JPH03221800A - Determination of safety most loading dosage in hole drilling blasting - Google Patents

Determination of safety most loading dosage in hole drilling blasting

Info

Publication number
JPH03221800A
JPH03221800A JP1823490A JP1823490A JPH03221800A JP H03221800 A JPH03221800 A JP H03221800A JP 1823490 A JP1823490 A JP 1823490A JP 1823490 A JP1823490 A JP 1823490A JP H03221800 A JPH03221800 A JP H03221800A
Authority
JP
Japan
Prior art keywords
length
amount
hole
charge
rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1823490A
Other languages
Japanese (ja)
Other versions
JP3258656B2 (en
Inventor
Yasuji Nakajima
中島 靖二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP01823490A priority Critical patent/JP3258656B2/en
Publication of JPH03221800A publication Critical patent/JPH03221800A/en
Application granted granted Critical
Publication of JP3258656B2 publication Critical patent/JP3258656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

PURPOSE:To ensure highly effective blasting work by determining most loaded dosage at a limit point where no actual harm is existent by drilling a hole of its length and diameter within a range from a standard value yielded from a hole bottom and a maximum value. CONSTITUTION:There is drilled a hole of its length and diameter at a ratio of a loading dosage corresponding to 1/2 of the length from a hole bottom to the amount of a destroyed base rock, i.e., in a range of 0.08-0.11 in a destroyed base rock unit, and hole drilling blasting is performed at a final loading dosage within a range where 2/3 of the length from the hole bottom is taken as a standard value and 7/10 is taken as the maximum value.

Description

【発明の詳細な説明】 a)産業上の利用9鼾 この発明は、岩盤を破壊するのに有効な安全最多装薬量
を迅速確実に決定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION a) Industrial Applications This invention relates to a method for quickly and reliably determining the safe maximum charge amount effective for destroying rock.

b)従来の技術 従来、発破の装薬量を決定する算出式としてハウザーの
公式、すなわち、 装薬量L (kg) =発破常数CX最小抵抗&IW”
が周知である。この公式は、円錐の体積を求める公式v
=’八X1Xr”Xhの一変形であって、前記r2とh
とをいずれもWに置き換えてみれば、前記ハウザーの公
式が実現する。
b) Conventional technology Conventionally, Hauser's formula was used as a calculation formula to determine the amount of charge for blasting: Charge amount L (kg) = Blasting constant CX Minimum resistance &IW"
is well known. This formula is the formula for calculating the volume of a cone v
= '8X1Xr'' A variation of
If we replace both with W, Hauser's formula will be realized.

C)発明が解決しようとする課題 このハウザーの公式は、火薬の体積な0と仮定し、装薬
位置も極小の一点として考える限りにおいては正確であ
る。
C) Problems to be Solved by the Invention This Hauser's formula is accurate as long as the volume of the gunpowder is assumed to be 0 and the position of the charge is also considered as one minimal point.

しかしながら実際の発破工事においては、装薬には所定
の長さと径とが存在し、とりわけ、近年、機械の大型化
に伴い、発破穿孔長が例えば22mにち達する場合があ
り、その長い穿孔長に対して装薬は長い棒状の状態で行
われる。
However, in actual blasting work, the charge has a predetermined length and diameter, and in recent years, as machines have become larger, the length of the blasting hole may reach, for example, 22 m. The charge, on the other hand, is carried out in the form of a long rod.

このように、ハウザーの公式は実際行われている棒状装
薬法1こ適しない。
In this way, Hauser's formula is not suitable for the rod-shaped charging method that is actually used.

穿孔発破作業で、ちっとも注意すべき唐、は、爆破に伴
なって生ずる飛石の及ぼす危険性の問題であり、装薬量
が過多の場合には作業Hを含めた周囲−帯が飛石の危険
にさらされる。しかしながら、飛石の危険ばかりが過大
に考慮されて装薬量が過少であると作業能率がはかどら
ず、安全ではあってち工事の完成が遅れることになる。
The most important thing to be careful about in drilling and blasting work is the risk of flying stones that occur with the blasting.If the amount of charge is excessive, the surrounding zone including work H may be exposed to the risk of flying stones. exposed to However, if too much consideration is given to the danger of flying stones and the amount of charge is too low, work efficiency will not be improved, and the completion of construction work will be delayed even if it is not safe.

そこで、作業の安全と能率の双方を両立させるために、
爆破に伴なって飛石が生してち、その飛石による実際の
被害が発生しない限界点となる安全最多装薬量を当該作
業現場において早急に探り出す手法が要求される。
Therefore, in order to achieve both work safety and efficiency,
Since flying stones are generated as a result of the explosion, a method is required to quickly find out the safest maximum amount of charge at the work site, which is the limit at which no actual damage is caused by the flying stones.

この発明の目的は、爆破に伴なって生ずる飛石による実
害が発生しない限界点となる最多袋3!量を迅速確実か
つ簡単容易に決定して能率の高い発破作業を遂行し得る
方〆去を提供することである。
The purpose of this invention is to reach the maximum number of bags of 3, which is the limit point at which actual damage from flying stones caused by explosions will not occur! It is an object of the present invention to provide a method for quickly, reliably, and simply determining the amount of blasting to carry out highly efficient blasting work.

d)課題を解決するための手段 この発明は、上記の目的を達成するために孔底からの長
さの1/2に相当する装薬量の破壊岩!1!に対する割
合、すなわち、破壊岩盤単位が0.08〜0.11の範
囲内にある穿孔長と径とを有する孔を穿刻して、その孔
底からの長さの2/3を標準値とし、7/10を最大値
とする範囲内の最終装薬量にて穿孔発破を行う点にある
d) Means for Solving the Problems In order to achieve the above-mentioned object, the present invention provides a method for crushing rock with a charge amount equivalent to 1/2 of the length from the bottom of the hole! 1! In other words, drill a hole with a hole length and diameter within the range of 0.08 to 0.11 for the fractured rock unit, and use 2/3 of the length from the bottom of the hole as the standard value. , 7/10 as the maximum value.

前記最終装薬量の破壊岩盤量に対する割合すなわち破壊
岩盤単位が0.25〜0.35の範囲内であることを条
件とする。
The condition is that the ratio of the final charge amount to the amount of broken rock, that is, the unit of broken rock, is within the range of 0.25 to 0.35.

e)作  用 第2図で示すように、例えば、試験発破を行なって、そ
の爆破の影響が地表にあられれる最少装薬ff1Lにお
ける初期込物長りを確認すると、大略、穿孔長ト)の1
/2であることが判明する。
e) Effect As shown in Figure 2, for example, if you conduct a test blast and check the initial charge length at the minimum charge ff1L at which the impact of the blast will be felt on the ground surface, you will find that the length of the hole is approximately 1
/2.

しかしながら、この最少装薬NILのみでは地表に亀裂
が生じる程度であって地表付近の岩盤の破壊が微弱過ぎ
、後処理に時間と手間がかかって作業の能率が上らない
、従って地表付近の岩盤に対してはまだ破壊を加える余
地が残っているちのと判断される。
However, with this minimum charge of NIL alone, cracks are created on the ground surface, and the destruction of the rock near the ground surface is too weak, and post-processing takes time and effort, which does not improve work efficiency. It is judged that there is still room for destruction.

そこで、第3図で示すように、前記最少装薬量りにおけ
る初期込物長りの1/3の長さを標!!値Xaとし21
5の長さを最大値xbとする補助装薬量Laを加えて、
前記破壊の未熟な地表付近に対しても爆破が生じるよう
にする。
Therefore, as shown in Figure 3, the length is set at 1/3 of the initial charge length at the minimum charge amount. ! The value Xa is 21
Adding the auxiliary charge amount La with the length of 5 as the maximum value xb,
The explosion is made to occur even near the ground surface where the destruction has not yet been completed.

前記標準値Xaは前記孔の底から1/2+1/6=4/
6=2/3の長さであり、また、前記最大値xbはI/
2+2/1o=7/10の長さであり、これらの最終装
薬量は破壊岩盤単位0 25〜0.35の範囲内にある
The standard value Xa is 1/2 + 1/6 = 4/ from the bottom of the hole.
6=2/3 length, and the maximum value xb is I/
The length is 2+2/1o=7/10, and their final charges are in the range of 0.25 to 0.35 fractured rock units.

ただし、最終装薬量が前記範囲内にあってち、穿孔長目
と孔径rとの対比関係が極端であっては初期の目的が達
成されず、下記の相関関係にあるものを基礎にした場合
、つまり、孔底からの長さの1/2に相当する装薬量の
破壊岩盤量に対する割合、すなわち、破壊岩盤単位(別
称、危険率又は発破係数)が0.08〜0.11の範囲
内にある穿孔長と径とを有する孔の場合にのみ、過不足
のない破壊が得られ、飛石による実害の発生に至らず、
安全と能率の双方が充足される。
However, if the final charge amount is within the above range and the contrast between the length of the hole and the hole diameter r is extreme, the initial objective will not be achieved. In other words, when the ratio of the charge amount corresponding to 1/2 of the length from the hole bottom to the amount of fractured rock, that is, the fractured rock unit (also known as risk factor or blasting coefficient) is 0.08 to 0.11. Only in the case of a hole with a drilling length and diameter within the range, just the right amount of destruction can be achieved, and actual damage from flying stones will not occur.
Both safety and efficiency are satisfied.

上記の条件を有する穿孔長Hと径rとからなる孔は次の
通りである。
A hole having a drilling length H and a diameter r that meets the above conditions is as follows.

穿孔長(Ham    孔径(r)問 3        25 4        35 5        40 6        50 7        60 8        70 9       70〜80 10        80〜90 穿孔長(lI)m 11 2 3 4 5 孔径(r・) 90〜1 100〜1 100〜1 110〜1 120〜1 mm  0 0 0 0 0 f)実施例 第1図において、穿孔径r(mm)、 穿孔長t−1fml 二装薬長(2fml+初期込物長D  1nlit[I
[!岩盤量V(m3)は、円錐の体積を求める公式から
、 破壊岩盤量V(ml) ” ’/s X x x破壊半径R2[m 21 x穿
孔長)1  fni=穿孔長ト1tm)Xti!壊半径
F(2tm”1最少装薬凰L(kg)は、円柱の体積を
求める公式から、 最少装薬量L(kg)=xx穿孔径の半径2×装薬長9
 (m)x装薬比重 このような詰元を有する試験穿孔発破の構成において5
穿孔長H(m)中におけるχ(m)点は最少装薬量fA
l (m)と初閉込物長D (m)との境界を示し、そ
のχ点まで装薬をして発破させると、地表G、Lが僅か
に浮き上がる程度の爆破力となり、それに要する火薬が
最少装薬量1.fkg)となる、そこで、そのときの初
期込物長D (m)を確認すると、例えばH=14m、
r=]40nunの孔において、最少装薬量R=7mの
装薬をして試験発破した場合に、地表GLに影響が生し
たとすれば、そのときの初期込物長D=7mとなり、前
項に記載したようにrliI記D = 7 mは、大略
、穿孔長Hの1/2である。
Drilling length (Ham) Hole diameter (r) Question 3 25 4 35 5 40 6 50 7 60 8 70 9 70~80 10 80~90 Drilling length (lI) m 11 2 3 4 5 Hole diameter (r・) 90~1 100~ 1 100~1 110~1 120~1 mm 0 0 0 0 0 f) Example In FIG. I
[! The amount of rock mass V (m3) is determined from the formula for calculating the volume of a cone: Volume of fractured rock mass V (ml) ''/s The radius of fracture F (2tm"1) The minimum charge L (kg) is calculated from the formula for calculating the volume of a cylinder: Minimum charge L (kg) = xx radius of hole diameter 2 x charge length 9
(m)
The point χ(m) in the hole length H(m) is the minimum charge amount fA
If the boundary between l (m) and the initial confined object length D (m) is shown, and the charge is charged up to the χ point and the explosion is performed, the explosive force will be such that the ground surface G and L will rise slightly, and the gunpowder required for that is the minimum charge amount 1. fkg), so when we check the initial filling length D (m) at that time, we find that, for example, H=14m,
If test blasting is carried out with a minimum charge amount R = 7 m in a hole of r = ]40nun, and if there is an effect on the ground surface GL, then the initial charge length D = 7 m, As described in the previous section, rliI D = 7 m is approximately 1/2 of the drilling length H.

しかしながら、1iii記条件における最少装薬量L(
kg)で爆破した場合に、岩盤の破壊状況を検討してみ
ると、第2図で示すように、地表GI、付近では僅かに
亀裂が生じた程度であって、地表付近の岩盤の破壊が微
弱過ぎ、この程度の破壊では後処理作業に手数と時間が
かかって非能率的である。従って、地表付近の岩盤に対
しては、まだ破壊を加える余地が残っている6のと判断
される。
However, the minimum charge amount L(
Examining the state of rock destruction in the case of blasting with It is too weak, and with this level of destruction, post-processing work is time-consuming and inefficient. Therefore, it is judged that there is still room for destruction of the rock near the ground surface6.

そこで、後処理に能率の良い作業を実現させるには、前
記初期込物長D (m)の部分の何割かに6装薬を追加
して発破すれば、地表G、  L付近の破砕、すなわち
岩盤の細分化が得られる。
Therefore, in order to achieve efficient post-processing work, if 6 charges are added to a certain percentage of the initial charge length D (m) and blasted, the crushing near the ground surface G and L can be achieved. Subdivision of the bedrock is obtained.

しかしながら、装薬の追加が過度になれば、今度は飛石
による実害が発生して危険となり作業その6のの遂行が
困難となる。
However, if an excessive amount of charge is added, actual damage from flying stones will occur, making it dangerous and difficult to carry out work No. 6.

そこで、本発明者は、最少装薬量りに補助装薬量Laを
加えた最多装薬量L+Laと、前記最少装薬量りにおけ
る破壊岩盤量■に補助装薬量L a 1.:おける破壊
岩盤量Vaを加えた最多破壊岩盤量V+Vaとの割合が
025〜0.35の範囲内であれば、飛石の実害が発生
せず安全な作業が遂行し得るとの大局的な見通しに基づ
いて、前記補助装薬量Laを増加する実験を試みた。そ
の結果、穿孔長Hの底から273の長さを標準値とし7
/10の長さを最大値とする範囲内の合計装薬量L+L
aであれば、上記の条件内であり、安全であることが確
認された。
Therefore, the present inventor calculated the maximum charge amount L+La, which is the minimum charge amount plus the auxiliary charge amount La, and the auxiliary charge amount L a 1. :If the ratio of the maximum amount of destroyed rock (V+Va), including the amount of destroyed rock (Va) in Based on this, an experiment was attempted to increase the auxiliary charge amount La. As a result, the standard value is 273 from the bottom of the drilling length H, and 7
Total charge amount L + L within the range whose maximum value is the length of /10
If it is a, it is within the above conditions and is confirmed to be safe.

次に、上記の関係を計算値により検討してみると、以下
に示すようになる。
Next, when the above relationship is examined using calculated values, the results are as shown below.

一例として、穿孔長I・”130m1mの場合において
、 穿孔長H=15m 初期込物長D=7.5m 最少装薬量12=7.5m(孔底からX点までの長さ) 破壊半径R=7.5m=D 火薬比重=0.83とすれば、 最少装薬11− (kg)=0.83XπX (r/2
×℃ =82.58kg 破壊岩盤1! V (m ’ ) = 1 / 3 T
tR2−1−1”843.75m” 危険率又は破壊岩盤単位L/V =82. 58kg/843. 75m”= 0 、 
0 98kg/m”  ・・=−=・・=・(1)更に
上記に加えて 残余穿孔長H/2=7.5mの1/3すなわち2.5m
 (Xa点)まで装薬量を増加したとすれば、 最終込物長Da=5.0m 補助装薬量2a=2.5m (X点からXa点よでの長
さ) 破壊半径Ra=5.0m=Da 火薬比重=083の条件下において、 補助i;!i薬量La=0.83XiX (r/2)X
、9a =27.53kg 破壊岩盤量Va= 1/3π−Ra ” −1−1/2
=187.5m3 危険率又はtti壊岩盤単位L a / V a=27
 53/187.5 = 0. 15kg/m’ ・・・・・・・−−(2)
前記(1)及び(2)を力]lえた全体における平均危
険率又は破壊岩盤単位L / V + L a / V
 a=0.098+0.15=0.25kg/m3とな
り、その数値か、−射的な破壊岩盤単位0.25〜0.
35の最低範囲内であるから、安全であることか立証さ
れる。
As an example, in the case of drilling length I 130m1m, drilling length H = 15m initial charge length D = 7.5m minimum charge amount 12 = 7.5m (length from the bottom of the hole to point X) fracture radius R =7.5m=D If gunpowder specific gravity=0.83, minimum charge 11- (kg)=0.83XπX (r/2
×℃ =82.58kg Destruction bedrock 1! V (m') = 1/3T
tR2-1-1"843.75m" Risk rate or unit of rock destruction L/V =82. 58kg/843. 75m”=0,
0 98kg/m” ・・=−=・・=・(1) In addition to the above, the remaining drilling length H/2 = 1/3 of 7.5m, or 2.5m
If the charge amount is increased to (point .0m=Da Under the condition of gunpowder specific gravity=083, auxiliary i;! i drug amount La=0.83XiX (r/2)X
, 9a = 27.53 kg Destruction rock volume Va = 1/3π-Ra ” -1-1/2
=187.5m3 Hazard rate or tti broken rock unit L a / V a = 27
53/187.5 = 0. 15kg/m' ・・・・・・・−−(2)
The average risk rate or unit of rock mass failure in the whole (1) and (2) above] L / V + L a / V
a = 0.098 + 0.15 = 0.25 kg/m3, and either that value or the -radial fracture unit of rock mass is 0.25 to 0.
Since it is within the minimum range of 35, it is proven that it is safe.

では、残余穿孔長H/2=7.5の215すなわち3m
(Xb点)まで装薬量を増加したとすれば、 最終込物長Da=4.5m 補助装薬量12a=3.0m (X点からXb点までの
長さ) 破壊半径Ra=4.5m=Da 火薬比重0.83の条件下において、 補助装薬fiLa=0.83X7(X (r/2)ff
a =33.01kg 破壊岩盤量V a = 1 / 3 x −Ra ” 
−)1 / 2=151.87m” 危険率又は破壊岩盤単位L a / V a=0.22
kg/m3 ・・・・・・・・・・・・・(3)前記(
1)及び(3)を加えた全体における平均危険率又は破
壊岩盤単位 L/V+La/Va=0.098+0.22= 0.3
18kg/m 3 となり、その数値が、−射的な破壊岩盤単位025〜0
35の範囲内であるから、安全である。
Then, the remaining drilling length H/2 = 7.5, 215, or 3 m.
Assuming that the charge amount is increased to (point Xb), final fill length Da = 4.5 m, auxiliary charge amount 12a = 3.0 m (length from point X to point Xb), radius of fracture Ra = 4. 5m=Da Under the condition of gunpowder specific gravity 0.83, auxiliary charge fiLa=0.83X7(X (r/2)ff
a = 33.01kg Destruction rock volume V a = 1/3 x -Ra”
-) 1/2=151.87m” Hazard rate or unit of destruction rock mass L a / V a = 0.22
kg/m3 ・・・・・・・・・・・・・・・(3) Above (
Average risk rate for the whole including 1) and (3) or failure unit of rock mass L/V+La/Va=0.098+0.22=0.3
18 kg/m 3 , and the numerical value is 025 to 0
Since it is within the range of 35, it is safe.

以上の実施例から判るように、例えば穿孔径r=130
mm、穿孔長1−1 = 15 mの場合に、孔底から
2/3すなわち10mの装薬量が安全最多標準値であり
、更に、孔底から7/10すなわちlo、5mの装薬量
が安全最多最大値であり、それ以上の装薬は飛石が生じ
て危険であり、安全な作業の進行が不可能であることが
理解される。
As can be seen from the above examples, for example, the hole diameter r = 130
mm, drilling length 1-1 = 15 m, the safest standard value is the amount of charge at 2/3, or 10 m, from the bottom of the hole, and the amount of charge at 7/10, or lo, 5 m from the bottom of the hole. It is understood that this is the safest maximum value, and that charging more than that is dangerous due to flying stones, and it is impossible to proceed with the work safely.

g)発明の効果 以上詳述したように、本発明は、装薬量の破壊岩盤量に
対する割合すなわち破壊岩盤単位(別称危険率又は破壊
係数)が経験上0.25〜035の範囲内であることを
根拠にして、その安全範囲内において装薬量をなるべく
多く増加させて作業能率の向上を図ることを狙いとした
結果、孔底からの長さの2/3を基11!値とし、7/
10の長さを最大値とする数値を量的に把握することに
成功したので、それらの値を基礎にし、かつ、前述した
所定の穿孔長と径とを有する孔を条件とすれば、作業現
場にて簡易迅速かつ確実に安全最多装薬量を決定し得る
ようになった。従って、飛石による実害の発生に至らな
い安全限界内において最多の装薬量を使って爆破を行な
うことができるので、作業の安全と能率の双方が達成さ
れるようになった。
g) Effects of the Invention As detailed above, in the present invention, the ratio of the amount of charge to the amount of destroyed rock, that is, the unit of destroyed rock (also known as risk rate or rupture coefficient) is within the range of 0.25 to 0.035 from experience. Based on this, we aimed to improve work efficiency by increasing the amount of charge as much as possible within the safe range. The value is 7/
Since we succeeded in quantitatively understanding the numerical values with the maximum length of It is now possible to easily, quickly and reliably determine the safest maximum charge amount on site. Therefore, since it is possible to carry out the blast using the maximum amount of charge within the safety limits that do not cause actual damage from flying stones, both safety and efficiency of the work can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による安全最多装薬量決定方式を示す
全体的説明図、 第2図は、第1図において最少装薬実記を穿孔長Hの1
/2に限定して発破した場合に想定される岩盤の破壊状
況を例示する説明図 第3図は、第1図において補助装薬量βaを付加する場
合における部分的説明図である。 1−((m)   穿孔長、 βfm)  ・・最少装薬量、 ffa(m)・・・補助装薬量、 ε+12 a[m :l ・ 安全最多装薬量、D(r
rt)・・・初期込物共、 1) a (m )  ・・R終込物長L(kg)  
・・最少装薬量、 La(kg)・・補助装薬量、 L十La(kg)・ ・安全最多装薬量(最終装薬!り
、 G、 L  ・・地表、 V(m3)  ・・最少装薬(1)Lにおける破壊岩盤
量、 R(m)  ・ 破壊半径:初期込物共D (rrt)
r(mm)  ・穿孔径、 X (m)  ・・最少装薬量12 (m)と初期込物
共D(m)との境界を示し、穿孔長ト1の1/2の位置
、 Xa (m)・・・安全最多製薬量標準値、(m) 安全最多製薬量最大値、 a (m  3 ) 補助装薬量Laにおける破壊 岩盤量。
FIG. 1 is an overall explanatory diagram showing the method for determining the safe maximum charge amount according to the present invention, and FIG.
FIG. 3 is an explanatory diagram illustrating the assumed state of rock destruction when blasting is limited to /2. FIG. 3 is a partial explanatory diagram when the auxiliary charge amount βa is added in FIG. 1. 1-((m) Drilling length, βfm) ... Minimum charge amount, ffa (m) ... Auxiliary charge amount, ε + 12 a[m:l ・ Maximum safe charge amount, D (r
rt)...Initial filling, 1) a (m)...R final filling length L (kg)
・・Minimum charge amount, La (kg)・・Supplementary charge amount, L×La (kg)・・・Safety maximum charge amount (final charge!, G, L・・Ground surface, V (m3)・・Minimum charge (1) Amount of fractured rock at L, R (m) ・ Fracture radius: initial charge D (rrt)
r (mm) ・Drilling diameter, m)...Standard value of safe maximum pharmaceutical amount, (m) Maximum value of safe maximum pharmaceutical amount, a (m3) Amount of broken rock at auxiliary charge amount La.

Claims (2)

【特許請求の範囲】[Claims] (1)孔底からの長さの1/2に相当する装薬量の破壊
岩盤量に対する割合すなわち、破壊岩盤単位が0.08
〜0.11の範囲内にある穿孔長と径とを有する孔を穿
刻して、その孔底からの長さの2/3を標準値とし7/
10を最大値とする範囲内の最終装薬量にて穿孔発破を
行うことを特徴とする穿孔発破における安全最多装薬量
決定方法。
(1) The ratio of the amount of charge equivalent to 1/2 of the length from the bottom of the hole to the amount of fractured rock, that is, the unit of fractured rock is 0.08
A hole with a hole length and diameter within the range of ~0.11 is drilled, and 2/3 of the length from the bottom of the hole is set as the standard value.7/
1. A method for determining a safe maximum charge amount in perforation blasting, characterized by performing perforation blasting with a final charge amount within a range having a maximum value of 10.
(2)前記最終装薬量の破壊岩盤量に対する割合すなわ
ち破壊岩盤単位(別称、危険率又は発破係数)が0.2
5〜0.35の範囲内であることを条件とする請求項1
記載の穿孔発破における安全最多装薬量決定方法。
(2) The ratio of the final charge amount to the amount of rock destroyed, that is, the unit of rock destroyed (also known as risk rate or blasting coefficient) is 0.2
Claim 1 provided that it is within the range of 5 to 0.35.
The method for determining the safe maximum charge amount in perforation blasting as described.
JP01823490A 1990-01-29 1990-01-29 A method for determining the maximum safe charge in perforation blasting. Expired - Fee Related JP3258656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01823490A JP3258656B2 (en) 1990-01-29 1990-01-29 A method for determining the maximum safe charge in perforation blasting.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01823490A JP3258656B2 (en) 1990-01-29 1990-01-29 A method for determining the maximum safe charge in perforation blasting.

Publications (2)

Publication Number Publication Date
JPH03221800A true JPH03221800A (en) 1991-09-30
JP3258656B2 JP3258656B2 (en) 2002-02-18

Family

ID=11965984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01823490A Expired - Fee Related JP3258656B2 (en) 1990-01-29 1990-01-29 A method for determining the maximum safe charge in perforation blasting.

Country Status (1)

Country Link
JP (1) JP3258656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113338933A (en) * 2021-06-30 2021-09-03 山西海源阳光科技有限公司 Mining method for extremely-close coal seam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113338933A (en) * 2021-06-30 2021-09-03 山西海源阳光科技有限公司 Mining method for extremely-close coal seam

Also Published As

Publication number Publication date
JP3258656B2 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
Ouchterlony et al. A review of the development of better prediction equations for blast fragmentation
Persson The relationship between strain energy, rock damage, fragmentation, and throw in rock blasting
CN110032823B (en) Method for evaluating explosive damage area of explosive-invading warhead
Cevizci A newly developed plaster stemming method for blasting
Kuzu et al. The problem of human response to blast induced vibrations in tunnel construction and mitigation of vibration effects using cautious blasting in half-face blasting rounds
CN103822555A (en) Blasting method in reinforcing and reconstructing construction of hydraulic engineering
Cevizci A new stemming application for blasting: a case study
JPH03221800A (en) Determination of safety most loading dosage in hole drilling blasting
Stagg Influence of blast delay time on rock fragmentation: one-tenth scale tests
Ouchterlony et al. On the branching-merging mechanism during dynamic crack growth as a major source of fines in rock blasting
Mishra et al. Analysis of blasting related accidents with emphasis on flyrock and its mitigation in surface mines
JP2881179B2 (en) A method for determining the safest maximum charge in perforation blasting.
Bhandari Studies in rock fragmentation in blasting
Gupta Emerging explosives and initiation devices for increased safety, reliability, and performance for excavation in weak rocks, mining and close to surface structures
JPH09113200A (en) Setting method for explosion by rod-form charge
Yi et al. Discrete element modelling of blast fragmentation of a mortar cylinder
Singh Mechanism of tracer blasting
Niminye et al. Optimizing Presplit Blasting for Environmental Control and Pit Wall Stability
Bhatawdekar et al. An Overview of Blasting Operations and Possible Techniques to Solve Environmental Issues of Blasting
KR102350514B1 (en) Method for Blasting Rock Utilizing Air Deck and Decoupling
JP2662691B2 (en) Numerical relation determination method of each element necessary for blasting work by rod-shaped charging method
HAMIDUN ASSESSMENT OF BLASTABILITY INDEX IN MASSIVE LIMESTONE FROM RAWANG QUARRY, SELANGOR
JPH11101600A (en) Safety powder charge amount calculating system for bar-like powder charge
Hemalal et al. Use of dynamites, water-gels and emulsion explosives in Sri Lankan quarrying/mining practice
Van Pham Applying single hole test blast for determining optimum burden in low bench blasting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees