JP2662691B2 - Numerical relation determination method of each element necessary for blasting work by rod-shaped charging method - Google Patents

Numerical relation determination method of each element necessary for blasting work by rod-shaped charging method

Info

Publication number
JP2662691B2
JP2662691B2 JP33266087A JP33266087A JP2662691B2 JP 2662691 B2 JP2662691 B2 JP 2662691B2 JP 33266087 A JP33266087 A JP 33266087A JP 33266087 A JP33266087 A JP 33266087A JP 2662691 B2 JP2662691 B2 JP 2662691B2
Authority
JP
Japan
Prior art keywords
length
charge
perforation
rod
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33266087A
Other languages
Japanese (ja)
Other versions
JPH01174900A (en
Inventor
靖二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP33266087A priority Critical patent/JP2662691B2/en
Publication of JPH01174900A publication Critical patent/JPH01174900A/en
Application granted granted Critical
Publication of JP2662691B2 publication Critical patent/JP2662691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/08Tamping methods; Methods for loading boreholes with explosives; Apparatus therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【発明の詳細な説明】 a)産業上の利用分野 この発明は、棒状装薬方式による爆破工事の施工に必
要な各要素の数値を、共通の関係式によって互いに関連
させて正確に決定する方法に関し、より詳言すれば、従
来、関連を見出し得なかった棒状装薬に不可欠のせん孔
径dと他の要素、すなわち、せん孔長H、最小抵抗線長
W、装薬量L、発破係数c、破壊半径またはせん孔間隔
長Dとを、共通の関係式によって互いに関連させて正確
に決定する方法に関する。 b)従来の技術 従来、発破の装薬量Lkgを算出するには、発破係数を
c、最小抵抗線をWとした場合に、ハウザーの公式 L=cW3 ……(1) が使われている。 この公式は、前提条件として、表層部の破壊半径Dと
装薬最小深さ(最小抵抗線長)Wとを等しく、(W=
D)として考えた場合に、破壊される岩盤体積Vの形状
が逆円錐形となるので、円錐形の破壊岩盤体積V=1/3
×π×W3≒W3が、発破係数cの制御下において、装薬量
Lと等価関係にあることを意味している。 c)発明が解決しようとする問題点 しかしながら、このハウザーの公式は、一点集中装薬
方式、すなわち、装薬量Lを体積のある実体として考え
ず、体積を無視した1点としてみる。 これに対して、実際の発破工事では棒状装薬方式、す
なわち、孔内に装填される火薬の実体は、ある長さHと
径dとを持った孔に、ある長さすなわち装薬長Nと径d
とを持った体積物体として存在する。 従って、この棒状装薬方式による爆破に必要な装薬量
Lを、ハウザーの公式を使って算出すると、実際とはか
け離れた量が算出され、甚だ危険である。例えば、せん
孔径d=25mmに火薬径25mmのダイナマイトを使用して岩
盤の破砕を行なう場合に、前記ハウザーの公式で装薬量
Lを算出すれば、発破係数c=0.25、最小抵抗線長W=
2mとして、L=cW3=0.25×23=2(kg)となる。この
量は、仮に、一本当りの薬径25mm、薬長165mm、重量100
gのダイナマイトであるとすれば、20本必要とされ、そ
れらのダイナマイトを2mの長さの孔に入れるとすると、
約12.5本で孔口に達し、残りの7.5本は孔内に入れるこ
とができない。従って、この装薬量Lの数値では、せん
孔径dを上記の数値よりも大きく、少くとも80乃至100m
m以上に設定せねば危険であることが推定されるが、前
記ハウザーの公式では、そのせん孔径dを算出すること
ができない。 棒状装薬方式による爆破工事では、従来、実際には、
装薬量Lをハウザーの公式L=cW3の変形式、すなわ
ち、 L=cDWH ……(2) によって算出している(平成3年1月通商産業省立地公
害局編社団法人全国火薬類保安協会発行「火薬類保安教
本シリーズ17こんなときこんな火薬をこんな使い方で」
第25頁及び第46頁参照)。ここで、 c:発破係数 D:地表における破壊半径 W:最小抵抗線長 H:せん孔長 である。 なお、前記ハウザーの公式では、地表における破壊半
径Dが最小抵抗線長Wと等しい、すなわち、W=Dを条
件としている。従って、棒状装薬方式による爆破におけ
る装薬量Lの算出式(2)においても、W=Dを条件に
すれば、前記算出式(2)は L=cW2H ……(2a) に変形して表すことができる。 しかしながら、この(2)式または(2a)式を使用し
ても、それらの式は、やはり、いずれも棒状装薬方式に
必須なせん孔径dとは無関係であって、せん孔径dを他
の要素と関連的に正確に決めることができない。 この点に関し、従来は、経験則から、せん孔径dは最
小抵抗線長Wの1/45に設定するように教えている(1981
年4月10日森北出版株式会社発行のRグスタファソン原
著「新しい発破技術」第60頁参照)。社団法人全国火薬
類保安協会もほぼ上記に準じてはいるものの、許容値を
拡大して、「平均的な発破の場合、最小抵抗縁はせん孔
径の30〜60倍とされている」と指導している。これは、
つまり、「せん孔径dは最小抵抗線長Wの1/30〜1/60」
ということである(平成3年1月通商産業省立地公害局
編、社団法人全国火薬類保安協会発行「火薬類保安教本
シリーズ17」第24頁参照)。この関係を具体的に示す
と、仮にせん孔径を3cmに設定した場合に、最小抵抗線
長Wが90cmから180cmの範囲の数値が設定可能となり、
人身事故に直結する数値であるにしてはあまりにも曖昧
である。 何故ならば、爆破工事における最小抵抗線長Wとは、
火薬の端部と地表との間の最短距離を表示する数値であ
って、仮に、この数値が過小であると、飛石事故が発生
して危険であり、逆に、この数値が過大であると、地表
までの破壊が不足して工事の能率が向上しない、という
爆破工事施工上の安全と能率の双方が関係する重大な要
素となる数値である。それにも拘らず、従来におけるせ
ん孔径dと最小抵抗線長Wとの関係が、上述のように2
倍の許容範囲を設けて設定し得るようにあいまいである
ことが、安全上及び能率上の双方から問題である。 因みに、最近10年間における日本国内に発生した工事
用爆破の事故件数は261件であり、そのうち、爆破から
生じた飛石事故は160件、すなわち、61.3%に達してい
る。 この発明の目的は、棒状装薬方式による爆破工事を、
飛石事故の生じない安全な範囲で、しかも、最大の爆破
効率によって達成するために、従来、共通の関係式から
導き出し得なかった棒状装薬に不可欠のせん孔径dを、
他の要素、すなわち、せん孔長H、最小抵抗線長W、装
薬量L、発破係数c、破壊半径またはせん孔間隔長D
と、共通の関係式によって互いに関連させて正確に決め
る方法を提供するものである。 d)課題を解決するための手段 この発明では、棒状装薬に不可欠なせん孔径dを、せ
ん孔長H、装薬長N、最小抵抗線長すなわち自由面GLと
装薬長Nの上端との間の最小深さをW、せん孔間隔長ま
たは破壊半径D=W、装薬量L、火薬比重Aと関連させ
て決めるために、火薬量が円柱の体積 に対応する量であることに着目し、ただし、装薬量Lの
安全性を考慮して、装薬長NをH−Wに置き換えて、装
薬量Lを とする一方、 装薬量Lが、それによって破壊されるべき破壊岩盤体
積W2Hを発破係数cで制御した数量すなわち L=cW2H ……(2a) でもあり、かつ、前記双方の関係式(3)及び(2a)が
互いに等価関係にあることに着目して、 によって発破係数cを含む前記各要素の数値を関連決定
する。 この(4)式を変形すれば、最小抵抗線長Wは の変形式によって決めることができる。 同様にして、せん孔径dは、せん孔長H、発破係数c
もまた、前記(4)式を変形して求めることができる。 e)作用 図面は、岩盤に対して棒状装薬爆破を施工する設計の
解説断面図を示し、 H:せん孔長 N:装薬長 N=H−W W:装薬長Nの上端と地表GLとの間の最短距離であって、
最小抵抗線長 d:せん孔径 L:装薬量 D:地表GLに生ずる破壊半径またはせん孔間隔長(D=
W) である。 かかる関係において、棒状装薬の火薬量は、せん孔径
dとせん孔長Hとからなる円孔内に、その孔底から装薬
長Nの高さに比重Aの火薬を詰め込むことによって成立
するものである。従って、棒状装薬の火薬量は、円柱の
体積を求める公式を応用して求めることができる。すな
わち、 しかしながら、単にこの円柱の体積を求める公式だけ
では、火薬量しか算出することができず、棒状装薬の施
工上、必要不可欠な爆破の安全性すなわち飛石の危険性
を防止する対応策が欠如していて、実際上は使用に堪え
ない。そこで、本発明では、爆破の安全性を考慮して安
全性の基準となる最小抵抗線長Wを装薬長Nに関連させ
て、N=H−Wであるから、装薬長Nを(H−W)に置
き換えて、とし、 なお、火薬比重A≠1であれば とする。 この破壊時の安全性を考慮した関係式(3)式によっ
て、従来、互いに関連のなかったせん孔径dと、せん孔
長H、最小抵抗線長W、装薬長H−W、装薬量Lとを、
互いに関連させて決定することができる。 他方において、棒状装薬方式による装薬量Lは、前述
したように、周知の(2a)式 L=cW2H ……(2a) から、求めることができる。 ここで、この(2a)式と前記(3)式とは、共通の装
薬量Lにおいて互いに等価関係にあるから、(3)式と
(2a)式とを結合させて の関係式が成立する。この関係式は、円柱の体積 に相当する装薬量Lが、発破係数cの制御下における破
壊岩盤体積W2Hと等しい関係にあることを意味してい
る。 よって、この(4)式から、従来、互いに関連のなか
ったせん孔径dと、発破係数c、破壊半径D、せん孔長
H、最小抵抗線長W、装薬長H−Wとを互いに関連させ
て決定することができる。 なお、一般的に、発破係数cの安全範囲は0.2〜0.5、
厳格にみれば0.25〜0.45とされている。 f)実 施 例 せん孔長H=100cm、最小抵抗線長W=87cm=破壊半
径D、発破係数c=0.35kg/m3=0.00035g/cm3、火薬比
重A=1を選定した場合に、従来周知の公式(前記第2
式)によれば、 L=cDWH ……(2) から、装薬量Lの数値 L≒265g を知ることができるが、この(2)式では、せん孔径d
が不明であり、そこで、周知の経験則からせん孔径dの
数値を推定すれば、d=W/30〜W/60とされているため、
従来式の算出によれば、せん孔径dは、 d=1.45〜2.9cmの範囲とされる。 しかしながら、このせん孔径dの数値を、円柱の体積
を求める公式を利用した本発明による(3)式で検算し
てみると から装薬長N=(H−W)が40cmから160cmの範囲とな
り、この数値では、最小値40cmでは最小抵抗線長Wが小
さくならざるを得ず、最大値160cmでは装薬長N=(H
−W)の方がせん孔長H=100cmよりも長いので、これ
らの数値では合理的な棒状装薬爆破を実行することがで
きない。 これに対して、本発明によれば、円柱の体積を求める
公式を利用した(3)式により、 から、せん孔径dを d≒5.1cm と決めることができ、この数値は他の要素との関連にお
いても妥当な値であることが判る。 例えば、各要素の値を上記の通りとした場合に、最小
抵抗線長Wを求めてみると、(5)式により から、 W=87cm となることが明らかであり、この数値は他の要素との関
連からみても正常である。 g)発明の効果 以上詳述したように、棒状装薬方式による爆破工事の
施工において、せん孔径dの数値が、せん孔長H、最小
抵抗線長W、装薬長N=(H−W)、装薬量L、発破係
数c等との関係において不可欠の要素であるにも拘ら
ず、従来は、これらの要素と互いに関連させる一貫した
算出式がなく、経験則から、非合理的にせん孔径dを決
定していたために、過装薬などによる飛石事故を誘発す
る危険が多かったのに対し、本発明によれば、せん孔径
dの数値を他の要素との相関関係から合理的に正確に決
定し得るようになったので、飛石を生ずるおそれがなく
なり安全かつ能率よく棒状装薬方式による爆破工事を施
工し得る。
DETAILED DESCRIPTION OF THE INVENTION a) Industrial Field of the Invention The present invention relates to a method for accurately determining the numerical values of each element necessary for the construction of a blasting work using a rod-shaped charging system in relation to each other by a common relational expression. More specifically, the drilling diameter d and other factors indispensable for a rod-shaped charge which could not be found in the related art, that is, the drilling length H, the minimum resistance wire length W, the charging amount L, the blasting coefficient c , The radius of rupture or the perforation interval length D is accurately determined in relation to each other by a common relational expression. b) Conventional technology Conventionally, to calculate the blast charge Lkg, Hauser's formula L = cW 3 is used, where blast coefficient is c and minimum resistance line is W. I have. As a precondition, this formula makes the fracture radius D of the surface layer equal to the minimum charge depth (minimum resistance wire length) W, and (W =
When considered as D), since the shape of the rock mass V to be destroyed is an inverted cone, the volume of the cone rock mass V is 1/3.
× π × W 3 ≒ W 3 means that the charge amount L is equivalent to the charge amount L under the control of the blast coefficient c. c) Problems to be Solved by the Invention However, this Hauser formula considers the one-point concentrated charging method, that is, the charging amount L is not considered as a substance having a volume, but is regarded as one point ignoring the volume. On the other hand, in the actual blasting work, the rod-shaped charging method, that is, the substance of the explosive charged in the hole is provided with a certain length, that is, a charging length N in a hole having a certain length H and a diameter d. And diameter d
Exists as a volume object with Therefore, if the charge amount L required for the blasting by the rod-shaped charge method is calculated using Hauser's formula, an amount far from the actual amount is calculated, which is extremely dangerous. For example, when crushing a bedrock using dynamite having an explosive diameter of 25 mm for a perforation diameter d = 25 mm, if the charge L is calculated by the Hauser formula, the blasting coefficient c = 0.25 and the minimum resistance wire length W =
Assuming 2 m, L = cW 3 = 0.25 × 2 3 = 2 (kg). Assuming that this amount is 25 mm in diameter, 165 mm in length, and 100 in weight
If it is g dynamite, 20 are required, and if you put those dynamite in a hole of 2 m length,
About 12.5 pieces reach the hole, and the remaining 7.5 pieces cannot be inserted into the hole. Therefore, in the numerical value of the charge amount L, the perforation diameter d is larger than the above numerical value, and is at least 80 to 100 m.
If it is set to m or more, it is presumed that it is dangerous. However, according to Hauser's formula, the perforation diameter d cannot be calculated. Conventionally, in the blasting work using the rod charging method,
Deformation type of Sokusuriryou L the Hauser of official L = cW 3, ie, L = cDWH ...... (2) is calculated and is (1991 January the Ministry of International Trade and Industry located pollution stations edited by The Institute of the National Explosives security by Published by the Association "Explosives Safety Education Book Series 17 Such Use of Explosives in Such Cases"
See pages 25 and 46). Here, c: blast coefficient D: fracture radius on the ground surface W: minimum resistance wire length H: drilling length. In the Hauser's formula, the breaking radius D on the ground surface is equal to the minimum resistance wire length W, that is, W = D. Accordingly, in the calculation formula (2) of the charge amount L in the blasting by the rod-shaped charging method, if W = D, the calculation formula (2) is transformed into L = cW 2 H (2a). Can be expressed as However, even if this equation (2) or (2a) is used, none of these equations is independent of the perforation diameter d essential for the rod-shaped charging method, and the perforation diameter d is different from that of the other. It cannot be determined exactly in relation to the element. In this regard, it has conventionally been taught from experience that the perforation diameter d is set to 1/45 of the minimum resistance wire length W (1981).
(See page 60 of "New Blasting Technology" by R Gustafason, published by Morikita Publishing Co., Ltd. on April 10, 1998). The National Explosives Security Association of Japan, though almost in line with the above, expanded the permissible value and instructed that "in the case of average blasting, the minimum resistance edge is 30 to 60 times the perforation diameter" doing. this is,
In other words, "perforation diameter d is 1/30 to 1/60 of minimum resistance wire length W"
That is to say (see the “Explosives Safety Education Book Series 17”, p. 24, published by the National Explosives Security Association, edited by the Ministry of International Trade and Industry, Location Pollution Bureau, January 1991). When this relationship is specifically shown, if the perforation diameter is set to 3 cm, the minimum resistance wire length W can be set to a value in the range of 90 cm to 180 cm,
It is too ambiguous to be directly related to personal injury. Because the minimum resistance wire length W in the blasting work is
It is a numerical value indicating the shortest distance between the end of the gunpowder and the ground surface.If this numerical value is too small, a stepping stone accident occurs and it is dangerous, and conversely, if this numerical value is too large This is a critical factor that relates to both safety and efficiency in blasting work, in that the efficiency of the construction is not improved due to insufficient destruction to the ground surface. Nevertheless, the relationship between the perforation diameter d and the minimum resistance wire length W in the related art is 2 as described above.
It is a problem from the viewpoint of both safety and efficiency that it is ambiguous so that it can be set with a double tolerance. Incidentally, the number of construction blast accidents in Japan during the last 10 years was 261, of which 160 were stepping stones, or 61.3%. An object of the present invention is to perform blasting work using a rod-shaped charging method,
In order to achieve the maximum possible blasting efficiency within a safe range where stepping stone accidents do not occur, the drilling diameter d, which is indispensable for rod-shaped charges that could not be derived from the common relational expression,
Other factors: perforation length H, minimum resistance wire length W, charge L, blasting coefficient c, breaking radius or perforation spacing D
And a method for accurately determining them in relation to each other by a common relational expression. d) Means for Solving the Problems In the present invention, the perforation diameter d, which is indispensable for the rod-shaped charge, is determined by setting the perforation length H, the charge length N, the minimum resistance wire length, that is, the free surface GL and the upper end of the charge length N. In order to determine the minimum depth in relation to W, the perforation interval length or the breaking radius D = W, the charging amount L, and the explosive specific gravity A, the explosive amount is the volume of the cylinder. Note that the charge length L is replaced with HW in consideration of the safety of the charge amount L, and the charge amount L is On the other hand, the charge amount L is also a quantity obtained by controlling the fractured rock volume W 2 H to be destroyed by the blast coefficient c, that is, L = cW 2 H (2a), and the relationship between the two. Noting that equations (3) and (2a) are equivalent to each other, The values of the respective elements including the blast coefficient c are determined in association with each other. By transforming this equation (4), the minimum resistance wire length W becomes Can be determined by the following equation. Similarly, the perforation diameter d is the perforation length H, the blast coefficient c
Can also be obtained by modifying equation (4). e) Action The drawing shows a cross-sectional view of the design for constructing a rod-shaped charge blast on the bedrock. H: Perforated length N: Charge length N = H-W W: Upper end of charge length N and ground surface GL Is the shortest distance between
Minimum resistance wire length d: Perforation diameter L: Charge amount D: Rupture radius or perforation interval length (D =
W) In such a relationship, the amount of the explosive of the rod-shaped charge is established by packing an explosive having a specific gravity A from the bottom of the hole into the height of the charge length N into a circular hole having a perforated diameter d and a perforated length H. It is. Therefore, the explosive amount of the rod-shaped charge can be determined by applying the formula for determining the volume of the cylinder. That is, However, only the formula for calculating the volume of this cylinder can calculate only the amount of explosive, and there is no countermeasure to prevent the risk of blasting, which is indispensable for the construction of rod-shaped charge, which is essential. And is actually unbearable for use. Therefore, in the present invention, since the minimum resistance wire length W, which is a safety criterion in consideration of the safety of blasting, is related to the charging length N and N = H−W, the charging length N is set to ( HW) Note that if explosive specific gravity A ≠ 1, And According to the relational expression (3) in consideration of the safety at the time of breaking, the perforation diameter d, the perforation length H, the minimum resistance wire length W, the charging length H−W, and the charging amount L which have not been related to each other are conventionally obtained. And
It can be determined in relation to each other. On the other hand, the charging amount L by the rod-shaped charging method can be determined from the well-known formula (2a) L = cW 2 H (2a) as described above. Here, equation (2a) and equation (3) are equivalent to each other at a common charge amount L, so that equations (3) and (2a) are combined. Is established. This relation is the volume of the cylinder Means that the charge amount L is equivalent to the fractured rock volume W 2 H under the control of the blast coefficient c. Therefore, from the equation (4), the perforation diameter d, which has not been conventionally related to each other, is related to the blasting coefficient c, the breaking radius D, the perforation length H, the minimum resistance wire length W, and the charging length HW. Can be determined. Generally, the safety range of the blast coefficient c is 0.2 to 0.5,
Strictly speaking, it is between 0.25 and 0.45. f) Example When perforation length H = 100 cm, minimum resistance wire length W = 87 cm = breaking radius D, blasting coefficient c = 0.35 kg / m 3 = 0.00035 g / cm 3 , and explosive specific gravity A = 1, Conventional well-known formula (the second
According to the equation (2), the numerical value L ≒ 265 g of the charge amount L can be known from L = cDWH (2).
Is unknown, so if you estimate the numerical value of the perforation diameter d from a well-known empirical rule, since d = W / 30 ~ W / 60,
According to the conventional calculation, the perforation diameter d is in the range of d = 1.45 to 2.9 cm. However, when the numerical value of the perforation diameter d is checked by the formula (3) according to the present invention using the formula for obtaining the volume of the cylinder, From this, the charge length N = (H−W) is in the range of 40 cm to 160 cm. With this numerical value, the minimum resistance wire length W must be reduced at the minimum value of 40 cm, and at the maximum value of 160 cm, the charge length N = ( H
Since −W) is longer than the perforation length H = 100 cm, it is not possible to perform reasonable rod-shaped charge blasting with these values. On the other hand, according to the present invention, according to the equation (3) using the formula for calculating the volume of a cylinder, From this, it can be seen that the perforation diameter d can be determined to be d ≒ 5.1 cm, and this numerical value is an appropriate value in relation to other factors. For example, when the values of the respective elements are as described above, the minimum resistance wire length W is obtained. From this, it is clear that W = 87 cm, and this value is normal also in relation to other factors. g) Effects of the Invention As described in detail above, in the blasting work using the rod-shaped charging method, the numerical value of the perforation diameter d is the perforation length H, the minimum resistance wire length W, and the charging length N = (H−W). Despite being indispensable factors in relation to the charge amount L, the blasting coefficient c, etc., there has been no consistent calculation formula related to these factors, and empirical rules suggest that the drilling diameter is irrationally high. Since d was determined, there was a high risk of causing a stepping stone accident due to overcharge, etc., but according to the present invention, the numerical value of the perforation diameter d was reasonably accurate from the correlation with other factors. As a result, there is no risk of stepping stones, and the blasting work using the rod-shaped charging method can be performed safely and efficiently.

【図面の簡単な説明】 図面は、本発明による棒状装薬方式による爆破工事の施
工に必要な各部要素の関連を示す説明図である。 H……せん孔長 N……装薬長 N=H−W W……装薬長Nの上端と地表GLとの間の最短距離であっ
て、最小抵抗線長 d……せん孔径 L……装薬量 D……地表GLに生ずる破壊半径またはせん孔間隔長(D
=W) A……火薬の比重 c……発破係数
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing the relationship between the components required for the blasting work using the rod-shaped charging system according to the present invention. H: Perforation length N: Charge length N = H−W W: The shortest distance between the upper end of the charge length N and the ground surface GL, and the minimum resistance wire length d: Perforation diameter L: Charge D: The radius of fracture or perforation interval (D
= W) A: specific gravity of explosive c: blast coefficient

Claims (1)

(57)【特許請求の範囲】 1.棒状装薬に不可欠なせん孔径dを、せん孔長H、装
薬長N、最小抵抗線長すなわち自由面GLと装薬長Nの上
端との間の最小深さをW、せん孔間隔長または破壊半径
D=W、装薬量L、火薬比重Aと関連させて決めるため
に、火薬量が円柱の体積 に対応する量であることに着目し、ただし、装薬量Lの
安全性を考慮して、装薬長NをH−Wに置き換えて、装
薬量Lを とする一方、 装薬量Lが、それによって破壊されるべき破壊岩盤体積
W2Hを発破係数cで制御した数量すなわち L=cW2H でもあり、かつ、前記双方の関係式が互いに等価関係に
あることに着目して、 によって発破係数cを含む前記各要素の数値を関連決定
することを特徴とする棒状装薬方式による爆破工事に必
要な各要素の数値関連決定方法。 2.前記最小抵抗線長Wを、請求項1に記載の関係式の
変形式によって決定する、請求項1に記載の数値関連決定方
法。 3.前記せん孔径dを、請求項1に記載の関係式を変形
して決定する、請求項1に記載の数値関連決定方法。 4.前記せん孔長Hを、請求項1に記載の関係式を変形
して決定する、請求項1に記載の数値関連決定方法。 5.前記発破係数cを、請求項1に記載の関係式を変形
して決定する、請求項1に記載の数値関連決定方法。
(57) [Claims] The perforation diameter d, which is indispensable for the rod-shaped charge, is represented by the perforation length H, the charging length N, the minimum resistance wire length, that is, the minimum depth between the free surface GL and the upper end of the charging length N, W In order to determine in relation to the radius D = W, the charge amount L and the explosive specific gravity A, the explosive amount is the volume of the cylinder. Note that the charge length L is replaced with HW in consideration of the safety of the charge amount L, and the charge amount L is On the other hand, the charge amount L is the destructed bedrock volume to be destroyed thereby.
Paying attention to the fact that W 2 H is a quantity controlled by the blast coefficient c, that is, L = cW 2 H, and that the two relational expressions are equivalent to each other. And determining a numerical value of each element including the blasting coefficient c by a rod-shaped charging method. 2. The modified expression of the relational expression according to claim 1, wherein the minimum resistance wire length W is defined as The method according to claim 1, wherein the numerical value is determined by: 3. The method according to claim 1, wherein the perforation diameter d is determined by modifying the relational expression according to claim 1. 4. The numerical value related determination method according to claim 1, wherein the perforation length H is determined by modifying the relational expression according to claim 1. 5. The method according to claim 1, wherein the blast coefficient c is determined by modifying the relational expression according to claim 1.
JP33266087A 1987-12-29 1987-12-29 Numerical relation determination method of each element necessary for blasting work by rod-shaped charging method Expired - Fee Related JP2662691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33266087A JP2662691B2 (en) 1987-12-29 1987-12-29 Numerical relation determination method of each element necessary for blasting work by rod-shaped charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33266087A JP2662691B2 (en) 1987-12-29 1987-12-29 Numerical relation determination method of each element necessary for blasting work by rod-shaped charging method

Publications (2)

Publication Number Publication Date
JPH01174900A JPH01174900A (en) 1989-07-11
JP2662691B2 true JP2662691B2 (en) 1997-10-15

Family

ID=18257446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33266087A Expired - Fee Related JP2662691B2 (en) 1987-12-29 1987-12-29 Numerical relation determination method of each element necessary for blasting work by rod-shaped charging method

Country Status (1)

Country Link
JP (1) JP2662691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155172A (en) * 1997-12-16 2000-12-05 Nakajima; Yasuji Method for setting parameters for blasting using bar-like charge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155172A (en) * 1997-12-16 2000-12-05 Nakajima; Yasuji Method for setting parameters for blasting using bar-like charge

Also Published As

Publication number Publication date
JPH01174900A (en) 1989-07-11

Similar Documents

Publication Publication Date Title
Roy Rock blasting: effects and operations
Eades et al. Understanding the connection between blasting and highwall stability
Kuzu et al. The problem of human response to blast induced vibrations in tunnel construction and mitigation of vibration effects using cautious blasting in half-face blasting rounds
JP2662691B2 (en) Numerical relation determination method of each element necessary for blasting work by rod-shaped charging method
EP2660555B1 (en) A method of detaching a monolith from rock massif and a device for application of the method
Cevizci A new stemming application for blasting: a case study
JP2602144B2 (en) Blast setting method using rod-shaped charging method
JP3229851B2 (en) Numerical setting method of elements required for construction of blasting work with rod-shaped charge
Kurchin et al. Calculation methodology of blasting and explosion operations' parameters for construction of horizontal and inclined excavations
US2586541A (en) Detonating assembly
JPH09113200A (en) Setting method for explosion by rod-form charge
JP2604270B2 (en) Determination method of safe charge amount by rod charge method
EP0582702A4 (en) Blasting method and composition
JPH11101600A (en) Safety powder charge amount calculating system for bar-like powder charge
JP2602150B2 (en) Blast setting method using rod-shaped charging method
Austin Lined-cavity shaped charges and their use in rock and earth materials
DE44422C (en) Method of loading wells
JP2001249000A (en) Method for setting explosion with rod-like cartridge
JP2881179B2 (en) A method for determining the safest maximum charge in perforation blasting.
CN210952558U (en) Support is destroyed to unexplosive grenade induced explosion method
JP2955732B2 (en) Equivalent conversion method between concentrated charge and rod charge
JPS59145805A (en) Falling and breaking of bridge leg
Ong et al. The use of bulk emulsion explosives at the Mandai underground storage caverns
JP3258656B2 (en) A method for determining the maximum safe charge in perforation blasting.
Cunningham Blasting for construction some critical aspects.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees