JP3258656B2 - A method for determining the maximum safe charge in perforation blasting. - Google Patents

A method for determining the maximum safe charge in perforation blasting.

Info

Publication number
JP3258656B2
JP3258656B2 JP01823490A JP1823490A JP3258656B2 JP 3258656 B2 JP3258656 B2 JP 3258656B2 JP 01823490 A JP01823490 A JP 01823490A JP 1823490 A JP1823490 A JP 1823490A JP 3258656 B2 JP3258656 B2 JP 3258656B2
Authority
JP
Japan
Prior art keywords
length
charge
blasting
perforation
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01823490A
Other languages
Japanese (ja)
Other versions
JPH03221800A (en
Inventor
靖二 中島
Original Assignee
靖二 中島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 靖二 中島 filed Critical 靖二 中島
Priority to JP01823490A priority Critical patent/JP3258656B2/en
Publication of JPH03221800A publication Critical patent/JPH03221800A/en
Application granted granted Critical
Publication of JP3258656B2 publication Critical patent/JP3258656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【発明の詳細な説明】 a)産業上の利用分野 この発明は、岩盤を破壊するのに有効な安全最多装薬
量を迅速確実に決定する方法に関する。
The present invention relates to a method for quickly and reliably determining a safe maximum charge effective for breaking rock.

b)従来の技術 従来、発破の装薬量を決定する算出式としてハウザー
の公式、すなわち、 装薬量L(kg)=発破常数C×最小抵抗線W3が周知であ
る。この公式は、円錐の体積を求める公式V=1/3×π
×r2×hの一変形であって、前記r2とhとをいずれもW
に置き換えてみれば、前記ハウザーの公式が実現する。
b) Description of the Related Art Conventionally, Hauser official as a calculation expression that determines the charge amount of blasting, i.e., it is well known Sokusuriryou L (kg) = blast constant C × least resistance W 3. This formula, formula V = 1/3 × π obtaining the volume of the cone
A a variant of × r 2 × h, both the said r 2 and h W
The Hauser's formula is realized.

c)発現が解決しようとする課題 このハウザーの公式は、火薬の体積を0と仮定し、装
薬位置も極小の一点として考える限りにおいては正確で
ある。
c) The problem to be solved by the expression This Hauser's formula is accurate as long as the volume of the explosive is assumed to be 0 and the charging position is considered as a minimum point.

しかしながら実際の発破工事においては、装薬には所
定の長さと径とが存在し、とりわけ、近年、機械の大型
化に伴い、発破穿孔長が例えば22mにも達する場合があ
り、その長い穿孔長に対して装薬は長い棒状の状態で行
われる。このように、ハウザーの公式は実際行われてい
る棒状装薬法に適しない。
However, in actual blasting work, the charge has a predetermined length and diameter, and in particular, in recent years, with the enlargement of machines, the blasting perforation length may reach, for example, 22 m, and the long perforation length is long. In contrast, charging is performed in a long rod-like state. Thus, Hauser's formula is not suitable for the practice of rod-shaped charging.

穿孔発破作業で、もっとも注意すべき点は、爆破に伴
なって生ずる飛石の及ぼす危険性の問題であり、装薬量
が過多の場合には作業員を含めた周囲一帯が飛石の危険
にさらされる。しかしながら、飛石の危険ばかりが過大
に考慮されて装薬量が過少であると作業能率がはかどら
ず、安全ではあっても工事の完成が遅れることになる。
そこで、作業の安全と能率の双方を両立させるために、
爆破に伴なって飛石が生じても、その飛石による実際の
被害が発生しない限界点となる安全最多装薬量を当該作
業現場において早急に探り出す手法が要求される。
The most important thing to note about drilling blasting is the risk of stepping stones generated by blasting.If the amount of charge is excessive, the entire area including workers is at risk of stepping stones. It is. However, if only the danger of stepping stones is considered excessively and the amount of charge is too small, the working efficiency will not be improved, and even if it is safe, the completion of the construction will be delayed.
Therefore, in order to balance both work safety and efficiency,
Even if a stepping stone is generated as a result of the blast, there is a need for a method of quickly finding the maximum safe charge at the work site, which is a critical point where actual damage due to the stepping stone does not occur.

この発明の目的は、爆破に伴なって生ずる飛石による
実害が発生しない限界点となる最多装薬量を迅速確実か
つ簡単容易に決定して能率の高い発破作業を遂行し得る
方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method capable of performing a highly efficient blasting operation by quickly, reliably and easily determining a maximum amount of charge, which is a limit point at which no actual harm is caused by a flying stone caused by blasting. It is.

d)課題を解決するための手段 この発明は、上記の目的を達成するために、孔底から
の長さの1/2に相当する装薬量の破壊岩盤量に対する割
合、すなわち、破壊岩盤単位が0.08〜0.11の範囲内にあ
る穿孔長と径とを有する孔で穿刻して、その孔底からの
長さの2/3を標準値とし、7/10を最大値とする範囲内の
最終装薬量にて穿孔発破を行う点にある。
d) Means for Solving the Problems In order to achieve the above object, the present invention provides a ratio of a charge amount corresponding to 1/2 of the length from the hole bottom to a fractured rock mass, that is, a fractured rock mass unit. Is drilled with a hole having a perforation length and diameter within the range of 0.08 to 0.11, the standard value is 2/3 of the length from the bottom of the hole, and the maximum value is 7/10. The point is that piercing blasting is performed at the final charge amount.

孔底からの長さの1/2に相当する装薬量の破壊岩盤量
に対する割合すなわち、破壊岩盤単位が0.08〜0.11の範
囲にある穿孔長と径は、以下のように求めることができ
る。
The ratio of the amount of charge corresponding to 1/2 of the length from the hole bottom to the amount of fractured rock, that is, the perforation length and diameter in which the unit of fractured rock is in the range of 0.08 to 0.11, can be obtained as follows.

すなわち、破壊岩盤単位が0.08〜0.11であるので、0.
08≦c≦0.11となる。ここで、c=L/Vであり、L=π
×(1/2r)×H/2×A(装薬比重)、V=1/3×π
×R2×Hであり、R=D=H/2であるので、c=3r2A/2H
2となる。上記穿孔長と径は、0.08≦3r2A/2H2≦0.11か
ら求めることができる。
That is, since the fractured rock mass unit is 0.08 to 0.11, it is 0.
08 ≦ c ≦ 0.11. Here, c = L / V and L = π
× (1/2 * r) 2 × H / 2 × A (charge specific gravity), V = 1/3 × π
× R 2 × H and R = D = H / 2, so c = 3r 2 A / 2H
It becomes 2 . The perforation length and diameter can be determined from 0.08 ≦ 3r 2 A / 2H 2 ≦ 0.11.

e)作用 第2図で示すように、例えば、試験発破を行なって、
その爆破の影響が地表にあらわれる最少装薬量Lにおけ
る初期込物長Dを確認すると、大略、穿孔長Hの1/2で
あることが判明する。
e) Action As shown in FIG. 2, for example, a test blast
When the initial load length D at the minimum charge amount L at which the effect of the blast appears on the ground surface is confirmed, it is found that the initial load length D is approximately の of the perforation length H.

しかしながら、この最少装薬量Lのみでは地表に亀裂
が生じる程度であって他表付近の岩盤の破壊が微弱過
ぎ、後処理に時間と手間がかかって作業の能率が上らな
い。従って地表付近の岩盤に対してはまだ破壊を加える
余地が残っているものと判断される。
However, with only the minimum charge amount L, cracks are generated on the ground surface, and the rock near the other surface is too weakly destructed, so that post-processing takes time and labor, and the work efficiency is not improved. Therefore, it is judged that there is still room for destruction of the rock near the ground surface.

そこで、第3図で示すように、前記最少装薬量Lにお
ける初期込物長Dの1/3の長さを標準値Xaとし2/5の長さ
を最大値Xbとする補助装薬量Laを加えて、前記破壊の未
熟な地表付近に対しても爆破が生じるようにする。
Therefore, as shown in FIG. 3, the auxiliary charge amount in which the length of 1/3 of the initial charge length D at the minimum charge amount L is the standard value Xa and the length of 2/5 is the maximum value Xb. La is added so that blasting will occur even near the surface of the immature surface of the destruction.

前記標準値Xaは前記孔の底から1/2+1/6=4/6=2/3の
長さであり、また、前記最大値Xbは1/2+2/10=7/10の
長さであり、これらの最終装薬量は破壊岩盤単位0.25〜
0.35の範囲内にある。
The standard value Xa has a length of 1/2 + 1/6 = 4/6 = 2/3 from the bottom of the hole, and the maximum value Xb has a length of 1/2 + 2/10 = 7/10. , These final charges are 0.25
It is in the range of 0.35.

ただし、最終装薬量が前記範囲内にあっても、穿孔長
Hと孔径rとの対比関係が極端であっては初期の目的が
達成されず、下記の相関関係にあるものを基礎にした場
合、つまり、孔底からの長さの1/2に相当する装薬量の
破壊岩盤量に対する割合、すなわち、破壊岩盤単位(別
称、危険率又は発破係数)が0.08〜0.11の範囲内にある
穿孔長と径とを有する孔の場合にのみ、過不足のない破
壊が得られ、飛石による実害の発生に至らず、安全と能
率の双方が充足される。
However, even if the final charge amount is within the above range, the initial purpose is not achieved if the relative relationship between the perforation length H and the pore diameter r is extreme, and the following correlation is based. In other words, the ratio of the amount of charge corresponding to 1/2 of the length from the bottom of the hole to the amount of fractured rock, that is, the unit of fractured rock (also known as risk factor or blasting coefficient) is in the range of 0.08 to 0.11 Only in the case of a hole having a perforated length and a diameter, complete and sufficient destruction can be obtained, and no actual damage is caused by the stepping stone, and both safety and efficiency are satisfied.

上記の条件を有する穿孔長Hと径rとからなる孔は次
の通りである。
The holes having the above-described conditions and having the hole length H and the diameter r are as follows.

穿孔長(H)m 孔径(r)mm 3 25 4 35 5 40 6 50 7 60 8 70 9 70〜80 10 80〜90 穿孔長(H)m 孔径(r)mm 11 90〜100 12 100〜110 13 100〜120 14 110〜130 15 120〜140 f)実施例 第1図において、穿孔径r(mm)、 穿孔長H(m) =装薬量l(m)+初期込物長D(m) 破壊岩盤量V(m3)は、円錐の体積を求める公式から、 破壊岩盤量V(m3) =1/3×π×破壊半径R2(m2)×穿孔長H(m) =穿孔長H(m)×破壊半径R2(m2) 最少装薬量L(kg)は、円柱の体積を求める公式から、 最少装薬量L(kg)=π×穿孔径の半径 ×装薬量l(m)×装薬比重 このような諸元を有する試験穿孔発破の構成におい
て、穿孔長H(m)中におけるx(m)点は最少装薬長
l(m)と初期込物長D(m)との境界を示し、そのx
点まで装薬をして発破させると、地表G.Lが僅かに浮き
上がる程度の爆破力となり、それに要する火薬が最少装
薬量L(kg)となる。そこで、そのときの初期込物長D
(m)を確認すると、例えばH=14m、r=140mmの孔に
おいて、最少装薬量l=7mの装薬をして試験発破した場
合に、地表G.Lに影響が生じたとすれば、そのときの初
期込物長D=7mとなり、前項に記載したように、前記D
=7mは、大略、穿孔長Hの1/2である。
Hole length (H) m Hole diameter (r) mm 3 25 4 35 5 40 6 50 7 60 8 70 9 70-80 10 80-90 Hole length (H) m Hole diameter (r) mm 11 90-100 12 100 100 13 100-120 14 110-130 15 120-140 f) Example In FIG. 1, perforation diameter r (mm), perforation length H (m) = charge amount l (m) + initial inclusion length D (m) ) fracture rock volume V (m 3), from the formula for the volume of a cone, fracture rock volume V (m 3) = 1/ 3 × π × fracture radius R 2 (m 2) × perforation length H (m) = The perforation length H (m) × the breaking radius R 2 (m 2 ) The minimum charging amount L (kg) is calculated from the formula for calculating the volume of the cylinder, the minimum charging amount L (kg) = π × the radius of the perforation diameter 2 × Charge amount l (m) × Charge specific gravity In the test drilling blasting configuration having such specifications, the point x (m) in the drilling length H (m) is the minimum charging length l (m) and the initial loading. Indicates the boundary with the object length D (m), and its x
When the powder is charged to the point and blasted, the blasting force is such that the ground surface GL slightly rises, and the explosive required for the blasting becomes the minimum charged amount L (kg). Therefore, the initial inclusion length D at that time
If (m) is confirmed, for example, if the test blasting is carried out in a hole of H = 14 m and r = 140 mm with a minimum charge amount of l = 7 m, and if the ground surface GL is affected, then Becomes 7 m, and as described in the preceding section,
= 7 m is approximately one half of the perforation length H.

しかしながら、前記条件における最少装薬量L(kg)
で爆破した場合に、岩盤の破壊状況を検討してみると、
第2図で示すように、地表G.L付近では僅かに亀裂が生
じた程度であって、地表付近の岩盤の破壊が微弱過ぎ、
この程度の破壊では後処理作業に手数と時間がかかって
非能率的である。従って、地表付近の岩盤に対しては、
まだ破壊を加える余地が残っているものと判断される。
However, the minimum charge L (kg) under the above conditions
In the case of bombing, when examining the situation of rock destruction,
As shown in Fig. 2, cracks were slightly generated near the ground surface GL, and the rocks near the ground surface were too weakly broken.
With this degree of destruction, the post-processing work takes time and effort and is inefficient. Therefore, for rock near the ground,
It is determined that there is still room for destruction.

そこで、後処理に能率の良い作業を実現させるには、
前記初期込物長D(m)の部分の何割かにも装薬を追加
して発破すれば、地表G.L付近の破壊、すなわち岩盤の
細分化が得られる。しかしながら、装薬の追加が過度に
なれば、今度は飛石による実害が発生して危険となり作
業そのものの遂行が困難となる。
Therefore, to realize efficient work for post-processing,
If a charge is added to some of the portion of the initial inclusion length D (m) and blasted, destruction near the ground surface GL, that is, fragmentation of the bedrock can be obtained. However, if the charge is excessively added, actual harm due to the stepping stones occurs, which becomes dangerous and makes it difficult to perform the work itself.

そこで、本発明者は、最少装薬量Lに補助装薬量Laを
増加する実験を試みた。その結果、穿孔長Hの底から2/
3の長さを標準値とし7/10の長さを最大値とする範囲内
の合計装薬量L+Laであれば、上記の条件内であり、安
全であることが確認された。
Then, the inventor tried an experiment to increase the auxiliary charge amount La to the minimum charge amount L. As a result, 2 /
If the total charge L + La is within a range where the length of 3 is the standard value and the length of 7/10 is the maximum value, it is within the above conditions, and it is confirmed that it is safe.

次に、上記の関係を計算値により検討してみると、以
下に示すようになる。
Next, when the above relationship is examined using calculated values, the following is obtained.

一例として、穿孔径r=0.13mの場合において、 穿孔長H=15mとすると、火薬比重=830kg/m3である
ので、 上記式よりc=3r2A/2H2=3×0.132×830/2×152
0.094kg/m3となり、これは、0.08≦c≦0.11の範囲内で
ある。
As an example, in the case where the perforation diameter r is 0.13 m and the perforation length H is 15 m, the explosive specific gravity is 830 kg / m 3 , so c = 3r 2 A / 2H 2 = 3 × 0.13 2 × 830 / 2 × 15 2
0.094 kg / m 3 , which is within the range of 0.08 ≦ c ≦ 0.11.

更に上記に加えて残余穿孔長H/2=7.5mの1/3すなわち
2.5m(Xa点)まで装薬長を増加したとすれば、 安全最多装薬長l+la=7.5m+2.5m=10m 最終込物長D=破壊半径R=5m 破壊岩盤体積V=R2×H=5×5×15=375m3 装薬比重A=0.83g/cm3=830kg/m3 装薬量L=π×(1/2r)×(l+la)×A =π×1/4×0.132×10×830=110.11kgとなり、容易に
安全最多装薬量を求めることができる。
In addition to the above, the remaining perforation length H / 2 = 1/3 of 7.5m, ie
Assuming that the charge length is increased to 2.5 m (point Xa), the maximum safe charge length l + la = 7.5 m + 2.5 m = 10 m Final load length D = break radius R = 5 m break rock volume V = R 2 × H = 5 × 5 × 15 = 375 m 3 Specific gravity A of charge A = 0.83 g / cm 3 = 830 kg / m 3 Charge L = π × (1/2 * r) 2 × (l + la) × A = π × 1 / 4 x 0.13 2 x 10 x 830 = 110.11 kg, making it easy to find the safest maximum charge.

では、残余穿孔長H/2=7.5の2/5すなわち3m(Xb点)
まで装薬長を増加したとすれば、 安全最多装薬長l+la=7.5m+3m=10.5m 最終込物長D=破壊半径R=4.5m 破壊岩盤体積V=R2×H =4.5×4.5×15=303.75m3 装薬比重A=0.83g/cm3=830kg/m3 装薬量L=π×(1/2r)=(l+la)×A =250×3.14×0.83×0.132×10.5 =115.62kgとなり、容易に安全最多装薬量を求めるこ
とができる。
Then, the remaining perforation length H / 2 = 2/5 of 7.5, ie 3m (Xb point)
If it increased the charge length to safety most charge length l + la = 7.5m + 3m = 10.5m final filler length D = fracture radius R = 4.5 m fracture rock volume V = R 2 × H = 4.5 × 4.5 × 15 = 303.75m 3 Charge specific gravity A = 0.83g / cm 3 = 830kg / m 3 Charge L = π × (1/2 * r) 2 = (l + la) × A = 250 × 3.14 × 0.83 × 0.13 2 × 10.5 = 115.62kg, which makes it easy to find the safest maximum charge.

以上の実施例から判るように、例えば穿孔径r=130m
m、穿孔長H=15mの場合に、孔底から2/3すなわち10mの
装薬長が安全最多標準値であり、更に、孔底から7/10す
なわち10.5mの装薬長が安全最多最大値であり、それ以
上の装薬は飛石が生じて危険であり、安全な作業の進行
が不可能であることが理解される。
As can be seen from the above embodiment, for example, the perforation diameter r = 130 m
m, the perforation length H = 15m, the charge length of 2/3 from the hole bottom, ie, 10m, is the safest standard value, and the charge length of 7/10, ie, 10.5m from the hole bottom, is the safest maximum value. It is understood that the charge above this value is dangerous because stepping stones are generated, and it is impossible to proceed safely.

g)発明の効果 以上詳述したように、本発明によれば、孔底からの長
さ2/3を基準値とし、7/10の長さを最大値とする数値を
量的に把握し、かつ、前述した所定の穿孔長と径とを有
する孔を条件とすれば、作業現場にて簡易迅速かつ確実
に安全最多装薬量を決定し得るようになった。従って、
飛石による実害の発生に至らない安全限界内において最
多の装薬量を使って爆破を行なうことができるので、作
業の安全と能率の双方が達成されるようになった。
g) Effects of the present invention As described in detail above, according to the present invention, the length from the bottom of the hole is set as the reference value, and the numerical value with the length of 7/10 as the maximum value is quantitatively grasped. In addition, provided that the hole has the above-mentioned predetermined perforation length and diameter, the safe maximum amount of charge can be determined simply, quickly and reliably at the work site. Therefore,
Blasting can be performed using the maximum amount of charge within a safety limit that does not cause actual damage caused by stepping stones, so that both work safety and efficiency have been achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明による安全最多装薬量決定方法を示す
全体的説明図、 第2図は、第1図において最少装薬長lを穿孔長Hの1/
2に限定して発破した場合に想定される岩盤の破壊状況
を例示する説明図、 第3図は、第1図において補助装薬長laを付加する場合
における部分的説明図である。 H(m)……穿孔長、 l(m)……最少装薬長、 la(m)……補助装薬長、 l+la(m)……安全最多装薬長、 D(m)……初期込物長、 Da(m)……最終込物長、 L(kg)……最少装薬量、 La(kg)……補助装薬量、 L+La(kg)……安全最多装薬量(最終装薬量)、 G.L……地表、 V(m3)……最少装薬量Lにおける破壊岩盤量、 R(m)……破壊半径=初期込物長D(m)、 r(mm)……穿孔径、 X(m)……最少装薬長l(m)と初期込物長D(m)
との境界を示し、穿孔長Hの1/2の位置、 Xa(m)……安全最多装薬量標準値、 Xb(m)……安全最多装薬量最大値、 Va(m3)……補助装薬量Laにおける破壊岩盤量。
FIG. 1 is an overall explanatory view showing a method for determining a safe maximum charge amount according to the present invention. FIG. 2 is a view showing a minimum charge length 1 in FIG.
FIG. 3 is an explanatory view exemplifying a state of destruction of a rock mass assumed when blasting is limited to 2, and FIG. 3 is a partial explanatory view in a case where an auxiliary charge length la is added in FIG. H (m): Perforation length, l (m) ... Minimum charge length, la (m) ... Auxiliary charge length, l + la (m) ... Safety maximum charge length, D (m) ... Initial Length, Da (m) ... final length, L (kg) ... minimum charge, La (kg) ... auxiliary charge, L + La (kg) ... maximum safe charge (final) Charge amount), GL ... ground surface, V (m 3 ) ... breakage rock mass at minimum charge amount L, R (m) ... breaking radius = initial inclusion length D (m), r (mm) ... ... Pore diameter, X (m) ... Minimum charge length l (m) and initial inclusion length D (m)
, The position of の of the perforation length H, Xa (m): the standard value of the maximum safe loading, Xb (m): the maximum value of the maximum safe loading, Va (m 3 ) … Amount of fractured rock mass at auxiliary charge amount La.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】孔底からの長さの1/2に相当する装薬量の
破壊岩盤量に対する割合すなわち、破壊岩盤単位が0.08
〜0.11の範囲内にある穿孔長と径とを有する孔を穿刻し
て、その孔底からの長さの2/3を標準として7/10を最大
値とする範囲の最終装薬量にて穿孔発破を行うことを特
徴とする穿孔発破における安全最多装薬量決定方法。
(1) The ratio of the charge amount corresponding to 1/2 of the length from the hole bottom to the fractured rock mass, that is, the fractured rock mass is 0.08
A hole having a perforation length and diameter within the range of ~ 0.11 is cut out, and a final charge amount in a range of 2/3 of the length from the bottom of the hole as a standard and 7/10 as a maximum value. A method for determining a safe maximum amount of charge in piercing blasting, characterized by performing piercing blasting.
JP01823490A 1990-01-29 1990-01-29 A method for determining the maximum safe charge in perforation blasting. Expired - Fee Related JP3258656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01823490A JP3258656B2 (en) 1990-01-29 1990-01-29 A method for determining the maximum safe charge in perforation blasting.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01823490A JP3258656B2 (en) 1990-01-29 1990-01-29 A method for determining the maximum safe charge in perforation blasting.

Publications (2)

Publication Number Publication Date
JPH03221800A JPH03221800A (en) 1991-09-30
JP3258656B2 true JP3258656B2 (en) 2002-02-18

Family

ID=11965984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01823490A Expired - Fee Related JP3258656B2 (en) 1990-01-29 1990-01-29 A method for determining the maximum safe charge in perforation blasting.

Country Status (1)

Country Link
JP (1) JP3258656B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113338933A (en) * 2021-06-30 2021-09-03 山西海源阳光科技有限公司 Mining method for extremely-close coal seam

Also Published As

Publication number Publication date
JPH03221800A (en) 1991-09-30

Similar Documents

Publication Publication Date Title
CN107063014B (en) Slope method is cut in cutting shallow bore hole step control explosion under complex environment
CN105874299A (en) Explosive tube having air gap and method of blasting bedrock using same
KR100665880B1 (en) Blasting system and method of using electronic detonator and non-electric detonator
JP3062133B2 (en) Rock cutting method using tensile fracture
CN106677786B (en) A kind of ultra-deep big cross section vertical shaft shaft formatting by one blasting method based on electric detonator
CN105423832B (en) Blast construction method of orientation window of thick-wall brick chimney
KR102091928B1 (en) Separated composite excavation method in plhbm
CA2410465C (en) Detonating cord and methods of making and using the same
Kuzu et al. The problem of human response to blast induced vibrations in tunnel construction and mitigation of vibration effects using cautious blasting in half-face blasting rounds
JP3258656B2 (en) A method for determining the maximum safe charge in perforation blasting.
CN103822555A (en) Blasting method in reinforcing and reconstructing construction of hydraulic engineering
Ouchterlony et al. Fragmentation monitoring of production blasts at MRICA
US20050066836A1 (en) Method for controlling explosions in open mines
Cevizci A new stemming application for blasting: a case study
KR100680032B1 (en) Method of Explosive Demolition on the Buildings by use of Explosives
KR100885925B1 (en) Blasting demolition method of the silo on a large cylindrical structure
Stagg Influence of blast delay time on rock fragmentation: one-tenth scale tests
JP2881179B2 (en) A method for determining the safest maximum charge in perforation blasting.
KR100559936B1 (en) Blasting method for constructing base of power transmission tower
KR19980016610A (en) Blasting Rock Classification Technology, Blasting Design and Tunnel Blasting Method Considering Discontinuities in Rock
JP3032236B2 (en) A method for determining the safest maximum charge in perforation blasting.
KR20000038502A (en) Method of stage advance blasting burn cut
JP3147895B2 (en) A method for determining perforation interval length in simultaneous perforation blasting
RU2101673C1 (en) Method of explosive breaking of broken-up rock mass at breaking onto basset
KR102417586B1 (en) Method for blasting contour hole of tunnel using paper pipe and detonating cord, road slope blasting method and urban bedrock blasting method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees