JP2513690B2 - Solidifying agent for radioactive waste - Google Patents

Solidifying agent for radioactive waste

Info

Publication number
JP2513690B2
JP2513690B2 JP62123751A JP12375187A JP2513690B2 JP 2513690 B2 JP2513690 B2 JP 2513690B2 JP 62123751 A JP62123751 A JP 62123751A JP 12375187 A JP12375187 A JP 12375187A JP 2513690 B2 JP2513690 B2 JP 2513690B2
Authority
JP
Japan
Prior art keywords
weight
parts
solidifying agent
waste
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62123751A
Other languages
Japanese (ja)
Other versions
JPS63289498A (en
Inventor
勉 木田
悦郎 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP62123751A priority Critical patent/JP2513690B2/en
Publication of JPS63289498A publication Critical patent/JPS63289498A/en
Application granted granted Critical
Publication of JP2513690B2 publication Critical patent/JP2513690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射性廃棄物の固化剤、詳しくは、水硬性物
質、カルシウムアルミネート、石膏、超微粉及び高性能
減水剤を主成分とし、耐久性及び早強性があり、処理能
力が大で永久貯蔵も可能で放射性物質の溶出が少ない、
安全な、特にホウ素合有の放射性廃棄物の固化剤に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is based on a solidifying agent for radioactive waste, more specifically, a hydraulic substance, calcium aluminate, gypsum, ultrafine powder and a superplasticizer, It has high activity and early strength, has a large processing capacity, can be stored permanently, and has little elution of radioactive substances.
It relates to a safe, especially boron-bound radioactive waste solidifying agent.

〔従来の技術及びその問題点〕 放射性廃棄物とは放射性アイソトープ使用の工場・病
院・研究所、放射性鉱物の採鉱又は精練工場等から発生
するものもあるが、ほとんどは、原子力発電所の原子力
施設から発生する。又、ホウ素含有放射性廃棄物(以下
B廃棄物という)としては、濃縮廃液、使用済みイオン
交換樹脂、各種スラツジ及び原子力発電所の解体に伴い
排出されるコンクリート廃棄物などの、いわゆる低・中
レベルB廃棄物をはじめ高レベル廃棄物があげられる。
[Conventional technology and its problems] Radioactive wastes are generated from factories, hospitals, and laboratories that use radioactive isotopes, mining or refining factories of radioactive minerals, etc., but most of them are nuclear facilities of nuclear power plants. Arises from. Also, as boron-containing radioactive waste (hereinafter referred to as “B waste”), so-called low / medium levels such as concentrated waste liquid, used ion-exchange resin, various sludges, and concrete waste discharged during the dismantling of a nuclear power plant. High-level wastes such as B wastes are included.

これら放射性廃棄物、特に低・中レベル放射性廃棄物
の固化処理法としては、セメント固化法、ビチユーメン
固化法及びプラスチツク固化法等が実用されている。
As a method for solidifying these radioactive wastes, particularly low- and middle-level radioactive wastes, the cement solidification method, the vitamin solidification method, the plastic solidification method, and the like have been put into practical use.

しかしながら、セメント固化法は、溶出性が比較的大
きいこと、硬化時間が長く、又、硬化体の崩壊という耐
久性、特にホウ素を含有する場合、水和反応が阻害され
処理能力が小さいこと等の欠点があつた。また、ビチユ
ーメン固化法やプラスチツク固化法は、処理能力は大き
いが、処理方法が複雑であること、耐久性等の面からの
安全性に問題があることなどの欠点があつた。
However, the cement solidification method has a relatively large elution property, has a long curing time, and has durability such as the disintegration of the cured product, particularly when boron is contained, the hydration reaction is inhibited and the treatment capacity is small. There was a flaw. In addition, although the bio-solidification method and the plastic solidification method have a large processing capacity, they have drawbacks such as a complicated processing method and a safety problem in terms of durability and the like.

又、本出願人はセメント質物質、超微粉、高性能減水
剤を主成分とする放射性廃棄物の固化剤を提供した(特
開昭61−215999号公報)。しかしながら、上記固化剤を
使用しても、B廃棄物はセメントの水和反応を遅延させ
たり、B廃棄物の硬化体を崩壊させたりして充分なもの
とは言えなかつた。
The present applicant has also provided a solidifying agent for radioactive waste containing cementitious substances, ultrafine powder, and a high-performance water reducing agent as main components (JP-A-61-215999). However, even if the above-mentioned solidifying agent is used, the B waste is not sufficient because it delays the hydration reaction of cement and disintegrates the hardened body of the B waste.

以上のことから、ホウ素含有量が多くても、耐久性や
早強性があり、処理能力が大きく、かつ溶出性が低く、
耐久性の優れた、特にB廃棄物の処理方法が切望されて
いる。
From the above, even if the boron content is high, there is durability and early strength, the processing capacity is large, and the elution property is low,
A method for treating B waste, which has excellent durability, has been earnestly desired.

本発明者らは、上記欠点を解消すべく、種々検討を行
つた結果、特定の成分を主成分とする固化剤を用いるこ
とにより、上記欠点を改良することができる知見を得
て、本発明を完成するに到つた。
As a result of various studies to eliminate the above-mentioned drawbacks, the present inventors have found that the above-mentioned drawbacks can be improved by using a solidifying agent containing a specific component as a main component, Has been completed.

〔問題点を解決するための手段〕[Means for solving problems]

即ち本発明は、水硬性物質、カルシウムアルミネー
ト、石膏、超微粉及び高性能減水剤を主成分とし、カル
シウムアルミネートと石膏の使用量が、水硬性物質22〜
91重量部に対して、各々2〜19重量部である放射性廃棄
物の固化剤である。
That is, the present invention is a hydraulic substance, calcium aluminate, gypsum, ultrafine powder and a high-performance water reducing agent as the main component, the amount of calcium aluminate and gypsum used, the hydraulic substance 22 ~
It is a solidifying agent for radioactive waste, which is 2 to 19 parts by weight per 91 parts by weight.

以下本発明を詳細に説明する。 The present invention will be described in detail below.

本発明でいう水硬性物質としては、普通、早強、超早
強、白色もしくは耐硫塩等各種ポルトランドセメント、
さらには高炉スラグ、フライアツシユもしくはシリカ等
を混合した混合セメント等が使用できる。また急冷高炉
スラグ粉末に、水酸化カルシウム、セツコウ及びアルカ
リ金属塩等のアルカリ刺激剤を組み合せたものも用いら
れる。
As the hydraulic material referred to in the present invention, normal, early strength, super early strength, white or various Portland cement such as sulfur resistant salt,
Further, mixed cement mixed with blast furnace slag, fly ash, silica or the like can be used. Further, it is also possible to use a mixture of the rapidly cooled blast furnace slag powder and an alkali stimulant such as calcium hydroxide, gypsum and an alkali metal salt.

本発明で使用するカルシウムアルミネート(以下単に
CAという)とは、CaO/Al2O3のモル比(以下C/Aという)
が1.5〜4であるものが好ましく、CaOをC、Al2O3
A、Fe2O3をFとするとC12A7、C6A2F、C4AF等の組成鉱
物と示されるもの、及び、これらのうち少なくとも1種
を主成分とするCAである。
The calcium aluminate used in the present invention (hereinafter simply referred to as
CA) means the molar ratio of CaO / Al 2 O 3 (hereinafter referred to as C / A).
Is preferably 1.5 to 4, and when CaO is C, Al 2 O 3 is A, and Fe 2 O 3 is F, it is indicated as a composition mineral such as C 12 A 7 , C 6 A 2 F, and C 4 AF. And CA containing at least one of these as the main component.

CA中の微成分としてわずかのSiO2、TiO2等の成分を含
んだものであつても良く、水和活性のないAl2O3などの
無機材料を含んだものであつても良い。
The CA may contain a small amount of a component such as SiO 2 or TiO 2 as a minute component, or may contain an inorganic material such as Al 2 O 3 having no hydration activity.

CAの粒度は特に規定されるものではないが、強度の面
から10〜30μが好ましい。
The particle size of CA is not particularly specified, but 10 to 30 μ is preferable from the viewpoint of strength.

本発明で使用するセツコウとは、排煙脱硫装置から出
る排脱セツコウ、リン酸製造工程で生じるリン酸セツコ
ウなどの副産セツコウである2水セツコウ、又、フツ酸
製造工程で生じるフツ酸セツコウなどのII型無水セツコ
ウ、さらにはIII型無水セツコウである。
Setsukou used in the present invention means effluent desorbed from a flue gas desulfurization unit, dihydrated citrus which is a byproduct such as phosphoric acid citrus produced in a phosphoric acid production process, and fluorinated acid produced in a hydrofluoric acid production process. And the like, and also the type III anhydrous sesskou.

セツコウの粒度は特に規定されるものではないが、水
硬性物質やCAと同程度が好ましい。
Although the particle size of Setsukou is not particularly specified, it is preferably about the same as that of hydraulic substances and CA.

CAとセツコウの使用量は、水硬性物質22〜91重量部に
対して、各々2〜19重量部で、好ましくは水硬性物質36
〜89重量部に対して、各々3〜12重量部である。2重量
部未満では、早強性を得ることが困難であり、又、19重
量部を越えると耐久性が得にくくなる。CAとセツコウの
重量比率は、CA1に対しセツコウ0.5〜4が好ましい。
The amount of CA and Setsukou used is 2 to 19 parts by weight with respect to 22 to 91 parts by weight of the hydraulic material, preferably 36
It is 3 to 12 parts by weight for each .about.89 parts by weight. If it is less than 2 parts by weight, it is difficult to obtain early strength, and if it exceeds 19 parts by weight, it becomes difficult to obtain durability. The weight ratio of CA to Setsukou is preferably 0.5 to 4 with respect to CA1.

本発明で使用する超微粉とは、平均粒径が前述の水硬
性物質やCAおよびセツコウより少なくとも1オーダー低
いものであり、特に平均粒径が2オーダー低いものが本
発明の材料に水を配合して調整した混練物の流動特性の
面から好ましい。具体的には、シリコン・含シリコン合
金並びにジルコニアを製造する際に副生するシリカダス
ト(シリカヒユーム)及びシリカ質ダストが特に最適で
あり、その他に、炭酸カルシウム、シリカゲル、オパー
ル質硅石、フライアツシユ、高炉スラグ、酸化チタン、
酸化アルミニウム、水硬性物質特にアルミナセメント、
前記組成のC/A比を有するCAなどの超微粉も使用でき
る。
The ultrafine powder used in the present invention is one having an average particle size lower than that of the above-mentioned hydraulic substances, CA and Setsukou by at least one order, and particularly one having an average particle size of two orders lower is water mixed with the material of the present invention. It is preferable from the standpoint of the flow characteristics of the kneaded product prepared in this way. Specifically, silica dust (silica fume) and siliceous dust produced as a by-product during the production of silicon / silicon-containing alloys and zirconia are particularly suitable. Slag, titanium oxide,
Aluminum oxide, hydraulic material especially alumina cement,
Ultrafine powder such as CA having a C / A ratio of the above composition can also be used.

超微粉の製造は、分級器と粉砕機を組み合せて粉砕す
る方法もある。又粉砕工程でバグフイルターにより回収
したものはより粒径の細いものを得ることができる。
For the production of ultrafine powder, there is also a method of crushing by combining a classifier and a crusher. In addition, a fine particle having a smaller particle diameter can be obtained from the powder collected by the bag filter in the pulverizing step.

超微粉の使用量は、好ましくは水硬性物質、CA及びセ
ツコウの混合物(以下セメント等という)60〜95重量部
に対して5〜40重量部、さらに好ましくはセメント等65
〜90重量部に対して10〜35重量部である。5重量部未満
では高強度(堅牢性)を得ることが困難であり、又、40
重量部を超えると混練物の流動性が著しく低下し、成形
することが困難となり、かつ、強度発現も不充分とな
る。
The amount of the ultrafine powder used is preferably 5 to 40 parts by weight, more preferably 65 to 95 parts by weight, based on 60 to 95 parts by weight of a hydraulic substance, a mixture of CA and gypsum (hereinafter referred to as cement).
10 to 35 parts by weight with respect to 90 parts by weight. If it is less than 5 parts by weight, it is difficult to obtain high strength (fastness).
When it exceeds the weight part, the fluidity of the kneaded product is remarkably lowered, molding becomes difficult, and the strength development becomes insufficient.

本発明で使用する高性能減水剤(以下減水剤という)
とは、セメントに多量添加しても凝結の過遅延や過度の
空気連行を伴なわない分散能力の大きな界面活性剤であ
つて、ナフタリンスルホン酸ホルムアルデヒドの縮合物
の塩、高分子量リグニンスルホン酸塩及びポリカルボン
酸塩などを主成分とするものがあげられる。
High performance water reducing agent used in the present invention (hereinafter referred to as water reducing agent)
Is a surfactant with a large dispersibility that does not cause excessive retardation of setting and excessive air entrainment even when added to cement in large amounts, and is a salt of a condensation product of naphthalene sulfonic acid formaldehyde, a high molecular weight lignin sulfonate. And those containing polycarboxylic acid salt as a main component.

減水剤は、混練物を低水・セメント比で得るために必
要なものであり、従来の使用量はセメントに対し固形分
として0.3〜1重量%が使用されているが、本発明にお
いてはそれよりも多量に使用することが好ましい。具体
的には、セメント等と超微粉との混合物(以下粉体とい
う)100重量部に対し固形分として10重量部程度まで使
用され、それよりも多量に使用すると、硬化反応にかえ
つて悪影響を与える。特に好ましい使用量は1〜5重量
部である。このような減水剤の使用量においてセメント
等と超微粉とを組み合せることにより、水粉体比が25%
以下でも、通常の方法により成形可能な流動性のある混
練物を得ることができる。
The water reducing agent is necessary to obtain a kneaded product at a low water / cement ratio, and the conventional amount used is 0.3 to 1% by weight as solid content with respect to cement. It is preferable to use a larger amount. Specifically, it is used up to about 10 parts by weight as a solid content with respect to 100 parts by weight of a mixture of cement, etc. (hereinafter referred to as powder), and if it is used in a larger amount, it may adversely affect the curing reaction. give. A particularly preferred amount of use is 1 to 5 parts by weight. By combining cement, etc. and ultrafine powder in such an amount of water reducing agent, the water powder ratio is 25%.
Also in the following, it is possible to obtain a flowable kneaded product that can be molded by an ordinary method.

本発明で混合物を調整する際に使用する水は成形上必
要なものであるが、高強度硬化体を得るためにはできる
だけ少量にするのが良く、粉体100重量部に対し12.5〜3
0重量部とするのが好ましく、15〜28重量部がさらに好
ましい。
The water used in preparing the mixture in the present invention is necessary for molding, but it is better to make it as small as possible in order to obtain a high-strength cured product, and 12.5 to 3 per 100 parts by weight of the powder.
It is preferably 0 part by weight, more preferably 15 to 28 parts by weight.

水量が30重量部より多いと高強度硬化体を得ることが
困難であり、12.5重量部より少ないと通常の流し込み等
の成形が困難となる。なお、圧密成形等においては、こ
れに制限されるものではなく12.5重量部より少ない場合
においても成形が可能となる。
If the amount of water is more than 30 parts by weight, it is difficult to obtain a high-strength cured product, and if the amount is less than 12.5 parts by weight, it becomes difficult to form such as ordinary casting. The compaction molding is not limited to this, and molding is possible even when the amount is less than 12.5 parts by weight.

尚、早強性が得にくい時には、無機炭酸塩である炭酸
ナトリウム、炭酸カリウム、炭酸リチウム及び亜硝酸カ
ルシウム等を併用することが可能である。又、作業性が
得にくい時には、オキシカルボン酸やホウ酸等の遅延剤
を併用することが可能である。
When early fastness is difficult to obtain, inorganic carbonates such as sodium carbonate, potassium carbonate, lithium carbonate and calcium nitrite can be used in combination. Further, when workability is difficult to obtain, it is possible to use a retarder such as oxycarboxylic acid or boric acid together.

本発明に係る固化剤を用いてホウ素含有放射性廃棄物
(以下本廃棄物という)を処理するには、従来のセメン
ト固化法が適用できる。即ち、本廃棄物をドラムやコン
クリート製容器等の処分容器内で前記固化剤と練り混ぜ
る方法、予め固化剤と練り混ぜた本廃棄物を処分容器に
充填する方法、処分容器内に本廃棄物を予め詰めてお
き、その後、空隙に固化剤を充填させる方法及び逆に固
化剤を予め処分容器内に詰め、そこを減圧するか本廃棄
物を加圧するかして処分容器内で注入する方法などが適
用される。この際、固化剤の添加量は本廃棄物が固体で
あるか含水状態であるかなどにより大幅に異なるが、本
廃棄物100重量部に対し、10〜500重量部程度が一般的で
ある。処理能力を大きくするという面からは、固化剤が
少ない程好ましいが、10重量部未満では固化することは
難しく、放射性物質の溶出を抑制する効果も乏しい。
To treat boron-containing radioactive waste (hereinafter referred to as the present waste) with the solidifying agent according to the present invention, a conventional cement solidification method can be applied. That is, this waste is mixed with the solidifying agent in a disposal container such as a drum or a concrete container, the waste is mixed with the solidifying agent in advance, and the waste container is filled with the waste. And then filling the voids with a solidifying agent, and conversely filling the solidifying agent into a disposal container in advance, and then depressurizing it or pressurizing this waste to inject it into the disposal container. Etc. are applied. At this time, the amount of the solidifying agent to be added largely varies depending on whether the waste is a solid or a water-containing state, but it is generally about 10 to 500 parts by weight with respect to 100 parts by weight of the waste. From the viewpoint of increasing the processing capacity, the less the solidifying agent is, the more preferable. However, if it is less than 10 parts by weight, it is difficult to solidify, and the effect of suppressing the elution of radioactive substances is poor.

〔実施例〕〔Example〕

以下実施例によりさらに詳しく説明する。 The present invention will be described in more detail below with reference to examples.

実施例1 表−1、配合No.2〜3に示す配合に0.2μci36Cl/cm3
となるよう放射性同位体を練り混ぜ、φ5×5cmの供試
体を作成し、密閉容器中20℃で養生を行い、材令3日
後、0.1MolのNaCl溶液中でのリーチングテスト(放射性
廃棄物関連での溶出試験)を実施し、浸漬日数と放射性
物質の溶出量の関係より有効拡散係数Deを求めた。さら
に表−1配合No.5、6、9及び10に示す配合で厚さ1cm
の薄膜を作製し、それを隔てて一方に134Cs+を含む10-4
MolのCsClを入れ、134Cs+の拡散係数Dを求めた。結果
を表−2に示す。
Example 1 0.2 μci 36 Cl / cm 3 was added to the formulations shown in Table 1, Formulation Nos. 2-3.
A radioisotope is mixed to obtain a test piece of φ5 × 5 cm, and cured at 20 ° C in a closed container. After 3 days of age, a leaching test in 0.1M NaCl solution (radioactive waste related Dissolution test) was performed and the effective diffusion coefficient De was determined from the relationship between the number of days of immersion and the elution amount of radioactive material. In addition, the composition shown in Table-1 Formulation Nos. 5, 6, 9 and 10 has a thickness of 1 cm.
A thin film was prepared, and it was separated by 10 −4 containing 134 Cs + on one side.
Mol of CsCl was added to obtain a diffusion coefficient D of 134 Cs + . Table 2 shows the results.

<使用材料> セメント:普通ポルトランドセメント、住友セメント
(株)製 CA−a:C12A7、C/Aを45/55の割合で配合し、1,600℃で電
融させ、急冷したものを、平均粒径10μに粉砕したも
の。
<Materials used> Cement: Ordinary Portland cement, Sumitomo Cement Co., Ltd. CA-a: C 12 A 7 , C / A was mixed at a ratio of 45/55, electromelted at 1,600 ° C, and rapidly cooled. Grinded to an average particle size of 10μ.

CA−b:C4AF、CaCO3/Al2O3/Fe2O3を400/102/160の割合で
配合し、1,350〜1,360℃1時間保持し焼成、平均粒径8
μに粉砕したもの。
CA-b: C 4 AF, CaCO 3 / Al 2 O 3 / Fe 2 O 3 were blended in a ratio of 400/102/160, baked at 1,350 to 1,360 ° C for 1 hour, and average particle size was 8
Grinded to μ.

セツコウ:II型無水セツコウ、フツ酸セツコウを平均粒
径12μに粉砕したもの。
Setsukou: Type II anhydrous Setsukou and Setsukou fluoric acid crushed to an average particle size of 12μ.

超微粉:日本重化学工業(株)製、シリカヒユーム。Ultra fine powder: Silica Hyme, manufactured by Nippon Heavy Chemical Industry Co., Ltd.

減水剤:第一工業製薬(株)製、商品名「セルフロー11
0P」、β−ナフタレンスルホン酸ホルムアルデヒド縮合
物。
Water-reducing agent: Dai-ichi Kogyo Seiyaku Co., Ltd., trade name "Cellflow 11"
0P ”, β-naphthalenesulfonic acid formaldehyde condensate.

ホウ素:試薬特級 水:水道水 比較例1 配合No.1、配合No.4、配合No.7及び配合No.8を用いた
こと以外は実施例1と同様に行つた。結果を表−2に示
す。
Boron: Special grade water: Tap water Comparative Example 1 The procedure of Example 1 was repeated except that the compound No. 1, the compound No. 4, the compound No. 7 and the compound No. 8 were used. Table 2 shows the results.

実施例2 沸騰水型原子炉(BWR)から排出され、ホウ素含有イ
オン交換樹脂再生濃縮廃液である、放射性廃棄物を使用
した。この廃液を、表−3に示す配合からなる固化剤を
用いて処理をした。尚、廃液は含水率は95%であり、こ
の廃液100重量部に対して表−3の配合の固化剤は300重
量部とした。
Example 2 A radioactive waste discharged from a boiling water reactor (BWR), which is a boron-containing ion exchange resin regenerated concentrated waste liquid, was used. This waste liquid was treated with a solidifying agent having the composition shown in Table-3. The waste liquid had a water content of 95%, and the solidifying agent of the composition in Table 3 was 300 parts by weight with respect to 100 parts by weight of the waste liquid.

その際の材令3時間及び3日における圧縮強度及び材
令3日の水中における溶出率を測定し表−3に示す。
At that time, the compressive strength at 3 hours and 3 days of age and the dissolution rate in water at 3 days of age were measured and are shown in Table 3.

<使用材料> セメント:高炉セメントA種、住友セメント(株)製 Na2CO3:試薬一級 その他は実施例1と同じ材料 尚、実験No.12には更にNa2CO3を1.0重量部加えた。 <Materials used> Cement: Blast furnace cement type A, Sumitomo Cement Co., Ltd. Na 2 CO 3 : Reagent first grade Other materials are the same as in Example 1. In addition to Experiment No. 12, 1.0 part by weight of Na 2 CO 3 was added. It was

比較例2 実験No.11の配合を用いたこと以外は実施例2と同様
に行つた。結果を表−3に示す。
Comparative Example 2 The procedure of Example 2 was repeated except that the composition of Experiment No. 11 was used. The results are shown in Table-3.

〔発明の効果〕 以上のように、本発明の固化剤を用いると、従来のセ
メント固化法より、ホウ素含有量が多くても耐久性、早
強性があり、処理能力が大きく、かつ溶出性が低く、耐
久性のすぐれた、特にホウ素含有する放射性廃棄物の処
理方法が確立された。ビチユーメント固化法やプラスチ
ツク固化法に比して化学抵抗性、耐候性にすぐれ、しか
も処理方法が簡単であり、耐熱性にすぐれ、又、圧縮強
度が大きく、廃棄物の仮貯蔵のみならず永久貯蔵も可能
である。
[Effects of the Invention] As described above, when the solidifying agent of the present invention is used, the durability and the early strength are high, the processing capacity is large, and the elution property is higher than that of the conventional cement solidification method. A method for the treatment of radioactive waste, especially low in boron content and excellent in durability, has been established. Chemical resistance and weather resistance are superior to those of the solidification method of plastics and plastics, and the treatment method is simple, heat resistance is excellent, and the compressive strength is large, not only temporary storage of waste but also permanent storage. Is also possible.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水硬性物質、カルシウムアルミネート、石
膏、超微粉及び高性能減水剤を主成分とし、カルシウム
アルミネートと石膏の使用量が、水硬性物質22〜91重量
部に対して、各々2〜19重量部である放射性廃棄物の固
化剤。
1. A hydraulic substance, calcium aluminate, gypsum, ultrafine powder and a high-performance water reducing agent as main components, and the amounts of calcium aluminate and gypsum used are each 22 to 91 parts by weight of the hydraulic substance. 2 to 19 parts by weight of radioactive waste solidifying agent.
JP62123751A 1987-05-22 1987-05-22 Solidifying agent for radioactive waste Expired - Lifetime JP2513690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123751A JP2513690B2 (en) 1987-05-22 1987-05-22 Solidifying agent for radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123751A JP2513690B2 (en) 1987-05-22 1987-05-22 Solidifying agent for radioactive waste

Publications (2)

Publication Number Publication Date
JPS63289498A JPS63289498A (en) 1988-11-25
JP2513690B2 true JP2513690B2 (en) 1996-07-03

Family

ID=14868410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123751A Expired - Lifetime JP2513690B2 (en) 1987-05-22 1987-05-22 Solidifying agent for radioactive waste

Country Status (1)

Country Link
JP (1) JP2513690B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107308A (en) * 2011-11-25 2014-09-04 차이나 제너럴 뉴클리어 파워 코퍼레이션 Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
KR20220104892A (en) * 2021-01-19 2022-07-26 거성종합건설주식회사 Composition for reinforcing soft ground, its manufacturing method and device, and construction method using the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU670617B2 (en) * 1993-09-16 1996-07-25 Institute Of Nuclear Energy Research, Taiwan, R.O.C. Preparation of inorganic hardenable slurry and method for solidifying wastes with the same
JP3833294B2 (en) * 1996-01-30 2006-10-11 株式会社東芝 Solidification method of radioactive waste
JP4152562B2 (en) * 2000-03-22 2008-09-17 電気化学工業株式会社 Solidified material and neutron absorber of high concentration boric acid aqueous solution
JP2005343755A (en) * 2004-06-04 2005-12-15 Ishikawajima Harima Heavy Ind Co Ltd Method for solidifying cement
JP2013007599A (en) * 2011-06-23 2013-01-10 Denki Kagaku Kogyo Kk Solidification material for contaminated water and processing method
JP5923362B2 (en) * 2012-03-29 2016-05-24 太平洋マテリアル株式会社 Treatment method for radioactive contaminants
JP5909132B2 (en) * 2012-03-29 2016-04-26 太平洋マテリアル株式会社 Treatment method for radioactive contaminants
JP5909133B2 (en) * 2012-03-29 2016-04-26 太平洋マテリアル株式会社 Treatment method for radioactive contaminants
JP2013213702A (en) * 2012-03-30 2013-10-17 Ihi Corp Method for producing solidified body, method for producing crushed aggregate, method for producing earth crust-like composition, solidified object, crushed aggregate, paste-form earth crust-like composition, and earth crust-like composition
JP6116976B2 (en) * 2013-04-08 2017-04-19 デンカ株式会社 Ground consolidation method
KR101641281B1 (en) 2016-01-13 2016-07-21 한전원자력연료 주식회사 Solidification agent for solidifying radioactive waste including alumina cement and solidifying method for radioactive waste using the same
CN109903876B (en) * 2017-03-10 2020-07-31 清华大学 Radioactive waste resin cement curing slurry and preparation method thereof
CN108911663A (en) * 2018-07-11 2018-11-30 泰山石膏(辽宁)有限公司 A method of Thistle board is produced using calcium lignosulfonate and naphthalene system composite water-reducing agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634097B2 (en) * 1985-03-22 1994-05-02 電気化学工業株式会社 Solidifying agent for radioactive waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107308A (en) * 2011-11-25 2014-09-04 차이나 제너럴 뉴클리어 파워 코퍼레이션 Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
KR101720397B1 (en) * 2011-11-25 2017-03-27 차이나 제너럴 뉴클리어 파워 코퍼레이션 Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
KR20220104892A (en) * 2021-01-19 2022-07-26 거성종합건설주식회사 Composition for reinforcing soft ground, its manufacturing method and device, and construction method using the same
KR102504010B1 (en) 2021-01-19 2023-02-24 거성종합건설주식회사 A manufacturing device for a composition for strengthening soft ground and a construction method using the composition for strengthening the ground

Also Published As

Publication number Publication date
JPS63289498A (en) 1988-11-25

Similar Documents

Publication Publication Date Title
JP2513690B2 (en) Solidifying agent for radioactive waste
JP5219999B2 (en) Cement-based composition for embedding boron-containing aqueous solution, embedding method, and cement grout composition
JP2009537433A5 (en)
KR910005930B1 (en) Encapsulation of boric acid slurries
JPH0634097B2 (en) Solidifying agent for radioactive waste
EP2784039B1 (en) Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
CN108298881A (en) A kind of geological cement and its application for curing Radioactive chemical sludge
JP2801517B2 (en) Curable inorganic slurry and method for solidifying waste using the inorganic slurry
JP2001264488A (en) Solidifying material for concentrated boric acid aqueous solution and neutron absorber
JPS58195200A (en) Method of improving reservation of radioactive nuclide at solidifying radioactive waste
JP3809045B2 (en) Co-solidification method for low-level radioactive wet waste generated from boiling water nuclear power plants
JP2501576B2 (en) Solidifying agent for radioactive waste
EP1137014B1 (en) Co-solidification of low-level radioactive wet wastes produced from BWR nuclear power plants
JPH01223398A (en) Radioactive waste hardener
Roy et al. The chemistry of cementitious systems for waste management: The Penn state experience
JPH0232600B2 (en) IONKOKANJUSHISUISEIEKIKONGOBUTSUOSEMENTOCHUNIFUNYUSURUHOHO
Atabek et al. Nuclear waste immobilization in cement-based materials: Overview of French studies
JP3833294B2 (en) Solidification method of radioactive waste
JP5759294B2 (en) Material for immobilizing radioactive iodine, porous concrete for immobilizing radioactive iodine, and method for immobilizing radioactive iodine
JPH0646235B2 (en) Solidification material for radioactive waste
Oleinik et al. Incorporation of radioactive ion-exchange resins in a slag binder
KR20220052488A (en) Method for manufacturing sollidification form using radioactive waste concrete based on usage of cement solidification agent
JPS6367879B2 (en)
RU2206933C2 (en) Method for introducing radioactive ion-exchange resins into fast-hardening cement
KR20210062924A (en) Method for manufacturing sollidification form using radioactive waste concrete