JPS63228099A - Solidifying processing method of radioactive waste - Google Patents

Solidifying processing method of radioactive waste

Info

Publication number
JPS63228099A
JPS63228099A JP6309387A JP6309387A JPS63228099A JP S63228099 A JPS63228099 A JP S63228099A JP 6309387 A JP6309387 A JP 6309387A JP 6309387 A JP6309387 A JP 6309387A JP S63228099 A JPS63228099 A JP S63228099A
Authority
JP
Japan
Prior art keywords
cement
water
parts
weight
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6309387A
Other languages
Japanese (ja)
Inventor
深尾 晃
藤田 宥之
孝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP6309387A priority Critical patent/JPS63228099A/en
Publication of JPS63228099A publication Critical patent/JPS63228099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、放射性廃棄物の固化処理方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for solidifying radioactive waste.

(従来の技術) 従来、原子力発電プラントあるいは、そこから派生する
使用済核燃料の再処理プラント、あるいはまた放射性核
種を取扱う工場、研究機関から派生する所謂放射性廃棄
物の処理に際しては、一般的には可能な限りWJ K”
+、圧縮、切削あるいは抽出などの処置を加えて減容化
の後、放射性を帯びる物質の不動態化を目的に固化材料
としてセメント、アスファルト、プラスチック、特開昭
56−14196号公報、特開昭60−104299号
公報等) (発明が解決しようとする問題点) 従来のセメントによる固化処理において、以下のような
ことが問題として挙げられる。
(Prior Art) Conventionally, in the treatment of so-called radioactive waste derived from nuclear power plants, spent nuclear fuel reprocessing plants derived therefrom, factories that handle radionuclides, and research institutions, WJK as much as possible
+, Cement, asphalt, plastic as a solidifying material for the purpose of passivating radioactive substances after volume reduction by compression, cutting, extraction, etc., JP-A-56-14196, JP-A-56-14196; Publication No. 60-104299, etc.) (Problems to be Solved by the Invention) In the conventional solidification treatment using cement, the following problems can be cited.

セメント固化処理の第一の目的は放射性物質の不動態化
である。すなわち、固化体の処理処分に際して、地下水
、雨水など外部の水と接触した時に固化体内部からの放
射性物質浸出速度が小さい程、目的に適合する。セメン
ト固化体からの放射性核種の浸出率は10−1〜1O−
4VC!”2・day  であり比較的大きい。−万、
アスファルトあるいはプラスチック固化体からの浸出率
は10−3〜10−6沖2・dayである。 セメント
はその作業性のために水和に必要な量以上に必要な水を
用いて固化させるから、内部に多(孔をもっている。さ
らに処理中にはいる空隙、ブリージングによる水の流動
のあとに残る水みちをもりている。これら各種の毛管水
陸、空隙および水みちなどが透水に著しい影響を及ぼす
と考えられており、放射性核種もこのような水の動きに
伴ない浸出すると考えられる。セメント固化体からの放
射性核種の浸出をより一層小さいものにするにはこれら
空隙の存在を極少化することが対策の一つである。本発
明によれば同じセメント系固化体であるにもかかわらず
従来のセメント固化体に比較して放射性核枦の浸出量が
改善された固化体が得られるという予知されなかった効
果がもたらされた。その理由は現在のところ明確ではな
いが、本発明によれば上記の如き固化体中の空隙が効果
的に減少したことによるものと考えらねる。
The primary purpose of cement solidification treatment is to passivate radioactive materials. That is, when processing and disposing of a solidified body, the lower the rate of radioactive material leaching from the inside of the solidified body when it comes into contact with external water such as groundwater or rainwater, the more suitable it is for the purpose. The leaching rate of radionuclides from solidified cement is 10-1 to 1O-
4VC! ``2 days and relatively large.-10,000.
The leaching rate from asphalt or solidified plastic is 10-3 to 10-6 2 days. Because cement is solidified using more water than is required for hydration due to its workability, it has many internal pores. It is thought that these various capillary amphibious land, voids, and water channels have a significant effect on water permeability, and radionuclides are also thought to leach out with the movement of water.Cement. In order to further reduce the leaching of radionuclides from the solidified material, one of the measures is to minimize the presence of these voids.According to the present invention, although the solidified material is the same cement type, An unexpected effect was obtained in that a solidified material with improved radioactive nuclear leaching amount was obtained compared to conventional cement solidified material.The reason for this is not clear at present, but the present invention Accordingly, it cannot be considered that this is due to the effective reduction of voids in the solidified material as described above.

次に従来のセメント固化方法夢ζよれば、セメント固化
材と放射性廃棄物を混練するにしても、あるいは混練せ
ずにいずれか一方を他方に注、廃棄物の処理混入可能量
が小さく固化物全容量が大きくなるか、処理容器に対す
る充填性が悪く、該廃棄物の間隙に存在するあるいは充
填時に随伴する空気による気孔を残す傾向があった。
Next, according to the conventional cement solidification method Dream ζ, whether cement solidification material and radioactive waste are kneaded or one is poured into the other without kneading, the amount of waste that can be mixed is small and the solidified material is Either the total capacity becomes large, or the processing container is poorly filled, and there is a tendency to leave pores due to air present in the gaps between the waste materials or accompanying air during filling.

放射性廃棄物固化処理の最も重要な因子の一つとして可
及的に処理容積を小さくすることが挙げられる。この減
容化要請に従来必ずしも十分に対応できなかった。この
問題を解決するには単位容量セメント組成物当りできる
だけ多量の廃棄物を混入しても流動性が良いことあるい
は水/セメント比を大キくシてセメント固化材の流動性
を向上するか、あるいは充填操作に時間をかけて気孔を
抜き出すかなどの対応も考えられる。しかし、水量を必
要以上に増すことは前記の如く水みちを増すことになり
放射性核種の浸出を増加させる。また充填操作に手間を
かけることは作業生産性を低下させる。本発明によれば
、予期以上に著しく固化材の充填性が向上し、混練する
場合、多くの廃棄物を混入しても充分流動充填性が高く
、とくに混線を加えずに自然性、投入する方法によりて
も同化体中にほとんど気孔を残すことなく、珊在派生す
る種々の形状を有する放射性廃棄物を円滑に固化できる
One of the most important factors in solidifying radioactive waste is to reduce the processing volume as much as possible. Until now, it has not always been possible to adequately meet this demand for volume reduction. In order to solve this problem, it is necessary to improve the fluidity of the cement solidifying agent by increasing the water/cement ratio, or by increasing the water/cement ratio by mixing as much waste as possible per unit volume of cement composition. Another option is to take time during the filling operation to extract the pores. However, increasing the amount of water more than necessary increases the number of water channels as described above, which increases the leaching of radionuclides. Further, the time-consuming filling operation reduces work productivity. According to the present invention, the filling performance of the solidifying material is significantly improved more than expected, and when kneading, the fluidity filling property is sufficiently high even when a large amount of waste is mixed, and the material can be added naturally without adding any cross-contamination. With this method, radioactive wastes having various shapes derived from coral can be smoothly solidified without leaving almost any pores in the assimilate.

また、従来のセメント固化方法によれば固化体のひゾ割
れが発生し、この仁とは固化体の崩壊に結びつく可能性
があり、殊に放射性廃棄物の処分に求められる長期形状
安定性を損うことに結びつく可能性がある。さらに固化
体のひゾ割れは固化体と水との接触に際して接触面積を
増加させ、放射性核種の浸出を増すことにつながり、そ
の発生の影響は大きい。このように従来のセメント固化
方法におけるひゾ割れ発生の要因はいろいろあるがセメ
ント組成物の水による加水分解、水和反応、所謂自由水
の放散など、固化体の収縮現象を招来する水の存在が大
きく関わっている。
In addition, with conventional cement solidification methods, cracks occur in the solidified material, and these cracks may lead to the collapse of the solidified material, which is particularly detrimental to the long-term shape stability required for the disposal of radioactive waste. It may lead to losses. Furthermore, cracks in the solidified material increase the contact area when the solidified material comes into contact with water, leading to increased leaching of radionuclides, and the impact of their occurrence is significant. As described above, there are various factors that cause cracks to occur in conventional cement solidification methods, but the presence of water, which causes shrinkage of the solidified product, such as hydrolysis of the cement composition with water, hydration reactions, and the release of so-called free water. is greatly involved.

本発明によれば、固化体のひゾ割れ発生が効果的に防止
できる。これは、本発明の流動性セメント組成物の水/
セメント比を小さくできることが特に効果を挙げている
と考えられる。さらに本発明による固化方法に関し、前
述の如く流動充填性の良好である特徴が固化体のひソ割
れ発生防止に寄与している。すなわち、良好な流動充填
性により被処理物表面との同化密着性が良く、その表面
からの固化体組成物の剥離夢こ伴うひゾ割れも防止でき
る。このことはたとえば鉄材など表面から錆びることに
よる膨張によりひゾ割れを惹き起すなどの現象の防止に
結びつく。
According to the present invention, the occurrence of cracks in the solidified body can be effectively prevented. This is due to the water/fluid cement composition of the present invention.
It is thought that being able to reduce the cement ratio is particularly effective. Furthermore, regarding the solidification method according to the present invention, the feature of good fluid filling properties as described above contributes to preventing the occurrence of cracks in the solidified product. That is, due to good fluid filling properties, assimilative adhesion to the surface of the object to be treated is good, and it is possible to prevent cracks that may occur when the solidified composition is peeled off from the surface. This leads to the prevention of phenomena such as cracks caused by expansion caused by rusting from the surface of iron materials, for example.

これら従来セメント固化体のひマ割れの原因填する際、
可能な限り容器口面一杯にすることが必要である。もし
そこに隙間があると容器に蓋をし、容器を多段に積み重
ねて長期間処分管理されるとき荷重圧下化容器の変形、
破損を招来し、且つその空隙部が地下水などの水のみち
化なり得るなど、固化体の安定性を損うことが懸念され
ている。その対策として従来の固化方法においては、固
化作業後に容器口の空隙を適当な固化材を用いて再充填
(ポストフィリングと云われる)することにより埋込む
方法が考えられている。従来のセメントあるいは他材料
の固化方法でポストフィリングが必要になる原因は固化
材料の収給現象以外にそれらの流動性の悪さが関係して
いる。すなわち、充填に際して液面を容器口面に合わせ
難い。それは次のような理由に基づく。まず固化材の流
動粘度が高いために効果的な充填作業生産性を維持する
には液面が容易に平面にならず、したがって充填に際し
て山盛り状になるので若干の充填量調整を行なわねばな
らない。つぎに、充填性が良くないために隋伴空気によ
る気孔あるいはボイドなどの空隙部分の一部が時間の経
過とともに固化材により置換され、したがって液面がそ
の分だけ低下する。本発明によれば流動性セメント組成
物の充填性が著しく良好であるため、この問題が効果的
に解決できる。本発明で用いる流動性セメント組成物は
他の固化材による固化体のポストフィリングにも適用で
き、大変効果を発揮する。すなわち、良好な流動性のた
めに液面調整が容易であるからである。
When filling the causes of cracks in these conventional cement solidified bodies,
It is necessary to fill the mouth of the container as full as possible. If there is a gap, cover the container, and when containers are stacked in multiple tiers for long-term disposal management, the load may be reduced and the container may deform.
There are concerns that the stability of the solidified material may be impaired, such as damage caused by the solidified material, and the voids becoming a source of water such as underground water. As a countermeasure to this, in conventional solidification methods, a method has been considered in which the gap at the mouth of the container is refilled with an appropriate solidification material (referred to as post-filling) after the solidification process. The reason why post-filling is required in conventional methods of solidifying cement or other materials is related not only to the absorption phenomenon of the solidified materials but also to their poor fluidity. That is, it is difficult to align the liquid level with the container mouth surface during filling. This is based on the following reasons. First, because the solidifying material has a high flow viscosity, the liquid level does not easily become flat in order to maintain effective filling productivity, and therefore the filling amount becomes heaped during filling, so the filling amount must be adjusted slightly. Next, due to poor filling properties, some of the voids such as pores or voids caused by entrained air are replaced by the solidifying material over time, and the liquid level therefore decreases by that amount. According to the present invention, since the filling properties of the fluid cement composition are extremely good, this problem can be effectively solved. The fluid cement composition used in the present invention can also be applied to post-filling of solidified bodies with other solidifying agents, and is highly effective. That is, it is easy to adjust the liquid level due to good fluidity.

(問題を解決するための手段) 本発明は、放射性廃棄物を少なくともセメント、減水材
および水を含有する流動性セメント組成物を用いて容器
の中において固化させることを特徴とする放射性廃棄物
の固化処理方法に関する。本発明において処理される放
射性廃棄物は、上述のとおり放射性核物質を取扱う各種
機関から発生する放射性廃棄物である。
(Means for Solving the Problem) The present invention provides a method of solidifying radioactive waste in a container using a fluid cement composition containing at least cement, a water-reducing material, and water. Concerning a solidification treatment method. The radioactive waste treated in the present invention is radioactive waste generated from various institutions that handle radioactive nuclear materials, as described above.

放射性廃棄物は発生する場所、施設、プロセスあるいは
その処理設備によりいろいろな形態をもりている。たと
えば、原子力発電プラントではイオン交換樹脂、プラス
チック成型物あるいはフィルム、シートなどの合成樹脂
類、クラッドと呼称されるプロセス水中に分散する金属
組成物沖過物、イオン交換樹脂の再生により派生する硫
酸ナトリウムなどの塩類又はその溶液、作業衣類、洗濯
廃液、可燃物焼却処理灰、プラントメンテナンスに際し
て派生する配管など金属構造材、断熱材、あるいはコン
クリート材などが挙げられる。これら放射性廃棄物をセ
メントを含む不動態化材を用いて固化するにはインドラ
ムミキシング、アウトドラムミキシングおよびミキシン
グを行わない三穏の方法がある。
Radioactive waste comes in various forms depending on the location, facility, process, or treatment equipment where it is generated. For example, in nuclear power plants, ion exchange resins, plastic moldings, synthetic resins such as films and sheets, metal compositions called cladding which are dispersed in process water, and sodium sulfate derived from the regeneration of ion exchange resins are used. Examples include salts such as salts or their solutions, work clothes, laundry waste, ash from incineration of combustible materials, metal structural materials such as piping derived from plant maintenance, insulation materials, and concrete materials. To solidify these radioactive wastes using a passivation material containing cement, there are three methods: in-drum mixing, out-drum mixing, and a method that does not involve mixing.

インドラムミキシング法はドラム缶などの容器中で同化
材と放射性廃棄物を混練する方法であり、これに対して
該廃棄物、固化材、必要に応じて水をあらかじめミキサ
で混練し処分容器に充填固化するのがアウトドラムミキ
シング法である。また上記第8の方法は処分容器中にあ
らかじめ固化材、必要に応じて混和材あるいは水を充填
しておき、その空隙に放射性廃棄物を注入、あるいは投
入するか、あるいはその逆工程として該廃棄物中に固化
材などを注、投入する。
The in-drum mixing method is a method of kneading assimilated material and radioactive waste in a container such as a drum.The waste, solidifying material, and water if necessary are mixed in advance in a mixer and then filled into a disposal container. The out-drum mixing method is used to solidify. In the eighth method, the disposal container is filled with a solidifying material, an admixture if necessary, or water, and the radioactive waste is injected or thrown into the void, or the radioactive waste is disposed of as the reverse process. Pour solidifying material etc. into the container.

本発明は、これら充填固化方法のいずれにおいてもその
特徴を発揮できる。とくに第8のミキシングを行なわな
い固化方法において他にない優れた特徴を発揮すること
ができる。
The present invention can exhibit its characteristics in any of these filling and solidifying methods. In particular, the eighth solidification method that does not involve mixing can exhibit unique and excellent characteristics.

本発明におけるセメントとしてはポルトランドセメント
、早強ポルトランドセメント、超早強ポルトランドセメ
ント、超速硬ポルトランドセメント、白色、着色セメン
ト、ポゾランセメは混合して使用される。
As the cement in the present invention, a mixture of Portland cement, early-strength Portland cement, super-early-strength Portland cement, super-rapid-hardening Portland cement, white cement, colored cement, and pozzolane cement is used.

減水材はセメント、セメントモルタルあるいはコンクリ
ートの流動性を改良しながら練りまぜ水を減少させる目
的で使用されるものであれば制限はない。一般的にはス
ルホン酸あるいはその塩、とドロキシ酸あるいはその塩
、ヒドロキシ化物などが挙げられる。具体的にはりゲニ
ンスルホン酸ナトリウムあるいはカルシウム、β−ナフ
タリンスルホン酸ナトリウム塩−ホルムアルデヒド縮金
物、β−クレオンートスルホン酸、クレゾールスルホン
酸の綜合物、メラミンホルムアルデヒド縮金物スルホン
酸塩あるいは亜硫酸塩、リン酸エステル系界面活性剤、
ポリアクリル系分散剤、アルキルアリルスルホン酸塩な
どが挙げられる。これら減水材の効果をより円滑1こ発
現させるべく補助添加材を用いることもできる。例を挙
げればオレフィンとエチレン性不飽和ジカルボン酸、同
じくカルボン酸イミドの共重合物あるいはその中和物、
あるいはオキシエチレン基含有水溶性高分子化合物など
が用いられる。これら減水材の添加量は使用する減水材
の種類により、あるいは一般に用いられる界面活性剤と
の併用の有無によって異なるが、通常セメント100重
量部に対して0.05〜15重量部、好ましくは0.1
5〜6重量部が単独あるいは混合して使用される。これ
ら範囲外に使用すると流動性が低下したり凝結硬化性あ
るいは各種空隙量などに悪影響を及ぼすことがある。
There are no restrictions on the water-reducing material as long as it is used for the purpose of reducing mixing water while improving the fluidity of cement, cement mortar, or concrete. Generally, sulfonic acid or its salt, droxy acid or its salt, hydroxylated product, etc. are mentioned. Specifically, sodium or calcium genin sulfonate, β-naphthalene sulfonic acid sodium salt-formaldehyde condensate, β-creonate sulfonic acid, cresol sulfonic acid sulfonate, melamine formaldehyde condensate sulfonate or sulfite, phosphoric acid ester surfactant,
Examples include polyacrylic dispersants and alkylaryl sulfonates. Auxiliary additives may also be used to more smoothly exhibit the effects of these water-reducing materials. Examples include copolymers of olefins and ethylenically unsaturated dicarboxylic acids, as well as carboxylic acid imides, or their neutralized products,
Alternatively, an oxyethylene group-containing water-soluble polymer compound or the like may be used. The amount of these water-reducing agents added varies depending on the type of water-reducing agent used or whether or not it is used in combination with a commonly used surfactant, but is usually 0.05 to 15 parts by weight, preferably 0.05 to 15 parts by weight per 100 parts by weight of cement. .1
5 to 6 parts by weight are used alone or in combination. If it is used outside these ranges, fluidity may decrease, setting hardenability, various void contents, etc. may be adversely affected.

本発明において用いられる流動性セメント組成物には、
このほかさらに保水材、−1硬化調整材、混和材、骨材
、消泡材、防水材等の1種または2種以上を加えてその
性質を改良することができる。
The flowable cement composition used in the present invention includes:
In addition, one or more of water retaining materials, -1 hardening modifiers, admixtures, aggregates, antifoaming materials, waterproofing materials, etc. can be added to improve the properties.

保水材はセメント組成物が容器の中で凝結ゲル化開始ま
でに固液分離を起したり、浮水、ブリージングを発生し
たりするのを防止する役目を果す。放射性廃棄物の固化
処理においてこのような浮き水、ブリージングが発生す
ると、その水が蒸散した時前述の如く固化体と容器蓋の
間に空隙が発生する。保水材としては一般的にセルロー
ス系、ビニル系およびアクリル系などがあり、セルロー
ス系のものが広く用いられるがとくにメチルセルロース
、ヒドロキシプロピルメチルセルロース、グリオキザー
ル付加ヒドロキシ−プロピルメチルセルロースなどが挙
げられる。保水材はセメント組成物の粘度調節剤として
の役目があり、流動性を低下させないようにする注意も
必要である。添加量はセメント1oox量部に対し2.
0!31部以下、好ましくは0.01〜0,6重量部が
単独あるいは混合して使用される。
The water retaining material serves to prevent solid-liquid separation, floating water, and bleeding before the cement composition begins to solidify and gel in the container. When such floating water or breathing occurs in the solidification process of radioactive waste, when the water evaporates, a gap is created between the solidified material and the container lid as described above. Water retaining materials generally include cellulose, vinyl, and acrylic materials, and cellulose materials are widely used, particularly methyl cellulose, hydroxypropyl methyl cellulose, and glyoxal-added hydroxy-propyl methyl cellulose. The water retaining material serves as a viscosity regulator for the cement composition, and care must be taken not to reduce fluidity. The amount added is 2.
0.31 parts by weight or less, preferably 0.01 to 0.6 parts by weight, alone or in combination.

膨張材はセメント組成物の水和乾燥収縮を使用目的に応
じて緩和調整する役目をもつ。一般的にセメント固化に
使用されるものを利用することができる。具体例として
はエトリンガイト系および石灰系のものが挙げられる。
The expanding agent has the role of alleviating and adjusting the hydration and drying shrinkage of the cement composition depending on the purpose of use. Those commonly used for cement solidification can be used. Specific examples include those based on ettringite and lime.

エトリンガイト系膨張材(セメントを水と混練するとき
水和反応によりエトリンガイトを生成し膨張する材料)
の具体例としては例えばカルシウムサルホアルミネート
を主成分とするもの、酸化カルシウム、酸化アルミニウ
ム及び三酸化イオウを主成分とするものなどが挙げられ
る。また石灰系膨張材としては、例えば小野田エクスパ
ン(小野田セメント社製商品名)、8AC!8(住友セ
メント社製商品名)などが挙げられる。これら膨張材の
添加量はセメント100重量部に対し0.8〜80重鳥
1都鳥1ましくは1〜15重患部である。
Ettringite-based expanding material (a material that expands by producing ettringite through a hydration reaction when cement is mixed with water)
Specific examples include those containing calcium sulfoaluminate as a main component, and those containing calcium oxide, aluminum oxide, and sulfur trioxide as main components. Examples of lime-based expansive materials include Onoda Expan (trade name manufactured by Onoda Cement Co., Ltd.), 8AC! 8 (product name manufactured by Sumitomo Cement Co., Ltd.). The amount of these expanding agents added is 0.8 to 80 parts by weight or 1 to 15 parts by weight per 100 parts by weight of cement.

硬化調整材としてはセメント系固化材に対して一般的に
使用されるセメント急結剤あるいは緩結剤が使用される
。たとえば急結剤として(aQ2、水ガラス、NazC
!03 、ケイフッ化水素酸塩など、緩結剤としては石
膏などのCa塩、あるいは野塩、鞭水酸化物、 Ba塩
、B&水酸化物、NazPO4、Na2B4O7、タン
ニン、多糖類が挙げられる。
As the hardening adjustment agent, a cement quick setting agent or a slow setting agent, which is generally used for cement-based hardening materials, is used. For example, as a quick setting agent (aQ2, water glass, NazC
! Examples of setting-reducing agents include Ca salts such as gypsum, field salts, whip hydroxides, Ba salts, B&hydroxides, NazPO4, Na2B4O7, tannins, and polysaccharides.

混和材および骨材はセメントの短所を補い、改良する目
的で使用される。具体的には高炉スラグ、ポゾラン、フ
ライアッシェ、シリカ、細骨材および粗骨材が挙げられ
る。細骨材として一般的に砂が挙げられる。珪砂、砕砂
、高炉スラグ砕砂などの人工砂、川砂、海砂、山砂など
の天然砂が用いられる。粗骨材は寸法の大きい骨材であ
り、同様に人工骨材および天然骨材があ、る。本発明に
おいては粗骨材は特殊目的以外は使用されることが少な
い。粗骨材以外の混和材および骨材は必要に応じて用い
ることが好ましい。必ずしも必要の無い時は用いること
はないが、流動性、水和乾燥収縮性、強度、水密性ある
いはひゾ割れなど、いずれの因子を重視するか、あるい
は放射性廃棄物の種類に応じて適切に選択する必要があ
る。砂はいろいろな寸法のものがあるがおよそ径6s以
下が好ましく、とくに2.5m以下が好ましい。珪砂は
、中でも1、21ml以下が好ましい。添加量はセメン
ト100M量部に対して20〜200重量部、とくに7
0〜140重量部が好ましい。セメントの種類により、
少量過ぎるとセメント水和熱が大きく固化体に亀裂の生
じることがあり、多過ぎると流動性を保つ上で水が多く
なりブリージングが増大し強度が低下する。高炉スラグ
は一般的にセメント100重量部に対し70重量部以下
添加することができる。フライアッシェはセメント10
0重量部に対し2〜80重量部好ましくは6〜16重量
部加えられる。その他の混和材および骨材は一般的にセ
メントの固化に際して添加される基準にしたがって用い
るCとができる。
Admixtures and aggregates are used to compensate for and improve the shortcomings of cement. Specific examples include blast furnace slag, pozzolan, fly ash, silica, fine aggregate, and coarse aggregate. Sand is commonly used as fine aggregate. Artificial sand such as silica sand, crushed sand, and crushed blast furnace slag sand, and natural sand such as river sand, sea sand, and mountain sand are used. Coarse aggregates are aggregates with large dimensions, and also include artificial aggregates and natural aggregates. In the present invention, coarse aggregate is rarely used for purposes other than special purposes. It is preferable to use admixtures and aggregates other than coarse aggregate as necessary. Although it is not used when it is not absolutely necessary, it is important to consider which factors are important, such as fluidity, hydration and drying shrinkage, strength, watertightness, or cracking, or depending on the type of radioactive waste. You need to choose. Sand has various sizes, but a diameter of approximately 6 seconds or less is preferred, and a diameter of 2.5 meters or less is particularly preferred. The amount of silica sand is preferably 1.21 ml or less. The amount added is 20 to 200 parts by weight per 100M parts of cement, especially 7
0 to 140 parts by weight is preferred. Depending on the type of cement,
If the amount is too small, the heat of hydration of the cement will be large and cracks may occur in the solidified product, while if it is too large, too much water will be needed to maintain fluidity, leading to increased breathing and reduced strength. Blast furnace slag can generally be added in an amount of 70 parts by weight or less per 100 parts by weight of cement. Fly ache is cement 10
2 to 80 parts by weight, preferably 6 to 16 parts by weight, is added to 0 parts by weight. Other admixtures and aggregates can be used according to the standards for adding them during cement solidification.

本発明において減水材および保水材を添加する際、使用
条件によっては若干の起泡が発生することがある。その
場合必要な時には市販されているシリコーン系消泡材な
どを添加することが効果的である。防水材としては一般
にセメントに使用される物質を添加することができる。
When adding the water-reducing material and the water-retaining material in the present invention, some foaming may occur depending on the conditions of use. In that case, it is effective to add a commercially available silicone antifoaming agent or the like if necessary. Substances commonly used in cement can be added as waterproofing materials.

本発明において使用される水の量は、本発明にしたがっ
て放射性廃棄物の固化処理を行なう際の作業目標により
て異なる。すなわち、放射性廃棄物の種類、形状、含水
量、使用する流動性セメント組成物の内容、固化物の処
理処分方法、たとえば地上処分か地下処分かなどに依存
する。場合によっては固化容器の種類にも依存する。本
発明の目的に従えば、水の添加量は一般のセメントと同
じでよいが、さらに流動性を保って水の量を減らすこと
ができる。具体的に云えばセメント100重量部に対し
水80〜100M量部、好ましくは85重量部〜80重
量部、とくに85重量部〜60重量部を加えることがで
きる。
The amount of water used in the present invention varies depending on the operational goals of solidifying radioactive waste according to the present invention. That is, it depends on the type, shape, and water content of the radioactive waste, the content of the fluid cement composition used, and the method of processing and disposing of the solidified material, such as whether it is aboveground or underground disposal. In some cases, it also depends on the type of solidification container. According to the purpose of the present invention, the amount of water added may be the same as that of general cement, but the amount of water can be reduced while maintaining fluidity. Specifically, 80 to 100 M parts of water can be added to 100 parts by weight of cement, preferably 85 to 80 parts by weight, particularly 85 to 60 parts by weight.

本発明に用いられる固化容器は放射性廃棄物の処理処分
に使用されているものであればとくに制限はない。すな
わち、形状は円柱状あるいは角柱状のドラム缶、六角柱
状のセメント・エポキシ材からなる容器、あるいはそれ
ら各覆審器にセメント、アスファルトあるいはプラスチ
ックス、あるいはそれらの混合組成物を用いて内張すし
た容器が挙げられる。容量としては使い易い範囲であれ
ばよい。
The solidification container used in the present invention is not particularly limited as long as it is used for processing and disposing of radioactive waste. In other words, drums with a cylindrical or prismatic shape, containers made of cement or epoxy materials with a hexagonal shape, or containers lined with cement, asphalt, plastics, or a mixture thereof. Examples include containers. The capacity may be within a range that is easy to use.

(発明の効果) 本発明は、放射性核物質を取扱う各種機関から発生する
放射性廃棄物、とくに原子力発電プラント、使用済核燃
料再処理プラントおよび放射性同位元素を含む医薬、農
薬あるいは化学製品を扱うプラント、あるいはこれらに
関わる研究機関から発生する放射性廃棄物を、流動性セ
メント組成物とともに容器の中で固化不動態化すること
により、放射性物質の浸出防止、固化体中の空隙、細孔
、隋伴空気気孔を効果的に除去して気密且つ減容化され
た不動態化物の調製、ひゾ割れ防止、および充填−化に
おける液面調整が容易であることによる作業性の向上な
どの多くの面に著しい改良効果がある。
(Effects of the Invention) The present invention is directed to radioactive waste generated from various institutions that handle radioactive nuclear materials, particularly nuclear power plants, spent nuclear fuel reprocessing plants, and plants that handle pharmaceuticals, agricultural chemicals, or chemical products containing radioactive isotopes. Alternatively, by solidifying and passivating radioactive waste generated from research institutions involved in these areas in a container with a fluid cement composition, it is possible to prevent radioactive materials from leaching and eliminate voids, pores, and entrained air in the solidified material. Effectively removes pores to prepare airtight and volume-reduced passivates, prevents cracking, and improves workability by making it easy to adjust the liquid level during filling. It has a significant improvement effect.

(実施例) 以下に実施例により本発明を例示するがそれによって本
発明の趣旨に何ら制限を受けるものではない。
(Examples) The present invention will be illustrated below by examples, but the gist of the present invention is not limited thereby.

実施例1 80ノ金属円柱缶に直径8/8〜8インチ、長さ100
〜800m5の炭素鋼製直管および曲管を水平、直立お
よび斜交状に混合して置いた。予め水によりその空洞容
積を測定し、21ノに調整した。
Example 1 80mm metal cylindrical can with a diameter of 8/8 to 8 inches and a length of 100mm
~800 m5 of carbon steel straight and curved pipes were placed in a mixture of horizontal, upright and diagonal configurations. The cavity volume was previously measured with water and adjusted to 21°.

一方、以下の如<2′a類のセメント組成物を調製した
On the other hand, cement compositions of type 2'a were prepared as follows.

1)ポルトランドセメント100重量部に対し海砂10
0重量部、水40重量部、メラミンホルムアルデヒド縮
金物のスルホン化変性樹脂1重量部、メチルセルロース
0.11重量部、α−石膏1重量部を加えてなるセメン
ト組成物。
1) 100 parts by weight of Portland cement to 10 parts by weight of sea sand
0 parts by weight, 40 parts by weight of water, 1 part by weight of a sulfonated modified resin of melamine formaldehyde condensate, 0.11 parts by weight of methylcellulose, and 1 part by weight of α-gypsum.

2)ポルトランドセメント100重量部に対し海砂10
0重量部、水65重量部を加えてなるセメント組成物。
2) 100 parts by weight of Portland cement to 10 parts by weight of sea sand
A cement composition prepared by adding 0 parts by weight and 65 parts by weight of water.

これら2種のセメント組成物をそれぞれ予め準備された
上記の容器に自然落下方式で投入しはゾ液面を容器一杯
に調整した。その時投入できた液量はそれぞれ1)20
.8ノ、2)15.8ノであった。2週間の固化後、容
器を切断して観察した結果、サンプル1)では円滑に空
洞部を充填できていたのに対し、サンプル2)では大小
多くの未充填部が見出された。
These two types of cement compositions were poured into the above-prepared containers using a gravity drop method, and the liquid level was adjusted to fill the containers. The amount of liquid that could be added at that time was 1) 20
.. 8, 2) It was 15.8. After solidification for two weeks, the container was cut and observed, and as a result, sample 1) had the cavity filled smoothly, whereas sample 2) had many unfilled areas of various sizes.

別途Mjgされた固化2週間後のテストピースをアムス
ラー試験機を用いて圧縮強度を測定したところ画サンプ
ルとも2 Q O!47C−2であり、セメント同化体
として十分の強度を有していた。
When the compressive strength of the separately Mjg test piece after 2 weeks of solidification was measured using an Amsler tester, both the image sample and the sample were 2 Q O! 47C-2, and had sufficient strength as a cement assimilate.

実施例2 実施例1と同じセメント組成物に炭酸セシウムをそれぞ
れ8 f−/l 濃度に添加した組成物朋 を固化し、30日声室温で養生後サンプルを取出し以下
の浸出テストを行なり゛だ。
Example 2 Cesium carbonate was added to the same cement composition as in Example 1 at a concentration of 8 f-/l. The composition was solidified, and after curing for 30 days at room temperature, samples were taken and subjected to the following leaching test. is.

サンプル形状 直径4.51m、高さ4.4譚円柱状 イオン交換水t/サンプル表面積−7に相当するイオン
交換水量中にサンプルを浸漬し20℃において10日間
毎日1回水を交換してそれぞれの水に溶解浸出したセシ
ウムイオンを濃縮分析した。その結果、浸出量はサンプ
ル1) 8.8 X 10−” P/伽2・日、サンプ
ル2)1.4 X 10” V亡2・日であった。
Sample shape: Diameter: 4.51 m, height: 4.4 cm Cylindrical The sample was immersed in an amount of ion-exchanged water equivalent to t of ion-exchanged water/sample surface area -7, and the water was exchanged once a day for 10 days at 20°C. The cesium ions dissolved and leached into the water were concentrated and analyzed. As a result, the leaching amount was 8.8 x 10''P/2days for sample 1) and 1.4 x 10''V2days for sample 2).

実施例8 平均粒径210mμの強酸性イオン交換樹脂に予めCo
イオンを6w9/−イオン交換樹脂に吸着させたものを
次の如きセメント組成物として混合して80ノ金属缶に
充填固化した。
Example 8 Co was added to a strongly acidic ion exchange resin with an average particle size of 210 mμ
Ions adsorbed on a 6w9/- ion exchange resin were mixed as the following cement composition and filled into an 80 metal can and solidified.

1)ポルトランドセメント100重量部、メラミンホル
ムアルデヒド縮金物のスルホン化変性樹脂1.4里量部
、水88重量部、イオン交換樹脂42重量部 2)ポルトランドセメント100重量部水      
         65℃景部イオン交換樹脂    
6x量部 これら組成物の固化体(養生期間7日間)の圧縮強度を
アムスラー試験機を用いて評価した結果それぞれ185
 Kf/m”および152Kp/m”であった。
1) 100 parts by weight of Portland cement, 1.4 parts by weight of sulfonated modified resin of melamine formaldehyde condensate, 88 parts by weight of water, 42 parts by weight of ion exchange resin 2) 100 parts by weight of Portland cement
65℃ Kabebe ion exchange resin
6x parts The compressive strength of the solidified bodies of these compositions (cured for 7 days) was evaluated using an Amsler tester, and the result was 185 for each.
Kf/m" and 152 Kp/m".

前者の場合は、相当量のイオン交換樹脂を混入したうえ
で、海洋投棄の際の固化体の圧縮強度の基準値である1
 50 Vcm2の強度を充分に確保できた。
In the former case, a considerable amount of ion-exchange resin is mixed and the compressive strength of the solidified material is 1, which is the standard value for dumping into the ocean.
A sufficient strength of 50 Vcm2 was ensured.

後者の場合は、イオン交換樹脂の混入量をこれ以上増加
させると強度が低下し上記基準を満足しない。
In the latter case, if the amount of ion exchange resin mixed in is increased further, the strength will decrease and the above criteria will not be satisfied.

手続補正言(自発) 昭和62年5月q日Procedural amendment (voluntary) May q, 1986

Claims (1)

【特許請求の範囲】[Claims] 放射性廃棄物を少なくともセメント、減水材および水を
含有する流動性セメント組成物を用いて容器の中におい
て固化させることを特徴とする放射性廃棄物の固化処理
方法。
1. A method for solidifying radioactive waste, comprising solidifying radioactive waste in a container using a fluid cement composition containing at least cement, a water-reducing material, and water.
JP6309387A 1987-03-17 1987-03-17 Solidifying processing method of radioactive waste Pending JPS63228099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6309387A JPS63228099A (en) 1987-03-17 1987-03-17 Solidifying processing method of radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6309387A JPS63228099A (en) 1987-03-17 1987-03-17 Solidifying processing method of radioactive waste

Publications (1)

Publication Number Publication Date
JPS63228099A true JPS63228099A (en) 1988-09-22

Family

ID=13219350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6309387A Pending JPS63228099A (en) 1987-03-17 1987-03-17 Solidifying processing method of radioactive waste

Country Status (1)

Country Link
JP (1) JPS63228099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243797A (en) * 1987-03-31 1988-10-11 株式会社東芝 Solidifying processing method of radioactive waste
JP2017511467A (en) * 2014-12-29 2017-04-20 エクソルブ リミテッド Liquid radioactive waste disposal and reuse methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243797A (en) * 1987-03-31 1988-10-11 株式会社東芝 Solidifying processing method of radioactive waste
JP2017511467A (en) * 2014-12-29 2017-04-20 エクソルブ リミテッド Liquid radioactive waste disposal and reuse methods

Similar Documents

Publication Publication Date Title
JP5219999B2 (en) Cement-based composition for embedding boron-containing aqueous solution, embedding method, and cement grout composition
KR100894934B1 (en) Micro-granulose particulates
Lambert et al. Pore solution chemistry of the hydrated system tricalcium silicate/sodium chloride/water
JP2009537433A5 (en)
KR910005930B1 (en) Encapsulation of boric acid slurries
EP2784039B1 (en) Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
CN109824324A (en) A kind of concrete being used to prepare Radwastes treatment packing container and application
US20080134943A1 (en) Encapsulation Medium
JPH0634097B2 (en) Solidifying agent for radioactive waste
AU670617B2 (en) Preparation of inorganic hardenable slurry and method for solidifying wastes with the same
CN103965918A (en) Curing agent for water quenching manganese slag mollisol
Varlakov et al. Innovative and conventional materials and designs of nuclear cementitious systems in radioactive waste management
CN117417200A (en) Preparation process and construction method of waterproof, anti-corrosion and anti-seepage concrete
JPS61245095A (en) Waste treating vessel
JPS63228099A (en) Solidifying processing method of radioactive waste
JP3372684B2 (en) Cement inorganic admixture for nuclear waste
JP2781566B2 (en) Cement solidification method and solidified body of radioactive waste
JP2015010010A (en) Salt damage-resistant concrete
CN113061006A (en) Boron-containing concentrated waste liquid cement curing formula and curing method thereof
JP2856345B2 (en) Filling material and filling method
JPH0422238B2 (en)
CN108147751A (en) A kind of construction high-weatherability concrete and preparation method thereof
JPS63263497A (en) Solidifying processing method of radioactive waste
JPH01185494A (en) Solidification treating method of radioactive waste
CN106892616A (en) A kind of radioactive solid waste disposal lidstock material of concrete HIC