JPH06338795A - Highly stable resonance frequency controller for cavity resonator - Google Patents

Highly stable resonance frequency controller for cavity resonator

Info

Publication number
JPH06338795A
JPH06338795A JP15132793A JP15132793A JPH06338795A JP H06338795 A JPH06338795 A JP H06338795A JP 15132793 A JP15132793 A JP 15132793A JP 15132793 A JP15132793 A JP 15132793A JP H06338795 A JPH06338795 A JP H06338795A
Authority
JP
Japan
Prior art keywords
resonance frequency
cavity resonator
signal
deviation
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15132793A
Other languages
Japanese (ja)
Other versions
JP2995131B2 (en
Inventor
Hirohiko Suga
弘彦 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP5151327A priority Critical patent/JP2995131B2/en
Publication of JPH06338795A publication Critical patent/JPH06338795A/en
Application granted granted Critical
Publication of JP2995131B2 publication Critical patent/JP2995131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a highly stable resonance frequency controller for a cavity resonator capable of controlling the resonance frequency of the cavity resonator extending over from a short period to a long period with high accuracy. CONSTITUTION:A resonance frequency sensing signal generated from a resonance frequency sensing signal generator 2 is injected to the cavity resonator 1 via a coupling means 3 for input use including an element 3a for use of resonance frequency control. Deviation information from the resonance frequency is taken out by both a coupling means 4 for output use and a resonance frequency deviation detecting means 5, and is sent to an electronic control means 6 and a correction control signal generating part 10. Two correction control signals generated by the correction control signal generating part 10 are sent to both the electronic control means 6 of an electronic control system and a temperature control means 8 which comprises a temperature control system along with a temperature sensing element 7 and a heater 9 for heating, respectively, thereby, the control values of two control systems can be corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素メーザ原子周波数標
準器に用いられる空胴共振器の高安定共振周波数制御装
置に係り、特に共振周波数偏差検出手段により得られた
共振周波数の偏差信号を基に共振周波数の電子制御系の
制御信号と空胴共振器の温度制御系の制御信号とにそれ
ぞれの時定数に応じた補正制御信号を加えることにより
空胴共振器の共振周波数を短期的にも長期的にも精度高
く安定に制御する空胴共振器の共振周波数制御装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly stable resonance frequency control device for a cavity resonator used in a hydrogen maser atomic frequency standard, and more particularly to a resonance frequency deviation signal obtained by a resonance frequency deviation detecting means. In addition, the resonance frequency of the cavity resonator can be reduced in the short term by adding a correction control signal according to each time constant to the control signal of the electronic control system of the resonance frequency and the control signal of the temperature control system of the cavity resonator. The present invention relates to a resonance frequency control device for a cavity resonator, which performs stable control with high accuracy in the long term.

【0002】[0002]

【従来の技術】高い周波数安定度が得られる水素メーザ
原子周波数標準器の欠点はメーザ発振周波数(fm)が空胴
共振器の共振周波数(fc)によって若干ながら影響を受け
ることである。その関係は次式による。 fm−fo=(Qc/Ql) (fc −fo) ここで fo: 水素原子固有の共鳴周波数 Qc: 空胴共振器のQ値 Ql: 共鳴線のQ値 そこで共振周波数(fc)を常に水素原子固有の共鳴周波数
(fo)に一致させるべく空胴共振器の共振周波数制御装置
を設けている。
2. Description of the Related Art A drawback of a hydrogen maser atomic frequency standard that can obtain high frequency stability is that the maser oscillation frequency (fm) is slightly affected by the resonance frequency (fc) of the cavity resonator. The relationship is as follows. fm−fo = (Qc / Ql) (fc −fo) where fo: Resonant frequency peculiar to hydrogen atom Qc: Q value of cavity resonator Ql: Q value of resonance line Therefore, resonant frequency (fc) is always hydrogen atom. Natural resonance frequency
A resonance frequency control device for the cavity resonator is provided to match (fo).

【0003】水素メーザ原子周波数標準器における空胴
共振器の共振周波数制御法としては、水素圧クエンチン
グ法や共振周波数センシング法などが知られているが、
いずれの制御法も共振周波数の偏位量 (Δfc=fc−fo)
に比例した偏差信号により、空胴共振器の温度または空
胴共振器に結合した電子制御素子のバイアス電圧を制御
することで、共振周波数(fc)を制御している。
Hydrogen pressure quenching method and resonance frequency sensing method are known as resonance frequency control methods for the cavity resonator in the hydrogen maser atomic frequency standard.
In both control methods, the amount of deviation of the resonance frequency (Δfc = fc-fo)
The resonance frequency (fc) is controlled by controlling the temperature of the cavity resonator or the bias voltage of the electronic control element coupled to the cavity resonator by the deviation signal proportional to the.

【0004】[0004]

【発明が解決しようとする課題】水素圧クエンチング法
は水素ビーム量を増減させて、前記Δfcを検出している
ため精度よく偏差信号を得るには検出時間が長くかか
る。その上、水素メーザ発振電力が変化するため周波数
安定度が損なわれる。また同等性能以上の高安定な外部
参照信号が別途必要な上に、制御系がオープンループで
あるため制御に遅延が生ずる、等の問題がある。
In the hydrogen pressure quenching method, the amount of hydrogen beam is increased / decreased to detect the Δfc, so that it takes a long time to obtain a deviation signal with high accuracy. Moreover, the frequency stability is impaired because the hydrogen maser oscillation power changes. Further, there is a problem in that a highly stable external reference signal having equivalent performance or higher is additionally required, and control is delayed because the control system is an open loop.

【0005】共振周波数センシング法は空胴共振器に入
力結合手段を通して共振周波数センシング信号発生器か
らのセンシング周波数 (fd±Δf)を入力し、共振周波数
偏差検出信号を出力用結合手段より取り出し、共振周波
数偏差量に見合った制御信号で電子制御素子を制御す
る。この方法はクローズドループの制御系であるため実
時間制御が可能である。
In the resonance frequency sensing method, the sensing frequency (fd ± Δf) from the resonance frequency sensing signal generator is input to the cavity resonator through the input coupling means, the resonance frequency deviation detection signal is extracted from the output coupling means, and the resonance frequency is detected. The electronic control element is controlled by the control signal corresponding to the frequency deviation amount. Since this method is a closed-loop control system, real-time control is possible.

【0006】しかし、前述の水素圧クエンチング法もそ
うであるが、この共振周波数センシング法も共振周波数
偏差検出信号は微弱で雑音が混入し易く、制御信号に誤
差を含み易い、また、電子制御系による制御は時定数が
短いので、誤差を含んだ制御信号によって不要の変動を
生じ易い、等の欠点を持つ。また他の制御方法として温
度制御系による制御があるが、空胴共振器の温度制御系
による制御は一般に時定数が長くこの系の制御のみでは
必要とする共振周波数の修正制御に遅れを生ずる。特に
堅牢構造を目的とした金属製空胴共振器を使用した場合
は、必要とする周波数安定度を得るには短期間の共振器
温度変動も1×10-5℃以下に抑える必要があるので対応
できない。
However, as in the above-mentioned hydrogen pressure quenching method, this resonance frequency sensing method also has a weak resonance frequency deviation detection signal, and noise is easily mixed in, and the control signal is apt to contain an error, and the electronic control is performed. Since the control by the system has a short time constant, it has a drawback that a control signal including an error easily causes unnecessary fluctuation. Further, as another control method, there is a control by a temperature control system, but the control by the temperature control system of the cavity resonator generally has a long time constant and delays the correction control of the required resonance frequency only by the control of this system. Especially when using a metal cavity resonator for the purpose of a robust structure, it is necessary to suppress the resonator temperature fluctuation for a short time to 1 × 10 -5 ℃ or less to obtain the required frequency stability. I can not cope.

【0007】本発明は空胴共振器の共振周波数制御装置
におけるかかる欠点を以下の手段により解消することに
よって、空胴共振器の共振周波数を短期から長期に亘り
精度高く制御できる空胴共振器の高安定共振周波数制御
装置を提供しようとするものである。
The present invention solves the above-mentioned drawbacks in the resonance frequency control device for a cavity resonator by the following means, thereby making it possible to accurately control the resonance frequency of the cavity resonator from a short term to a long term. It is intended to provide a highly stable resonance frequency control device.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、電子制御系と温度制御系とを備え、補
正制御信号発生器を設け、共振周波数センシング法によ
り得られた偏差信号を基に、電子制御系と温度制御系そ
れぞれの時定数に応じた補正制御信号を生成して各系の
制御信号に加えることとした。特に、共振周波数の電子
制御系の時定数の短い特徴と空胴共振器の温度制御系の
時定数の長い特徴とを組み合わせて、短期間から長期間
に亘り、空胴共振器の共振周波数を精度高く制御するよ
うにした。また、補正制御信号発生器において、偏差検
出値を空胴共振器の温度制御系の時定数時間で平均化し
た制御値、または、時定数時間何周期分か将来の推測制
御値を発生させ、その補正制御信号を空胴共振器の温度
制御に加算して、共振周波数の長期間の高確度と高安定
度を得るようにした。
In order to solve the above problems, the present invention comprises an electronic control system and a temperature control system, a correction control signal generator is provided, and a deviation signal obtained by a resonance frequency sensing method. Based on the above, it was decided to generate a correction control signal according to the time constants of the electronic control system and the temperature control system and add it to the control signal of each system. In particular, by combining the short time constant characteristic of the electronic control system of the resonance frequency and the long time characteristic of the temperature control system of the cavity resonator, the resonance frequency of the cavity resonator can be changed from a short period to a long period. Controlled with high accuracy. Further, in the correction control signal generator, the control value obtained by averaging the deviation detection values with the time constant time of the temperature control system of the cavity resonator, or generating a future estimated control value for how many time constant time periods, The correction control signal is added to the temperature control of the cavity resonator to obtain long-term accuracy and stability of the resonance frequency.

【0009】[0009]

【作用】以下図1に基づいて本発明の作用について説明
する。水素メーザ原子周波数標準器において、空胴共振
器1の共振周波数偏差検出手段5から得られる偏差信号
を基に、図1に示す如く補正制御信号発生器10にて2つ
の補正制御信号を発生する。一方は空胴共振器の電子制
御手段の短い時定数に見合った時間τe の間の偏差分を
τe で平均化し、これを基に振幅Ae 、時間τe の電子
制御信号を発生せしめ、空胴共振器の電子制御手段を制
御する。他方、空胴共振器の温度制御手段の長い時定数
に見合った時間τt の間の偏差分をτt で平均化し、こ
れを基に振幅At 、時間τt の温度制御信号を発生せし
め空胴共振器の温度制御手段を制御する。上記2つの制
御手段によって制御される空胴共振器は共振周波数の短
期の速い変動については電子制御手段による、長期に亘
るゆっくりとした変動については、主として、温度制御
手段による制御によって、短期から長期に亘り精度よく
共振周波数を水素原子固有の共鳴周波数に等しくなるよ
う維持する。
The operation of the present invention will be described below with reference to FIG. In the hydrogen maser atomic frequency standard, two correction control signals are generated by the correction control signal generator 10 as shown in FIG. 1 based on the deviation signal obtained from the resonance frequency deviation detecting means 5 of the cavity resonator 1. . On the other hand, the deviation between the time τe corresponding to the short time constant of the electronic control means of the cavity resonator is averaged by τe, and the electronic control signal of the amplitude Ae and the time τe is generated based on this, and the cavity resonance is generated. Control the electronic control means of the vessel. On the other hand, the deviation between the time τt corresponding to the long time constant of the temperature control means of the cavity resonator is averaged by τt, and the temperature control signal having the amplitude At and the time τt is generated based on this, and the cavity resonator is generated. Control the temperature control means. The cavity resonator controlled by the above-mentioned two control means is short-term to long-term control by the electronic control means for short-term fast fluctuations of the resonance frequency, and mainly by temperature control means for long-term slow fluctuations. The resonance frequency is accurately maintained to be equal to the resonance frequency peculiar to the hydrogen atom.

【0010】[0010]

【実施例】図1及び図2により本発明の一実施例につい
て詳細に説明する。メーザ発振用の空胴共振器1は、共
振周波数制御用素子3aを含む入力用結合手段3、出力用
結合手段4、感温素子7、及び加熱用ヒータ9を備えて
いる。前記空胴共振器1の共振周波数の電子制御系は、
共振周波数センシング信号発生器2、共振周波数制御用
素子3aを含む入力用結合手段3、出力用結合手段4、共
振周波数偏差検出手段5、及び電子制御手段6で構成さ
れる。前記空胴共振器1の温度制御系は、感温素子7、
温度制御手段8、及び加熱用ヒータ9で構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to FIGS. The cavity resonator 1 for maser oscillation includes an input coupling means 3 including a resonance frequency control element 3a, an output coupling means 4, a temperature sensitive element 7, and a heating heater 9. The electronic control system of the resonance frequency of the cavity resonator 1 is
The resonance frequency sensing signal generator 2, the input coupling means 3 including the resonance frequency control element 3a, the output coupling means 4, the resonance frequency deviation detection means 5, and the electronic control means 6. The temperature control system of the cavity resonator 1 includes a temperature sensitive element 7,
It is composed of a temperature control means 8 and a heater 9 for heating.

【0011】この2つの制御系に補正制御信号発生器10
の出力がそれぞれ加算される。前記補正制御信号発生器
10は、図2に示すように、2系統の積算器11,11'、複数
の記録器12a,12b,・・・、12a',12b',・・・、複数の差
分記録器13a,13b,・・・、13a',13b',・・・、推測制御
器14,14'及びそれぞれの制御系時定数に見合ったクロッ
クを発生するクロック発生器15,15'で構成される。
A correction control signal generator 10 is provided for these two control systems.
Outputs are added together. The correction control signal generator
As shown in FIG. 2, reference numeral 10 denotes two systems of integrators 11 and 11 ', a plurality of recorders 12a, 12b, ..., 12a', 12b ', ..., A plurality of difference recorders 13a and 13b. , ..., 13a ', 13b', ..., Guessing controllers 14, 14 'and clock generators 15, 15' for generating clocks corresponding to respective control system time constants.

【0012】ここで、空胴共振器1は堅牢構造とするた
め、金属或いは内面を導体化した絶縁物(例えば石英ガ
ラス)で構成される。必然的に熱容量が大となり温度制
御のみでは制御応答特性は劣化する。しかし、大きな熱
容量を有することは短期間での温度変動が抑えられるこ
とになり、それによって共振周波数の偏差検出時間を延
ばすことが可能となり、また、検出される偏差信号の誤
差は積分効果によって減少する。
Since the cavity resonator 1 has a robust structure, it is made of metal or an insulator (eg, quartz glass) whose inner surface is made into a conductor. The heat capacity inevitably becomes large, and the control response characteristics deteriorate only with temperature control. However, having a large heat capacity suppresses temperature fluctuations in a short period of time, which makes it possible to extend the resonance frequency deviation detection time and reduce the error of the deviation signal detected by the integration effect. To do.

【0013】前記電子制御系は、以下のように機能す
る。共振周波数センシング信号発生器2は、所望の共振
周波数fd(≒f0)の両側に同一振幅で、相等しくΔf 離
れた2周波fd−Δf 、fd+Δf を或一定周期で交互に切
り換えて発振し、共振周波数センシング信号とする。該
共振周波数センシング信号を入力用結合手段3を介して
空胴共振器1へ注入する。空胴共振器1は入力用結合手
段3から出力用結合手段4への通過型の周波数弁別器と
して働き、水素原子の共鳴周波数からの空胴共振器1の
共振周波数の離調に応じて、空胴共振器1のQ曲線によ
って振幅差を生じた(すなわち、周波数シフト変調され
た)共振周波数センシング信号は、出力用結合手段4に
よって空胴共振器1から取り出される。
The electronic control system functions as follows. The resonance frequency sensing signal generator 2 oscillates by alternately switching between two frequencies fd−Δf and fd + Δf, which have the same amplitude on both sides of a desired resonance frequency fd (≈f0) and are equally spaced by Δf, in a certain fixed period. Use as frequency sensing signal. The resonance frequency sensing signal is injected into the cavity resonator 1 via the input coupling means 3. The cavity resonator 1 acts as a pass-through frequency discriminator from the input coupling means 3 to the output coupling means 4, and depending on the detuning of the resonance frequency of the cavity resonator 1 from the resonance frequency of hydrogen atoms, A resonance frequency sensing signal having an amplitude difference caused by the Q curve of the cavity resonator 1 (that is, frequency-shift modulated) is extracted from the cavity resonator 1 by the output coupling means 4.

【0014】共振周波数の離調情報を含んだ該共振周波
数センシング信号は、共振周波数偏差検出手段5によっ
て共振周波数センシング信号発生器2からの参照信号を
基にして同期検波され、離調情報分のみが取り出され
る。検出された離調情報信号は電子制御手段6及び前記
補正制御信号発生器10へ出力される。電子制御手段6で
補正制御信号発生器10からの短周期変動を補正する補正
制御信号と加え合わされ、共振周波数の離調を修正する
制御電圧として共振周波数制御用素子3aに加えられる。
その結果、空胴共振器1の共振周波数を所望の周波数に
維持する。
The resonance frequency sensing signal containing the resonance frequency detuning information is synchronously detected by the resonance frequency deviation detecting means 5 based on the reference signal from the resonance frequency sensing signal generator 2, and only the detuning information component is detected. Is taken out. The detected detuning information signal is output to the electronic control means 6 and the correction control signal generator 10. The electronic control means 6 adds the correction control signal from the correction control signal generator 10 to the correction control signal to correct the short-cycle fluctuation, and applies it to the resonance frequency control element 3a as a control voltage to correct the detuning of the resonance frequency.
As a result, the resonance frequency of the cavity resonator 1 is maintained at a desired frequency.

【0015】一方、温度制御系は以下のように機能す
る。空胴共振器1の温度を感温素子7で検出し、温度制
御手段8の入力信号とする。温度制御手段8は予め設定
した設定温度に相当する信号と該入力信号とを比較しそ
の誤差修正分に、前記補正制御信号発生器10の長周期変
動を補正する補正制御信号を加え合わせて加熱ヒータ9
を制御し、前記空胴共振器1の温度を設定温度に保つよ
うに制御する。
On the other hand, the temperature control system functions as follows. The temperature of the cavity resonator 1 is detected by the temperature sensitive element 7 and used as an input signal of the temperature control means 8. The temperature control means 8 compares a signal corresponding to a preset set temperature with the input signal, and adds a correction control signal for correcting a long cycle fluctuation of the correction control signal generator 10 to the error correction amount and heats it. Heater 9
Is controlled so that the temperature of the cavity resonator 1 is maintained at a set temperature.

【0016】ここで、補正制御信号発生器10について説
明する。補正制御信号発生器10は、共振周波数偏差検出
手段5の出力を取り込み、以下のように機能する。電子
制御系に帰還する一方の系統は、電子制御系の短い時定
数τe (数秒以下)に見合ったクロックを発生するクロ
ック発生器15のクロックを受け、各クロック間の共振周
波数変動分に相当する電圧変化を積算器11で積算し、次
のクロックを受けて積算値を次の記録器12a へ転送す
る。記録器12a の以前の記録内容は同クロックを受けて
記録器12b へ転送される。出力し終えた積算器は一旦積
算値を0にリセットし、次のクロックまでの間、再び入
力値を積算する動作を繰り返す。かようにして積算器11
と複数の記録器12a,12b,・・・は短周期のクロック(≒
τe )で駆動されるシフトレジスタとして動作する。こ
の時点で離調情報信号中に含まれるクロックより速い周
期の雑音成分は除去され、より制御精度が増す。
The correction control signal generator 10 will be described below. The correction control signal generator 10 takes in the output of the resonance frequency deviation detecting means 5 and functions as follows. One system that feeds back to the electronic control system receives the clock of the clock generator 15 that generates a clock corresponding to the short time constant τe (several seconds or less) of the electronic control system, and corresponds to the resonance frequency variation between the clocks. The voltage change is integrated by the integrator 11, and the integrated value is transferred to the next recorder 12a in response to the next clock. The previously recorded contents of the recorder 12a are transferred to the recorder 12b by receiving the same clock. The integrator that has finished outputting resets the integrated value to 0 once and repeats the operation of integrating the input value again until the next clock. Thus integrator 11
And a plurality of recorders 12a, 12b, ...
It operates as a shift register driven by τ e). At this point, the noise component of a cycle faster than the clock contained in the detuning information signal is removed, and the control accuracy is further increased.

【0017】また、複数個の差分記録器13a,13b,・・・
も同じクロックを受けて動作し、積算器11の出力値と1
段目記録器12a の値、1段目記録器12a の値と2段目記
録器12b の値、以下同様にして相隣れる記録器の値の差
を同じ各クロック毎に記録する。つまり、クロック毎の
変動分(移動平均値)が記録される。そして、推測制御
器14は複数個の差分記録器の値の差を検出し、その変動
程度に応じて(例えば微係数に比例するよう)補正制御
信号出力振幅Ae を可変する。このようにして、短時間
内に相隣れる複数個の差分記録器から得られる偏差値が
少なくとも数クロックの間はゼロ推移するような補正制
御信号を出力し、電子制御手段6に加算し、共振周波数
制御用素子3aを制御する。
A plurality of difference recorders 13a, 13b, ...
Also receives the same clock and operates, and the output value of integrator 11 and 1
The difference between the value of the first-stage recording device 12a, the value of the first-stage recording device 12a and the value of the second-stage recording device 12b, and so on, is similarly recorded for each same clock. That is, the fluctuation amount (moving average value) for each clock is recorded. Then, the estimation controller 14 detects the difference between the values of the plurality of difference recorders, and changes the correction control signal output amplitude Ae in accordance with the degree of variation (eg, proportional to the differential coefficient). In this way, a correction control signal is output so that the deviation values obtained from a plurality of difference recorders adjacent to each other within a short period of time shifts to zero for at least several clocks, and is added to the electronic control means 6. The resonance frequency controlling element 3a is controlled.

【0018】一方、温度制御系に帰還する他の一系統は
温度制御系の長い時定数τt (数100 秒以上)に見合っ
たクロックを発生するクロック発生器15' のクロックを
受け、各クロック間の共振周波数変動分に相当する電圧
変化を積算器11' で積算し、次のクロックを受けて積算
器出力値を次の記録器12a'へ転送する。記録器12a'の以
前の記録内容は同クロックを受けて記録器12b'へ転送さ
れる。出力し終えた積算器は一旦積算値を0にリセット
し、次のクロックまでの間、再び入力値を積算する動作
を繰り返す。かようにして積算器11' と複数の記録器12
a',12b',・・・は長周期のクロック(≒τt )で駆動さ
れるシフトレジスタとして動作する。
On the other hand, another system that feeds back to the temperature control system receives the clock of the clock generator 15 'which generates a clock corresponding to the long time constant τt (several hundreds of seconds or more) of the temperature control system, The voltage change corresponding to the resonance frequency fluctuation is accumulated in the integrator 11 ', and the next clock is received and the integrator output value is transferred to the next recorder 12a'. The previously recorded contents of the recorder 12a 'are transferred to the recorder 12b' in response to the same clock. The integrator that has finished outputting resets the integrated value to 0 once and repeats the operation of integrating the input value again until the next clock. In this way the integrator 11 'and multiple recorders 12
a ', 12b', ... Operate as a shift register driven by a long cycle clock (.apprxeq..tau.t).

【0019】また、複数個の差分記録器13a',13b',・・
・も同じクロックを受けて動作し、積算器11' の出力値
と1段目記録器12a'の値、1段目記録器12a'の値と2段
目記録器12b'の値、以下同様にして相隣れる記録器の値
の差を同じ各クロック毎に記録する。つまり、クロック
毎の変動分(移動平均値)が記録される。そして、推測
制御器14' は複数個の差分記録器の値の差を検出し、そ
の変動程度に応じて(例えば微係数に比例するよう)補
正制御信号出力振幅At を可変する。また複数個の差分
記録器から得られる偏差値を直線近似し、1クロック先
の推測偏差値を得て短時間内にゼロ推移するよう推測制
御をさせる補正制御信号(移動平均値または推測偏差
値)を発生し温度制御手段8の出力段へ帰還して、温度
制御系本来の出力に加算し、空胴共振器1の温度を所望
の設定温度に保つよう制御する。
Further, a plurality of difference recorders 13a ', 13b', ...
· Also operates by receiving the same clock, the output value of the integrator 11 ′, the value of the first-stage recorder 12a ′, the value of the first-stage recorder 12a ′ and the value of the second-stage recorder 12b ′, and so on Then, the difference between the values of the recorders adjacent to each other is recorded for each same clock. That is, the fluctuation amount (moving average value) for each clock is recorded. Then, the estimation controller 14 'detects the difference between the values of the plurality of difference recorders, and changes the correction control signal output amplitude At according to the degree of the change (for example, so as to be proportional to the differential coefficient). Also, a correction control signal (moving average value or estimated deviation value) for linearly approximating deviation values obtained from a plurality of difference recorders to obtain an estimated deviation value one clock ahead and performing estimation control so as to shift to zero within a short time ) Is generated and fed back to the output stage of the temperature control means 8 to be added to the original output of the temperature control system, and the temperature of the cavity resonator 1 is controlled to be maintained at a desired set temperature.

【0020】[0020]

【発明の効果】本発明によれば、電子制御系と温度制御
系とを備え、補正制御信号発生器を設けて、共振周波数
の偏差程度を示す偏差信号を基に、電子制御系と温度制
御系のそれぞれに対して補正制御信号を生成して出力
し、共振周波数の短期の変動に対しては電子制御系の制
御が支配的となり、長期の変動に対しては温度制御系の
制御が支配的となるように制御することとしたから、短
期から長期に亘り、空胴共振器の共振周波数を安定して
維持できる。また、前記補正制御信号発生器は、その時
点までの変動の経過から、それ以後の変動を推測して、
補正制御信号を発生するので、共振周波数に変動があっ
ても速やかに所定の値に安定化される。
According to the present invention, an electronic control system and a temperature control system are provided, a correction control signal generator is provided, and the electronic control system and the temperature control are performed on the basis of the deviation signal indicating the deviation degree of the resonance frequency. Generates and outputs a correction control signal for each system, and the electronic control system controls the short-term fluctuations in the resonance frequency, and the temperature control system controls the long-term fluctuations. Since the control is performed so as to be appropriate, the resonance frequency of the cavity resonator can be stably maintained over a short period to a long period. Further, the correction control signal generator, from the course of the change up to that point, inferring the change after that,
Since the correction control signal is generated, even if the resonance frequency fluctuates, it is quickly stabilized to a predetermined value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による空胴共振器の高安定共振周波数制
御装置を示すブロック図である。
FIG. 1 is a block diagram showing a highly stable resonance frequency control device for a cavity resonator according to the present invention.

【図2】本発明の空胴共振器の高安定共振周波数制御装
置の一部である制御信号分配器10の詳細を示すブロック
図である。
FIG. 2 is a block diagram showing details of a control signal distributor 10 which is a part of a highly stable resonance frequency control device for a cavity resonator according to the present invention.

【符号の説明】[Explanation of symbols]

1 空胴共振器 2 共振周波数センシング信号発生器 3 入力用結合手段 3a共振周波数制御用素子 4 出力用結合手段 5 共振周波数偏差検出手段 6 電子制御手段 7 感温素子 8 温度制御手段 9 加熱用ヒータ 10 補正制御信号発生器 11 積算器 12a記録器 13a差分記録器 14 推測制御器 1 cavity resonator 2 resonance frequency sensing signal generator 3 input coupling means 3a resonance frequency control element 4 output coupling means 5 resonance frequency deviation detection means 6 electronic control means 7 temperature sensing element 8 temperature control means 9 heating heater 10 Correction Control Signal Generator 11 Accumulator 12a Recorder 13a Difference Recorder 14 Guessing Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱により収縮または膨張する材料で作ら
れた空胴共振器(1)と、該空胴共振器に設けられた加
熱用ヒータ(9)と、前記空胴共振器の温度変化を感知
する感温素子(7)と、前記空胴共振器から共振周波数
偏差検出信号を取り出す出力用結合手段(4)と、該出
力用結合手段で取り出された共振周波数偏差検出信号と
前記空胴共振器の共振周波数の設定基準値とから共振周
波数の偏差値を求め偏差信号を出力する共振周波数偏差
検出手段(5)と、該共振周波数偏差検出手段によって
出力された共振周波数の偏差程度を示す偏差信号を基に
第1および第2の補正制御信号を出力する補正制御信号
発生器(10)と、前記偏差信号及び第1の補正制御信号
を受けて前記空胴共振器の共振周波数を制御する電子制
御手段(6)と、前記空胴共振器の共振周波数をセンシ
ングするための共振周波数センシング信号を発生する共
振周波数センシング信号発生器(2)と、該共振周波数
センシング信号と前記電子制御手段から出力される電子
制御信号とをあわせて前記空胴共振器に入力する入力用
結合手段(3)と、前記第2の制御信号と前記感温素子
からの信号とを受けて前記加熱用ヒータの電力を制御す
る温度制御手段(8)とを備えた空胴共振器の高安定共
振周波数制御装置。
1. A cavity resonator (1) made of a material that contracts or expands by heat, a heater (9) provided in the cavity resonator, and a temperature change of the cavity resonator. Temperature sensing element (7), an output coupling means (4) for extracting a resonance frequency deviation detection signal from the cavity resonator, a resonance frequency deviation detection signal extracted by the output coupling means, and the cavity. The resonance frequency deviation detecting means (5) for obtaining the deviation value of the resonance frequency from the set reference value of the resonance frequency of the body resonator and outputting the deviation signal, and the deviation degree of the resonance frequency output by the resonance frequency deviation detecting means A correction control signal generator (10) for outputting first and second correction control signals based on the deviation signal shown, and a resonance frequency of the cavity resonator for receiving the deviation signal and the first correction control signal. Electronic control means (6) for controlling, and A resonance frequency sensing signal generator (2) for generating a resonance frequency sensing signal for sensing the resonance frequency of the cavity resonator, and the resonance frequency sensing signal and the electronic control signal output from the electronic control means are combined. Input coupling means (3) for inputting to the cavity resonator, and temperature control means (8) for controlling the power of the heating heater by receiving the second control signal and the signal from the temperature sensitive element. ) A highly stable resonance frequency control device for a cavity resonator, comprising:
JP5151327A 1993-05-28 1993-05-28 Highly stable resonance frequency control device for cavity resonator Expired - Fee Related JP2995131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5151327A JP2995131B2 (en) 1993-05-28 1993-05-28 Highly stable resonance frequency control device for cavity resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5151327A JP2995131B2 (en) 1993-05-28 1993-05-28 Highly stable resonance frequency control device for cavity resonator

Publications (2)

Publication Number Publication Date
JPH06338795A true JPH06338795A (en) 1994-12-06
JP2995131B2 JP2995131B2 (en) 1999-12-27

Family

ID=15516185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5151327A Expired - Fee Related JP2995131B2 (en) 1993-05-28 1993-05-28 Highly stable resonance frequency control device for cavity resonator

Country Status (1)

Country Link
JP (1) JP2995131B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516724A (en) * 2012-03-21 2015-06-11 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Resonant system and resonator excitation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015516724A (en) * 2012-03-21 2015-06-11 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Resonant system and resonator excitation method

Also Published As

Publication number Publication date
JP2995131B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US10382045B2 (en) Digital phase locked loops
US6369659B1 (en) Clock recovery system using wide-bandwidth injection locked oscillator with parallel phase-locked loop
CN102412830B (en) The method and apparatus of clock signal synthesis
CN102439844B (en) Oscillator
JP4742219B2 (en) Voltage controlled oscillator preset circuit
JPH11271476A (en) Reference frequency generating device
US6420938B1 (en) Software controlled crystal oscillator
JPH10260742A (en) Precision voltage generator
JP2995131B2 (en) Highly stable resonance frequency control device for cavity resonator
US20120002707A1 (en) Pll frequency synthesizer
JP2855449B2 (en) Standard frequency signal generator
JPH0856151A (en) Voltage controlled ocsillation circuit
WO2019188990A1 (en) Oscillating device
JPH022721A (en) Phase locked loop oscillation circuit
WO2024057606A1 (en) Mechanical resonator-based oscillators and related methods for generation of a phase used to compensate for temperature-dependent frequency errors
JPS58131820A (en) Phase locked loop circuit
JPS6158322A (en) Phase synchronizing atomic oscillator
US20070008041A1 (en) Layout for a time base
JP2568571B2 (en) Band rejection frequency control device
JP2673365B2 (en) Resonant frequency control device for cavity resonator
JP2000241524A (en) Digital processing pll
Miškinis et al. Frequency stabilization of a quartz oscillator by using the method of delayed differentiation of ambient parameters
JPH0787368B2 (en) Externally controlled atomic oscillator
JPH10282273A (en) Reference frequency generation device
Swanson et al. Characterization of the USNO cesium fountain

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees