JPH0634097B2 - Solidifying agent for radioactive waste - Google Patents

Solidifying agent for radioactive waste

Info

Publication number
JPH0634097B2
JPH0634097B2 JP60056162A JP5616285A JPH0634097B2 JP H0634097 B2 JPH0634097 B2 JP H0634097B2 JP 60056162 A JP60056162 A JP 60056162A JP 5616285 A JP5616285 A JP 5616285A JP H0634097 B2 JPH0634097 B2 JP H0634097B2
Authority
JP
Japan
Prior art keywords
weight
parts
solidifying agent
cement
ultrafine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60056162A
Other languages
Japanese (ja)
Other versions
JPS61215999A (en
Inventor
悦郎 坂井
幸夫 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP60056162A priority Critical patent/JPH0634097B2/en
Publication of JPS61215999A publication Critical patent/JPS61215999A/en
Publication of JPH0634097B2 publication Critical patent/JPH0634097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射性廃棄物の固化剤、詳しくはセメント質物
質、超微粉、高性能減水剤及び水を主成分とし、処理能
力が大で、永久貯蔵も可能で放射性物質の溶出性が低
い、安全な放射性廃棄物の固化剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is based on a solidifying agent for radioactive waste, specifically, a cementitious substance, ultrafine powder, a high-performance water reducing agent and water, and has a large treatment capacity. The present invention relates to a safe solidifying agent for radioactive waste, which can be stored permanently and has low elution of radioactive substances.

〔従来技術〕[Prior art]

原子力発電所、核燃料再処理工場等の原子力施設から発
生する放射性廃棄物としては、濃縮廃液、使用済みイオ
ン交換樹脂、フイルタースラツジ、焼却灰、雑固体、各
種スラツジ及び原子力発電所の解体に伴い廃出されるコ
ンクリート廃材などの、いわゆる低、中レベル放射性廃
棄物をはじめ高レベル放射性廃棄物があげられる。
As radioactive waste generated from nuclear facilities such as nuclear power plants and nuclear fuel reprocessing plants, concentrated waste liquid, used ion exchange resin, filter sludge, incineration ash, miscellaneous solids, various sludges and dismantling of nuclear power plants Examples include so-called low- and medium-level radioactive waste, such as concrete waste that is discharged, and high-level radioactive waste.

これら放射性廃棄物、特に低、中レベル放射性廃棄物の
固化処理法としては、セメント固化法、ビチユーメン固
化法、プラスチツク固化法が実用されている。
As a method for solidifying these radioactive wastes, particularly low- and medium-level radioactive wastes, a cement solidification method, a bitumen solidification method, and a plastic solidification method are in practical use.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、セメント固化法は、耐久性にはすぐれて
いるものの、処理能力が小さいことや、浸出性が比較的
大きいこと等の欠点があつた。また、ビチユーメン固化
法やプラスチツク固化法は、処理能力は大きいが、処理
方法が複雑であることや耐候性等の面からの安全性に問
題があることなどの欠点があつた。
However, although the cement solidification method has excellent durability, it has drawbacks such as low processing capacity and relatively high leachability. Further, although the bio-solidification method and the plastic solidification method have a large processing capacity, they have drawbacks such as a complicated processing method and a safety problem in terms of weather resistance.

以上のことから、処理能力が大きく、かつ浸出性が低
く、耐候性の優れた放射性廃棄物の処理方法が切望され
ている。
From the above, there is a strong demand for a method of treating radioactive waste that has a large treatment capacity, a low leachability, and an excellent weather resistance.

本発明者らは、上記欠点を解消すべく、種々検討を行つ
た結果、特定の成分を主成分とする固化剤を用いること
により、上記欠点を改良することを見い出し、本発明を
完成するに到つた。
As a result of various studies to eliminate the above-mentioned drawbacks, the inventors have found that the above-mentioned drawbacks are improved by using a solidifying agent containing a specific component as a main component, and the present invention is completed. Arrived.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、セメント質物質、平均粒径がセメント
質物質より少なくとも1桁細かい超微粉、高性能減水
剤、及び水を主成分として、セメント質物質と超微粉の
合計100重量部に対して、超微粉が5〜40重量部、高性
能減水剤が10重量部以下、水が12.5〜30重量部であるこ
とを特徴とする放射性廃棄物の固化剤である。
That is, the present invention is based on a cementitious substance, an ultrafine powder having an average particle size smaller than that of the cementitious substance by at least one order of magnitude, a high-performance water reducing agent, and water as a main component, based on a total of 100 parts by weight of the cementitious substance and the ultrafine powder. The solidifying agent for radioactive waste is characterized in that ultrafine powder is 5 to 40 parts by weight, high-performance water reducing agent is 10 parts by weight or less, and water is 12.5 to 30 parts by weight.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明でいうセメント質物質とは、普通、早強、超早
強、白色もしくは耐硫酸塩等各種ポルトランドセメン
ト、さらには高炉スラグ、フヨイアツシユ等混和材を混
合した混合セメント、及び混合材及び/又は混合される
セメントを粉砕した混合セメントなどが一般に用いられ
る。
The cementitious material referred to in the present invention, normal, early strength, ultra early strength, various portland cement such as white or sulfate resistant, further mixed cement mixed admixtures such as blast furnace slag, fuyuatsushiyu, and mixed material and / or A mixed cement obtained by crushing mixed cement is generally used.

また、さらに膨張セメントを用いて収縮補償したり、急
硬セメントを用いて短時間に所要強度を発現させたり、
石膏系の高強度混和材を併用することもできる。
In addition, expansion cement is used to compensate for shrinkage, and rapid hardening cement is used to develop the required strength in a short time.
It is also possible to use a gypsum-based high-strength admixture together.

膨張セメントの膨張成分としては、エトリンガイト系の
もの例えば電気化学工業(株)製「CSA#20」や焼成CaO
が好ましく、焼成CaO中でも1100〜1300℃で焼成され、
結晶径平均が10μ以下のものが特に好ましい。
As the expansive component of the expansive cement, ettringite-based ones such as "CSA # 20" manufactured by Denki Kagaku Kogyo Co., Ltd. and calcined CaO
Is preferable, even in calcined CaO is calcined at 1100 to 1300 ° C,
Those having an average crystal diameter of 10 μm or less are particularly preferable.

急硬セメントは、各種のカルシウケムアルミネート単独
又はそれと硫酸カルシウムとの混合物等のように、カル
シウムアルミネート系の急硬成分を含んだものであつ
て、それには、電気化学工業(株)製商品名「デンカE
S」を配合したセメントや、小野田セメント(株)製商
品名「ジエツトセメント」などがある。
The quick-hardening cement contains various calcium-aluminate-based quick-hardening components, such as various kinds of calcium sulphate aluminate alone or a mixture of calcium sulfate and calcium sulfate, manufactured by Denki Kagaku Kogyo Co., Ltd. Product name "Denka E
Examples include cement mixed with "S" and the product name "Jet Cement" manufactured by Onoda Cement Co., Ltd.

また、高強度混和材としては石膏系のものであり、電気
化学工業(株)製「デンカΣ−1000」、日本セメント
(株)製「アサノスーパーミツクス」、大阪セメント
(株)製「ノンクレーブ」等があげられる。
The high-strength admixture is a gypsum-based admixture, which is manufactured by Denki Kagaku Kogyo Co., Ltd. “Denka Σ-1000”, Nippon Cement Co., Ltd. “Asano Super Mix”, Osaka Cement Co., Ltd. “Nonclave”. , Etc.

本発明で使用する超微粉とは、平均粒径が前述のセメン
ト質物質より少なくとも1桁低いものであり、特に平均
粒径が2桁低いものが混練物の流動特性の面から好まし
い。具体的には、シリコン、含シリコン合金ならびにジ
ルコニアを製造する際に副生するシリカダスト(シリカ
ヒユーム)、及びシリカ質ダストが特に最適であり、そ
の他に、炭酸カルシウム、シルカゲル、オパール質硅
石、フライアツシユ、スラグ、酸化チタン、酸化アルミ
ニウムなどの超微粉も使用できる。特に、オパール質硅
石、フライアツシユ、スラグを分級器つきジエツトミル
等により粉砕した超微粉の使用は硬化収縮を改善すると
いう面から有効である。
The ultrafine powder used in the present invention has an average particle size lower than that of the above-mentioned cementitious substance by at least one digit, and in particular, an average particle size lower by two digits is preferable from the viewpoint of the flow characteristics of the kneaded product. Specifically, silicon, a silicon-containing alloy and silica dust by-produced in the production of zirconia (silica fume), and siliceous dust are particularly suitable, in addition, calcium carbonate, silk gel, opalaceous silica, fly ashes, Ultrafine powder such as slag, titanium oxide, and aluminum oxide can also be used. In particular, the use of ultrafine powder obtained by crushing opalaceous silica, fly ash, and slag with a jet mill equipped with a classifier is effective in improving curing shrinkage.

超微粉の使用量は、セメント質物質と超微粉の合計100
重量部に対して、5〜40重量部であり、10〜35重量部が
好ましい。5重量部未満では高強度(堅牢性)を得るこ
とが困難であり、また、40重量部を越えると混練物の流
動性が著しく低下し、成形することが困難となり、か
つ、強度発現も不充分となる。
The total amount of ultrafine powder used is 100 for cementitious substances and ultrafine powder.
It is 5 to 40 parts by weight, preferably 10 to 35 parts by weight, based on parts by weight. If it is less than 5 parts by weight, it is difficult to obtain high strength (fastness), and if it exceeds 40 parts by weight, the fluidity of the kneaded product is remarkably reduced, making it difficult to mold it, and the strength is not sufficiently expressed. Will be enough.

本発明で使用する高性能減水剤(以下減水剤という)と
は、セメントに多量添加しても凝結の過遅延や過度の空
気連行を伴なわない分散能力の大きな界面活性剤であつ
て、ナフタリンスルホン酸ホルムアルデヒド縮合物の
塩、メラミンスルホン酸ホルムアルデヒド縮合物の塩、
高分子量リグニンスルホン酸塩、ポリカルボン酸塩など
を主成分とするものがあげられる。減水剤は、混練物を
低水比で得るために必要なものであり、従来の使用量
は、セメント質物質に対し固形分として0.3〜1重量%
が使用されているが、本発明においては、それよりも多
量に添加することが好ましい。具体的には、セメント質
物質と超微粉との混合物100重量部に対し固形分として1
0重量部程度まで使用され、それよりも多量に添加する
と硬化反応にかえつて悪影響を与える。特に好ましい添
加量は1〜5重量部である。このような減水剤の使用量
において、超微粉と組み合わせることにより、水セメン
ト質物質と超微粉比が25%以下でも、通常の方法により
成形可能な流動性のある混練物を得ることができる。
The high-performance water-reducing agent (hereinafter referred to as water-reducing agent) used in the present invention is a surfactant having a large dispersibility that does not cause excessive delay of setting or excessive air entrainment even when added in a large amount to cement. Sulfonic acid formaldehyde condensate salt, melamine sulfonic acid formaldehyde condensate salt,
Examples thereof include those having a high molecular weight lignin sulfonate, a polycarboxylic acid salt, etc. as a main component. The water reducing agent is necessary for obtaining a kneaded product at a low water ratio, and the conventional amount used is 0.3 to 1% by weight as solid content with respect to the cementitious substance.
However, in the present invention, it is preferable to add a larger amount than that. Specifically, the solid content is 1% with respect to 100 parts by weight of the mixture of the cementitious substance and the ultrafine powder.
It is used up to about 0 parts by weight, and if it is added in a larger amount, it adversely affects the curing reaction. A particularly preferred amount of addition is 1 to 5 parts by weight. When the water reducing agent is used in such an amount, it is possible to obtain a flowable kneaded product that can be molded by an ordinary method even when the ratio of the water cementitious substance to the ultrafine powder is 25% or less.

本発明で混合物を調整する際に使用する水は成形上必要
なものであるが、高強度硬化体を得るためにはできるだ
け少量にするのが良く、セメント質物質と超微粉との混
合物100重量部に対し12.5〜30重量部を用いるものであ
り、15〜28重量部が好ましい。水量が30重量部より多い
と高強度硬化体を得ることが困難であり、12.5重量部よ
り少ないと通常の流し込み等の成形が困難となる。な
お、圧密成形等においては、これに前記されるものでは
なく12.5重量部より少ない場合においても成形が可能と
なる。
The water used in adjusting the mixture in the present invention is necessary for molding, but it is better to make it as small as possible in order to obtain a high-strength cured body, 100 weight of the mixture of cementitious substance and ultrafine powder. 12.5 to 30 parts by weight is used per part, and 15 to 28 parts by weight is preferable. If the amount of water is more than 30 parts by weight, it is difficult to obtain a high-strength cured product, and if it is less than 12.5 parts by weight, ordinary molding such as casting becomes difficult. In the case of compaction molding and the like, molding is possible even when the amount is less than 12.5 parts by weight, which is not described above.

本発明に係る固化剤を用いて放射性廃棄物(以下廃棄物
という)を処理するには、従来のセメント固化法が適用
できる。即ち、廃棄物をドラムやコンクリート製容器等
の処分容器内で練り混ぜる方法、あらかじめ練り混ぜた
ものを処分容器に充填する方法、処分容器内に廃棄物を
予め詰めておき、その後その空隙に固化剤を充填させる
方法、又逆に固化剤を予め処分容器内に詰め、そこを減
圧するか、廃棄物を加圧するかして処分容器内へ注入す
る方法などが適用される。この際、固化剤の添加量は廃
棄物が固体であるか、含水状態であるかなどにより大幅
に異なるが、廃棄物100重量部に対し、10〜500重量部程
度が一般的である。処理能力を大きくするという面から
は、固化剤が少ない程好ましいが、10重量部以下では固
化することは難しく、放射性物質の溶出を抑制する効果
も乏しい。
To treat radioactive waste (hereinafter referred to as waste) using the solidifying agent according to the present invention, a conventional cement solidification method can be applied. That is, the method of kneading the waste in a disposal container such as a drum or a concrete container, the method of filling the kneaded mixture in the disposal container in advance, the waste being packed in the disposal container in advance, and then solidifying in the void A method of filling the agent, or conversely, a method of filling the solidifying agent in the disposal container in advance and depressurizing it or pressurizing the waste material and injecting it into the disposal container is applied. At this time, the amount of the solidifying agent to be added largely varies depending on whether the waste is solid or contains water, but is generally about 10 to 500 parts by weight with respect to 100 parts by weight of the waste. From the viewpoint of increasing the processing capacity, the less the solidifying agent is, the more preferable. However, if it is 10 parts by weight or less, it is difficult to solidify, and the effect of suppressing the elution of radioactive substances is poor.

〔実施例〕 以下実施例によりさらに詳しく説明する。[Examples] The present invention will be described in more detail below with reference to Examples.

実施例1 表−1NO.2に示す配合に0.2μCi36/cm3となる
よう放射性同位体を練り混ぜ、φ5×5cmの供試体を作
製し、密閉容器中で養生を行い、材令3日後、0.1Molの
NaC溶液中でのリーチングテストを実施し、浸漬日
数と溶出量の関係より有効拡散係数Deを求めた。さら
に、表−1NO.4に示す配合で厚さ1cmの薄膜を作製
し、それを隔てて一方に134Cs+を含む10-4MolのCsC
を入れ、134Cs+の拡散係数Dを求めた。結果を表−2
に示す。
Example 1 A radioisotope was kneaded into the formulation shown in Table 1 No. 2 to give 0.2 μCi 36 C / cm 3 to prepare a specimen of φ5 × 5 cm, which was then cured in a closed container. After 3 days, a leaching test was conducted in a 0.1 Mol NaC solution, and the effective diffusion coefficient De was determined from the relationship between the number of immersion days and the amount of elution. Furthermore, a thin film having a thickness of 1 cm was prepared according to the composition shown in Table-1 NO.4, and 10 -4 Mol of CsC containing 134 Cs + was included on one side of the thin film.
Was added to obtain a diffusion coefficient D of 134 Cs + . The results are shown in Table-2.
Shown in.

〈使用材料〉 セメント:電気化学工業(株)製、普通ポルトランドセ
メント 超微粉:日本重化学工業(株)製、シリカヒユーム 減水剤:第一工業製薬(株)製、「セルフロー110P」 比較例1 配号NO.1及びそれに配合NO.3を用いたこと以外は実施
例1と同様に行つた。結果を表−2に示す。
<Materials used> Cement: Denki Kagaku Kogyo Co., Ltd., ordinary Portland cement Ultrafine powder: Nippon Heavy Chemical Co., Ltd., Silica Hyme Water reducing agent: Daiichi Kogyo Seiyaku Co., Ltd., “Cellflow 110P” Comparative Example 1 The same procedure as in Example 1 was carried out except that No. 1 and compound No. 3 were used. The results are shown in Table-2.

実施例2 沸騰水型原子炉から排出されるイオン交換樹脂再生廃
液、フイルタースラツジ、使用済イオン交換樹脂などか
らなる廃棄物を蒸発濃縮し、脱水した後サンプリング
し、表−3に示す配合からなる固化剤を用いて処理し
た。尚、廃棄物の含水率は80%であり、この廃棄物100
重量部に対して固化剤は200重量部とした。その際の材
令3日における圧縮強度及び水中における浸出率を測定
し表−3に示す。
Example 2 Waste consisting of ion-exchange resin regeneration waste liquid, filter sludge, used ion-exchange resin, etc. discharged from a boiling water reactor was evaporated and concentrated, dehydrated and sampled. Was treated with the following solidifying agent. The water content of the waste is 80%.
The solidifying agent was 200 parts by weight with respect to parts by weight. The compressive strength and leaching rate in water at 3 days of age were measured and shown in Table-3.

比較例2 実験NO.5の配合を用いたこと以外は実施例2と同様に
行つた。結果を表−3に示す。
Comparative Example 2 The procedure of Example 2 was repeated, except that the composition of Experiment No. 5 was used. The results are shown in Table-3.

実施例3 原子力発電所内建屋の解体に伴い、発生するコンクリー
ト廃材を、予めドラム管内に詰め、実施例2の実験NO.
6の配合を用いた固化剤を注入し、φ15×30cmの供試体
を作製し、材令28日の圧縮強度を求めたところ、1,077k
gf/cm2であつた。比較のため、実験NO.5の配合を用い
た固化剤を使用し、同様に試験したところ、圧縮強度は
586kgf/cm2しかならず、しかも、コンクリート廃材の下
面にブリージング水による空隙が顕著にあらわれた。
Example 3 Concrete waste materials generated by the dismantling of a building in a nuclear power plant were packed in a drum pipe in advance, and the experimental NO.
A solidifying agent using the composition of 6 was injected to prepare a test piece of φ15 × 30 cm, and the compressive strength on the 28th day was calculated to be 1,077k.
It was gf / cm 2 . For comparison, a compressive strength was obtained when the same test was performed using a solidifying agent using the composition of Experiment No. 5.
Not only 586 kgf / cm 2, but also voids due to breathing water appeared remarkably on the lower surface of the concrete waste material.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明の固化剤を用いる固化法は、従来
のセメント固化法より、処理能力が大きく、ビチユーメ
ン固化法やプラスチツク固化法に比して、化学抵抗性、
耐久性にすぐれ、しかも処理方法が簡単であり、耐熱性
にすぐれ、又、圧縮強度が大きく運搬中にも安全であ
り、廃棄物の貯蔵のみならず、永久貯蔵をも可能とする
処理方法である。
As described above, the solidification method using the solidifying agent of the present invention has a larger processing capacity than the conventional cement solidification method, and has a chemical resistance higher than those of the vitamin solidification method and the plastic solidification method.
It has excellent durability, simple treatment method, excellent heat resistance, large compressive strength and is safe during transportation. It is a treatment method that enables not only storage of waste but also permanent storage. is there.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セメント質物質、平均粒径がセメント質物
質より少なくとも1桁細かい超微粉、高性能減水剤、及
び水を主成分とし、セメント質物質と超微粉の合計100
重量部に対して、超微粉が5〜40重量部、高性能減水剤
が10重量部以下、水が12.5〜30重量部であることを特徴
とする放射性廃棄物の固化剤。
1. A cementitious substance, an ultrafine powder having an average particle size at least one digit smaller than that of the cementitious substance, a high-performance water reducing agent, and water as main components, and the total amount of the cementitious substance and the ultrafine powder is 100.
A solidifying agent for radioactive waste, characterized in that 5 to 40 parts by weight of ultrafine powder, 10 parts by weight or less of a high-performance water reducing agent, and 12.5 to 30 parts by weight of water are used with respect to parts by weight.
JP60056162A 1985-03-22 1985-03-22 Solidifying agent for radioactive waste Expired - Lifetime JPH0634097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056162A JPH0634097B2 (en) 1985-03-22 1985-03-22 Solidifying agent for radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056162A JPH0634097B2 (en) 1985-03-22 1985-03-22 Solidifying agent for radioactive waste

Publications (2)

Publication Number Publication Date
JPS61215999A JPS61215999A (en) 1986-09-25
JPH0634097B2 true JPH0634097B2 (en) 1994-05-02

Family

ID=13019395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056162A Expired - Lifetime JPH0634097B2 (en) 1985-03-22 1985-03-22 Solidifying agent for radioactive waste

Country Status (1)

Country Link
JP (1) JPH0634097B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727074B2 (en) * 1986-05-16 1995-03-29 株式会社東芝 Method for solidifying radioactive waste
JPH0727075B2 (en) * 1986-05-16 1995-03-29 株式会社東芝 Method for solidifying radioactive waste
JPH07104438B2 (en) * 1986-12-29 1995-11-13 株式会社東芝 Method for solidifying radioactive waste
JP2501576B2 (en) * 1987-02-23 1996-05-29 電気化学工業株式会社 Solidifying agent for radioactive waste
JPH0760198B2 (en) * 1987-03-13 1995-06-28 株式会社日立製作所 Method for solidifying radioactive waste
US5481061A (en) * 1987-03-13 1996-01-02 Hitachi, Ltd. Method for solidifying radioactive waste
JPS63243798A (en) * 1987-03-31 1988-10-11 株式会社東芝 Solidifying processing method of radioactive waste
JP2521697B2 (en) * 1987-03-31 1996-08-07 株式会社東芝 Method for solidifying radioactive waste
JP2513690B2 (en) * 1987-05-22 1996-07-03 電気化学工業株式会社 Solidifying agent for radioactive waste
JP2781566B2 (en) * 1988-05-02 1998-07-30 株式会社日立製作所 Cement solidification method and solidified body of radioactive waste
US5732363A (en) * 1994-10-27 1998-03-24 Jgc Corporation Solidifying material for radioactive wastes, process for solidifying radioactive wastes and solidified product
JP4730976B2 (en) 2007-03-16 2011-07-20 電気化学工業株式会社 Low activation hydraulic composition, low activation cement, and production method thereof
JP5923362B2 (en) * 2012-03-29 2016-05-24 太平洋マテリアル株式会社 Treatment method for radioactive contaminants
JP5909132B2 (en) * 2012-03-29 2016-04-26 太平洋マテリアル株式会社 Treatment method for radioactive contaminants
JP5930797B2 (en) * 2012-03-29 2016-06-08 太平洋マテリアル株式会社 Radioactive contaminant treatment agent
JP6920830B2 (en) * 2017-02-24 2021-08-18 鹿島建設株式会社 Treatment method for filling mortar and water-absorbent waste

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980000959A1 (en) * 1978-11-03 1980-05-15 Allborg Portland Cement Shaped article and composite material and method for producing same
JPS5630697A (en) * 1979-08-22 1981-03-27 Mitsubishi Heavy Ind Ltd Method and device for filling and sealing container for radioactive liquid waste
JPS58132698A (en) * 1982-02-02 1983-08-08 電気化学工業株式会社 Method of processing radioactive waste

Also Published As

Publication number Publication date
JPS61215999A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
JPH0634097B2 (en) Solidifying agent for radioactive waste
JP2513690B2 (en) Solidifying agent for radioactive waste
KR910005930B1 (en) Encapsulation of boric acid slurries
EP0644555B1 (en) Preparation of inorganic hardenable slurry and method for solidifying wastes with the same
CN111056789B (en) Method for solidifying radioactive waste residues
JPS58195200A (en) Method of improving reservation of radioactive nuclide at solidifying radioactive waste
TW459250B (en) Co-solidification of low level radioactive wet wastes of BWR nuclear power plants
JPS61245095A (en) Waste treating vessel
JPH01223398A (en) Radioactive waste hardener
EP1137014B1 (en) Co-solidification of low-level radioactive wet wastes produced from BWR nuclear power plants
JP2501576B2 (en) Solidifying agent for radioactive waste
JP5666328B2 (en) Solidification method for radioactive waste
JPS6132000A (en) Method of solidifying and treating incinerating ash
JPH073475B2 (en) Method for solidifying radioactive waste
JPH0611601B2 (en) Waste treatment container
JP3164131B2 (en) Aggregate used in radioactive waste treatment structures
JPS63228099A (en) Solidifying processing method of radioactive waste
CN114890752A (en) Radioactive incineration ash cement solidified body and preparation method thereof
JPH10197691A (en) Solidifying material for radioactive waste liquid and method for solidifying-processing radioactive waste liquid
JPH06331794A (en) Aggregate for cementing radioactive waste and production thereof
JPH0646235B2 (en) Solidification material for radioactive waste
JPH08285995A (en) Method for solidification process of radioactive waste
KR0130743B1 (en) Preparation of inorganic hardenable slurry and method for solidifying wastes with the same
Milestone et al. Reactions in cemented nuclear waste forms–the need for a toolbox of different cement types
KR20220052488A (en) Method for manufacturing sollidification form using radioactive waste concrete based on usage of cement solidification agent