is this c value, it is considered to be safe.
【0008】ところが、他方において、最小抵抗線Wと
の関連から求めるcの理論値は、On the other hand, on the other hand, the theoretical value of c obtained from the relation with the minimum resistance line W is
【数2】を使用して分母が0となるので、無限大とな
る。Since the denominator becomes 0 by using the following equation, it becomes infinite.
【0009】上記の場合に、どちらのcの理論値の方が
正しいか、その設定条件におけるcの実際値で検討して
みると、この状況は、1mの穿孔長に対して自由面G、
Lに至るまで満杯に装薬をし、込物長すなわち最小抵抗
線長W=0の状態であるから、発破時には花火の打ち上
げのように危険極まりない飛石が生じるわけであり、従
って、少くともIn the above case, considering which of the theoretical values of c is more accurate and the actual value of c under the set conditions, this situation shows that for a perforation length of 1 m, the free surface G,
Since it is fully charged until reaching L and the state of the filling length, that is, the minimum resistance wire length W = 0, at the time of blasting, a dangerous stepping stone like a fireworks launch occurs, and therefore at least
【数5】を使用したcの理論値は誤まりであることが理
解される。It is understood that the theoretical value of c using Eq.
【0010】この発明の目的は、穿孔発破において、本
来、一点集中装薬方式に立脚するハウザーの公式The object of the present invention is, in punching and blasting, the Hauser's formula, which is originally based on the single-point concentrated charging method.
【数1】を、棒状装薬の現実に適用可能にして、飛石事
故の危険が生じない安全なc値を合理的に決定して適用
する方法を提供することである。[Equation 1] is to be applied to the reality of rod-shaped charge, and to provide a method for rationally determining and applying a safe c value that does not cause a risk of a flying stone accident.
【0011】[0011]
【課題を解決するための手段】この発明は、棒状装薬を
一点集中装薬の累積集合体として認識して取扱うことを
基礎とし、それを達成するために、棒状装薬長l(m)
を穿孔径r(mm)乃至それに近似する数値で除して均
等に分割し、多数の一点装薬単位ブロックを仮設する。
すなわち、例えば、1m当りの装薬量Llと装薬長lと
の積を全装薬量Lとし、全装薬量Lを前記単位ブロック
分割数l/rで除すれば、その商が単位ブロック当りの
装薬量Lnである。そして、これらの単位ブロック当り
の装薬量Ln=一定値を、それぞれ単位ブロック当りの
最小抵抗線長Wl〜nの3乗すなわち、単位ブロック当
りの破壊岩盤体積Vl〜n=Wl 3〜Wn 3で除すれ
ば、単位ブロック当りのc値l〜nが算出される。更
に、これらの単位ブロック当りのc値l〜nをその最下
部から所望の棒状装薬長に至るまでThe present invention is based on the recognition and handling of rod-shaped charge as a cumulative aggregate of one-point concentrated charge, and in order to achieve this, the rod-shaped charge length l (m)
Is divided by a perforation diameter r (mm) or a numerical value close thereto, and is divided evenly, and a large number of single-point charging unit blocks are provisionally provided.
That is, for example, if the product of the amount of charge L 1 per 1 m and the length of charge 1 is the total amount of charge L, and the total amount of charge L is divided by the unit block division number l / r, the quotient is obtained. The charge amount Ln per unit block. Then, the amount of charge L n = constant value per unit block is set to the cube of the minimum resistance wire length W 1 to n per unit block, that is, the volume of broken rock mass V l to n = W l per unit block. if divided by 3 ~W n 3, c values l ~ n per unit block is calculated. Further, the c values l to n per unit block are measured from the lowermost part to the desired rod-shaped charge length.
【数6】により累計すれば、その累計c値が所望の棒状
装薬長ln=穿孔長H−最小抵抗線長Wnにおける合理
的なc値に外ならない。Summing up by the following equation, the cumulative c value does not fall outside the rational c value in the desired rod-shaped charge length l n = perforation length H−minimum resistance wire length W n .
【0012】上記の場合に、全装薬長ln≦穿孔長H
(m)とする。In the above case, the total charge length l n ≤ perforation length H
(M).
【0013】なお、本発明では、ハウザーの公式の前提
条件として最小抵抗線長W(m)と自由面における破壊
半径R(m)とを等しく設定すること、従って、破壊岩
盤体積V=W3とすることを原則とする。ただし、最小
抵抗線長W(m)と自由面における破壊半径R(m)と
を不等に設定することも可能であり、その場合には、破
壊岩盤体積V=W・R2として設定する。In the present invention, the minimum resistance wire length W (m) and the fracture radius R (m) on the free surface are set equal to each other as a precondition of the Hauser's formula. Therefore, the fracture bedrock volume V = W 3 In principle, However, it is possible to set the minimum resistance wire length W (m) and the fracture radius R (m) on the free surface unequal, and in that case, set the fractured rock volume V = W · R 2 . .
【0014】[0014]
【作用】この発明による方法を使用すれば、一点集中方
式として従来周知のハウザーの公式When the method according to the present invention is used, Hauser's formula, which is well known as a single-point concentrated system, is used.
【数1】の変形Transformation of [Equation 1]
【数2】の式を使って棒状装薬のc値が正確に求められ
る。The c value of the rod-shaped charge can be accurately obtained by using the equation (2).
【0015】[0015]
【実施例】図3で示すように、穿孔長H=1.2m、自
由面における破壊半径乃至穿孔間隔長R=1.02m、
全装薬長l=1.02m、穿孔径r=0.03mの穿孔
発破において、1m当りの装薬量=0.58kg/mと
すれば、全装薬量Lの値は、全装薬量L=全装薬長l×
1m当りの装薬量=1.02×0.58=0.5916
kgである。そこで、穿孔長1.02mを穿孔径0.0
3mで均等に分割すれば、34ブロックが形成され、各
ブロック当りの装薬量Ln=0.0174kgとなり、
各ブロックにおける最小抵抗線長W、各ブロックにおけ
るc値=Ln/W3、それらの累計c値はEXAMPLE As shown in FIG. 3, perforation length H = 1.2 m, fracture radius on free surface or perforation interval length R = 1.02 m,
In the case of blasting with a total charge length l = 1.02 m and a hole diameter r = 0.03 m, if the charge amount per 1 m is 0.58 kg / m, the value of the total charge amount L is Quantity L = total charge length l x
Amount of charge per 1 meter = 1.02 x 0.58 = 0.5916
It is kg. Therefore, perforation length 1.02 m is perforation diameter 0.0
If it is equally divided by 3 m, 34 blocks are formed, and the amount of charge L n = 0.0174 kg per block,
The minimum resistance wire length W in each block, the c value in each block = L n / W 3 , and their cumulative c value is
【数6】で示され、各ブロックにおける値は表1で示さ
れるAnd the values in each block are shown in Table 1.
【0016】表1において、例えば第13番目のブロッ
クまで装薬された穿孔発破の諸元を検討してみると、 装薬長l=13×0.03m=0.39m 装薬量L13=13×0.0174kg=0.2262
kg 最小抵抗線長W13=0.63m 破壊岩盤体積V=W3=0.25m3、 C13=Ln/w3=0.0174/0.25=0.0
696であって、累計c値=0.4956≒0.5とな
る。In Table 1, for example, considering the specifications of perforation blasting up to the thirteenth block, the length of charge l = 13 × 0.03 m = 0.39 m, the amount of charge L 13 = 13 x 0.0174 kg = 0.2262
kg Minimum resistance wire length W 13 = 0.63 m Broken rock volume V = W 3 = 0.25 m 3 , C 13 = L n / w 3 = 0.0174 / 0.25 = 0.0
696, and the cumulative c value is 0.4956≈0.5.
【0017】表2は、各種の穿孔径r(mm)と穿孔長
H(m)における累計c値を0.05〜0.70までの
範囲で表示した最小抵抗線長Wの一覧表であり、それを
図で表わしたものを図4で示す。Table 2 is a list of minimum resistance wire lengths W in which the cumulative c-values for various drilling diameters r (mm) and drilling lengths H (m) are displayed in the range of 0.05 to 0.70. , Which is shown in the figure is shown in FIG.
【0018】上述した実施例は、全装薬量lを穿孔長H
と等しく設定したか、穿孔長Hより短く設定することも
可能である。In the above-mentioned embodiment, the total amount of charge 1 is set to the perforation length H.
It is also possible to set equal to or shorter than the perforation length H.
【0019】更に、上述した実施例は、全装薬長lを分
割する単位長さを穿孔径rとしたが、それに近似する他
の数値を設定することも可能である。Further, in the above-mentioned embodiment, the unit length for dividing the total charge length 1 is the perforation diameter r, but it is possible to set other numerical values close to it.
【0020】更に、上述した実施例は、最小抵抗線長W
と、自由面における破壊半径Rとを等しく設定したが、
これを不等に設定することも可能である。Further, in the above-described embodiment, the minimum resistance wire length W
And the fracture radius R on the free surface were set equal,
It is also possible to set them unequal.
【0021】[0021]
【発明の効果】本発明は、穿孔発破において、本来、一
点集中装薬に基づくハウザーの公式INDUSTRIAL APPLICABILITY The present invention is originally based on Hauser's formula for blasting and blasting, which is based on a single-point concentrated charge.
【数1】が、棒状装薬時において正しい装薬量Lと破壊
岩盤単位(発破係数)cとを導き出すことが困難であっ
たところを、装薬長を均等に細分化して各ブロックに分
割して−点集中装薬の状況を仮設し、そして、それらの
各c値を所望の装薬長に至るまで累計してc値を求める
ことによって、上記の課題を解決したので、上記の誤ま
りによって生ずる飛石事故等のおそれが解消されるよう
になった。[Equation 1] is that it was difficult to derive the correct amount of charge L and the fractured rock unit (blast coefficient) c during rod-shaped charge, but the charge length was subdivided into blocks. Since the above problem was solved by tentatively establishing the situation of point-concentrated charge and then obtaining the c value by accumulating each of those c values until reaching the desired charge length, The danger of stepping stones accidents caused by Mari has been eliminated.
【図1】ハウザーの公式[Figure 1] Hauser's formula
【数1】の解説図、Explanatory diagram of [Equation 1],
【図2】ハウザーの公式の変形Figure 2: Hauser's official variant
【数2】の解説図、Explanatory diagram of [Equation 2],
【図3】本発明におけるc値決定方法の解説図、FIG. 3 is an explanatory diagram of a c-value determination method according to the present invention,
【図4】[Figure 4]
【表2】で示す各種諸元における累計c値(縦軸)と最
小抵抗線長W(横軸)の関係を示す図である。 H 穿孔長 r 穿孔径 R 破壊半径乃至穿孔間隔長 l 全装薬長 G、L 自由面 W 最小抵抗線長 V 破壊岩盤体積 L 装薬量It is a figure which shows the relationship of the cumulative c value (vertical axis) and minimum resistance wire length W (horizontal axis) in various specifications shown in [Table 2]. H Perforation length r Perforation diameter R Fracture radius or perforation interval length l Total charge length G, L Free surface W Minimum resistance line length V Fracture bed volume L Charge amount
【数1】L=c・W3 [Equation 1] L = c · W 3
【数2】c=L/W3 ## EQU2 ## c = L / W 3
【数3】V=l/3πR2W(3) V = 1 / 3πR 2 W
【数4】V=W3 (4) V = W 3
【数5】c=L/V[Expression 5] c = L / V
【数6】 [Equation 6]
【表1】 [Table 1]
【表2】 [Table 2]
Claims (4)
薬長すなわち装薬可能な穿孔長を均等に細分割して、多
数の一点装薬単位ブロックを仮設し、かつ、最小抵抗線
長と自由面における破壊半径とを等しく設定し、それら
の各単位ブロック当りの装薬量をそれに対応する各単位
ブロック当りの最小抵抗線長の3乗、つまり、各単位ブ
ロック当りの破壊岩盤体積で除して、各単位ブロック当
りのc値を算出し、更にそれらの各単位ブロック当りの
c値をその最下部から所望の棒状装薬長に至るまで累計
して、その棒状装薬長のc値を決定することを特徴とす
る棒状装薬におけるc値決定方法。1. In the perforation blasting with a rod-shaped charge, the total length of the charge, that is, the perforable length of the charge, is equally subdivided, and a large number of single-point charge unit blocks are provisionally provided, and a minimum resistance wire length is set. The fracture radius on the free surface is set equal, and the amount of charge per unit block is divided by the cube of the corresponding minimum resistance line length per unit block, that is, the volume of fractured rock mass per unit block. Then, the c-value for each unit block is calculated, and the c-value for each unit block is accumulated from the bottom to the desired rod-shaped charge length, and the c-value for the rod-shaped charge length is calculated. A method for determining a c-value in a rod-shaped charge, characterized in that
は、その穿孔長より短く設定することを特徴とする請求
項1記載の棒状装薬におけるc値決定方法。2. The method for determining the c value in rod-shaped charge according to claim 1, wherein the total length of the charge is set equal to the length of the perforation or is set shorter than the length of the perforation.
それに近似する値に設定することを特徴とする請求項1
記載の棒状装薬におけるc値決定方法。3. The unit for dividing the total charge length is set to a hole diameter or a value close thereto.
A method for determining a c-value in the rod-shaped charge described.
とを不等に設定する場合には、破壊岩盤体積を破壊半径
の2乗と最小抵抗線長との積として設定することを特徴
とする請求項1記載の棒状装薬におけるc値決定方法。4. When the minimum resistance line and the fracture radius on the free surface are set to be unequal, the fracture bedrock volume is set as the product of the square of the fracture radius and the minimum resistance line length. The method for determining the c value in the rod-shaped charge according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18208291A JPH06341799A (en) | 1991-04-20 | 1991-04-20 | C-value deciding method for rodlike charge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18208291A JPH06341799A (en) | 1991-04-20 | 1991-04-20 | C-value deciding method for rodlike charge |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06341799A true JPH06341799A (en) | 1994-12-13 |
Family
ID=16112043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18208291A Pending JPH06341799A (en) | 1991-04-20 | 1991-04-20 | C-value deciding method for rodlike charge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06341799A (en) |
-
1991
- 1991-04-20 JP JP18208291A patent/JPH06341799A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU766567B2 (en) | Method of blasting rock using air tubes charged in a blasthole | |
CN107843158B (en) | The construction method of the low vibration velocity exact requirements of Tunnel Blasting is realized with common on-electric detonator | |
CN107367203B (en) | A kind of blasting parameters optimization method ensureing above ground structure safety | |
US5020435A (en) | Fuze | |
JPH06341799A (en) | C-value deciding method for rodlike charge | |
JP2602144B2 (en) | Blast setting method using rod-shaped charging method | |
Ouchterlony et al. | Fragmentation monitoring of production blasts at MRICA | |
JP3229851B2 (en) | Numerical setting method of elements required for construction of blasting work with rod-shaped charge | |
US20050066836A1 (en) | Method for controlling explosions in open mines | |
JP3032236B2 (en) | A method for determining the safest maximum charge in perforation blasting. | |
JP2604270B2 (en) | Determination method of safe charge amount by rod charge method | |
JP2955732B2 (en) | Equivalent conversion method between concentrated charge and rod charge | |
JP2662691B2 (en) | Numerical relation determination method of each element necessary for blasting work by rod-shaped charging method | |
RU2101673C1 (en) | Method of explosive breaking of broken-up rock mass at breaking onto basset | |
JP3147895B2 (en) | A method for determining perforation interval length in simultaneous perforation blasting | |
JPH11101600A (en) | Safety powder charge amount calculating system for bar-like powder charge | |
JP2602150B2 (en) | Blast setting method using rod-shaped charging method | |
Ivanova | Investigation on Fragmentation by Blasting: The influence of distorted blasthole patterns on fragmentation, roughness of the remaining bench face and blast damage behind it in model scale blasting | |
JP2000221000A (en) | Method for safely blasting landform having plural free surfaces | |
JPH05180597A (en) | Deciding method for gunpowder charging amount of simultaneous opening blasting to two free surfaces | |
JPH02234000A (en) | Simplified calculation method for packing length, etc., in boring blast | |
JP3258656B2 (en) | A method for determining the maximum safe charge in perforation blasting. | |
Brahimaj et al. | Drilling & blasting optimal parameters and the results in the dismemberment of limestone in Volljak | |
Bhandari | Studies on rock fragmentation in blasting | |
JP2881179B2 (en) | A method for determining the safest maximum charge in perforation blasting. |