JPH06338336A - 導電性不均一中空平板 - Google Patents

導電性不均一中空平板

Info

Publication number
JPH06338336A
JPH06338336A JP5128594A JP12859493A JPH06338336A JP H06338336 A JPH06338336 A JP H06338336A JP 5128594 A JP5128594 A JP 5128594A JP 12859493 A JP12859493 A JP 12859493A JP H06338336 A JPH06338336 A JP H06338336A
Authority
JP
Japan
Prior art keywords
flat plate
porosity
hollow flat
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5128594A
Other languages
English (en)
Inventor
Toshio Matsushima
敏雄 松島
Isao Nemoto
勲 根本
Toshitaka Yumiba
利恭 弓場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5128594A priority Critical patent/JPH06338336A/ja
Publication of JPH06338336A publication Critical patent/JPH06338336A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】 【目的】内部抵抗の少ない高性能の固体電解質燃料電池
を実現することのできる導電性中空平板を提供するこ
と。 【構成】上記目的は、電極材料から作製され、内部に貫
通口を有する平板型電極基板を構成する導電性中空平板
の片面に電解質層と電極層とを積層してなる固体電解質
燃料電池単セルに用いる導電性中空平板において、該中
空平板の電解質層に接触している部分の多孔度が電解質
層に接触していない部分の多孔度よりも大きいことを特
徴とする導電性不均一中空平板とすることによって達成
することができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は固体電解質燃料電池の単
セルの支持板となる導電性中空平板に係り、特に、内部
抵抗の少ない高性能の固体電解質燃料電池を実現するこ
とができる導電性中空平板に関する。
【0002】
【従来の技術】固体電解質燃料電池(Solid Oxide Fuel
Cell; 以下、SOFC と略称する)は、酸素イオンの伝導性
を有する固体電解質の両側に空気極と燃料極とを配置し
た構造を基本とするもので、空気極側に酸素ガスや空気
を、燃料極側に水素ガス等を供給することによって、酸
素イオンが固体電解質を伝導して水素ガスと反応し、こ
の反応に伴う電流を各電極から取り出すことで発電を行
っている。従って、固体電解質は酸素イオンの伝導性に
優れているとともに、酸素や水素ガスの透過を防止し得
る必要があり、緻密な膜であることが要求される。しか
し、固体電解質の導電率は、1000℃においても他の構成
材料に比べて小さいので、発電で得た電流を取り出す際
の電圧降下を抑えるためには、固体電解質の膜を50〜10
0μm程度の薄い膜とする必要がある。一方、各電極に
は、各ガスが固体電解質と電極との接触部に容易に到達
できるように、多孔質とすることが要求される。このよ
うに、固体電解質は緻密な薄膜とし、該固体電解質膜の
両側に多孔質の電極を形成する必要がある。
【0003】しかし、このような薄膜構造のセルは機械
的な強度が不十分であるので、実用的には、図1の従来
例に示すように、多孔性で不活性な物質、例えばカルシ
ア安定化ジルコニア、からなる管13を支持体とし、この
上に空気極3、固体電解質2及び燃料極4の薄膜を重ね
て形成する方式が提案されている(ウエスチングハウス
社)。しかし、この方式においては、発電時の電流 I が
図に示したように電極の薄膜中を通って隣接するセルに
流れるため、この部分での電圧降下が無視できないもの
となり、必ずしも十分な発電特性が得られないという問
題があった。また、円筒状の多孔質管を支持体として使
用し、複数の単セルを組み合わせて発電部を構成するの
で、円筒の内外における空間部の占める容積が大きくな
り、この結果、発電部全体の容積が大きくなるという問
題もあった。
【0004】以上述べたような従来技術の有する問題点
を改善するために、本発明者等は、先に、支持体の材料
を空気極材料とし、積層した場合の死容積を減少させる
ために、形状を2枚の平板の間に複数の連結部を設けた
中空状とし、この表面に発電部を形成する方式を提案し
た(特開平 5‐36417)。この提案は図2に示すような構
造のセルであり、(a)はその外観図、(b)は(a)の B‐B'
断面を示した図である。この単位発電セル20では、空気
極材料によって薄板状で複数の貫通口25‐1を有する中
空状の支持体25を作製し、その表面に固体電解質21、燃
料極22の各層を形成し、燃料極22の反対側の表面に集電
層23を設けてある。固体電解質21及びその上面に形成す
る燃料電極22は貫通口25‐1に交差する方向に横長とな
る形状として複数配列する。また、集電極23は燃料電極
22の反対側に支持体25のほぼ全面を覆うように設ける。
ここで、支持体25は空気極材料として通常使用されてい
るLaSrMnO3を用いて作製し、固体電解質21や燃料電極22
の各層は何れも溶射法によって作製し、固体電解質21の
層はイットリア安定ジルコニア(イットリア含有量は8
モル%、略称YSZ)、燃料電極22は NiO と YSZ の混合粉
末で形成されるサーメットを用いて、それぞれ50〜200
μmの厚さに作製する。また、固体電解質21の層の反対
側の面に設ける集電層23も、溶射法によって Ni‐Al2O3
や LaCrO3の層を形成する。また、これらの層を設けな
い部分には、必要によって、ガスの透過を防止するため
に、アルミナ等によって緻密な表面保護層24を形成す
る。
【0005】
【発明が解決しようとする課題】しかしながら、上記の
ような構成にすると、支持体の材料となる電極に対応し
たガスは支持体内の貫通口25‐1を流れることになるの
で、支持体の両端部におけるガスの気密性を確保してお
くだけでガスシール性を確保することができるが、この
場合には、電極材料からなる支持体は単セルを支えると
ともに、複数のセルを直列接続した際の圧迫力にも耐え
る必要があり、ある程度の機械的強度が必要となる。一
方、このような強度の確保だけでなく、支持体は内部に
ガスを通し厚さ方向には電流を流す必要があるので、そ
のようなガスの通過抵抗の増加を抑えるとともに、支持
板そのものの電気抵抗も極力抑える必要があった。ま
た、重要なことは、YSZ を形成した表面へのガスの供給
が十分に行われることであり、このためには、その部分
が多孔性に富んでいることが必要である。この方式の S
OFC で用いられるような支持体の製造方法としては押し
出し成形法があるが、この方法では成形体全体が均一な
物性となったものが作製され、反応に必要な多孔性を重
視して支持体を形成すると、成形体全体が多孔性に富ん
だものとなってしまう。
【0006】一般に、電極の多孔性としては30%前後の
値が要求されているが、焼結体の強度は多孔度とも関連
しており、多孔度の増加につれて低下するので、このよ
うな多孔度を持った支持体を作製すると、その支持体の
機械的な強度は低いものになってしまう。このような強
度の不足を補うためには支持体の厚さを増すことが考え
られるが、板の厚さを増加させると板の電気抵抗が増
し、中空基板を使用したにも拘らず、単セルの特性を十
分に発揮できないという重大な欠点があった。
【0007】すなわち、固体電解質を形成した薄板は電
極として作用する部分であり、多孔性が必要であるが、
これ以外の部分については導電部、及び機械的強度の確
保の付与部としてのみ作用すれば良いので、緻密な焼結
体として、高い導電性を与えるとともに、板の強度も高
くすることが考えられる。このような対策を施すと、中
空板を使用した方式の SOFC の発電特性が向上するが、
このように多孔性が部分的に異なる不均一な中空板の製
造方法はこれまで確立されていなかった。
【0008】本発明の目的は、上記従来技術の有してい
た課題を解決して、内部抵抗の少ない高性能の固体電解
質燃料電池を実現することのできる導電性中空平板を提
供することにある。
【0009】
【課題を解決するための手段】上記目的は、電極材料か
ら作製され、内部に貫通口を有する平板型電極基板を構
成する導電性中空平板の片面に電解質層と電極層とを積
層してなる固体電解質燃料電池単セルに用いる導電性中
空平板において、該中空平板の電解質層に接触している
部分の多孔度が電解質層に接触していない部分の多孔度
よりも大きいことを特徴とする導電性不均一中空平板と
することによって達成することができる。なお、上記中
空平板は、一方を多孔体、他方を緻密体となるように調
製したスラリーから形成したテープキャスト体の積層と
焼結とによって容易に得ることができる。
【0010】
【作用】従来の円筒型支持管を使用する SOFC では、多
孔質チューブ上に固体電解質薄膜、各電極等を積層して
いた。このような円筒型では次のような問題点があっ
た。(イ) 発電電流が電極内を面に沿って流れ、電流の
通路が長くなるため、内部抵抗がおおきくなること、
(ロ) 支持体が円筒であるためにこれらを複数接続した
場合、発電部が大きくなり、出力密度に限界が生じるこ
と。
【0011】このような欠点を解決するために、電極材
料によって支持体を作製し、かつ、支持体の形状を中空
平板状としてこの表面に発電部を形成する方式を提案
し、その結果、電流は電極に対して垂直に流れるように
なり、従来の円筒型で見られたような電流の電極内の横
方向の流れを防止することができ、放電特性の改善と発
電部の小型化が達成された。しかし、従来、このような
中空平板状の支持体は全体の物性が均一な材料で作製さ
れており、この方式のセルの性能向上に効果を有する、
発電部形成部のみを多孔性とした支持板の作製は行われ
ていなかった。
【0012】これに対し、本発明構造の導電性不均一中
空平板とすることによって、上記従来技術が有していた
問題点がすべて解消され、部分的に多孔性の異なる中空
平板を容易かつ経済的に作製することができ、これによ
って内部抵抗の少ない高性能な SOFC を実現することが
できる。
【0013】
【実施例】以下、本発明の導電性不均一中空平板につい
て、実施例によって具体的に説明する。
【0014】図3に本発明の中空状の空気極基板の構造
を示す。ここで、30は支持体、30‐1 は多孔性に富んだ
部分、30‐2 は緻密性に富んだ部分、30‐3 は貫通口を
示す。このような中空状平板の多孔性に富んだ部分30‐
1の表面に電解質21と燃料極22の層を形成して単セルを
作製した。これらの層の形成は、従来技術の場合と同様
に、溶射法によって行った。また、電解質形成面の反対
側にランタンクロマイトを溶射して集電層23を形成し
た。また、これらの薄膜を形成した部分以外には、アル
ミナによって緻密な表面保護層24を形成した。図5に、
本発明による中空状空気極基板を使用して作製した単セ
ルの断面図を示す。
【0015】次に、上記中空状平板の作製手順について
説明する。この実施例では、空気極材料として一般的に
広く使用されているペロブスカイト構造を有する(La1-X
SrX)YMnO3(0≦X≦0.6、0≦Y≦0.2)を取上げ、この中か
ら組成 La0.8Sr0.2MnO3およびLa0.9Sr0.1MnO3、平均粒
径1〜3μmの原料粉末を使用した。また、中空平板の
作製法としてはシート成形体を熱融着させる方法を用
い、熱融着させたグリーン体を焼結することによって中
空状の物体を得た。シート成形体はドクターブレード法
によって作製し、これに必要なスラリーは下記の混合比
(重量)で調合した。
【0016】 原料粉末 100 結合剤 10〜15 可塑剤 5〜10 溶媒 200 なお、上記の結合剤としてはポリビニルブチラール、可
塑剤としてはフタル酸ブチル、溶媒としてはイソブチル
アルコールを使用した。ここで、結合剤の量と可塑剤の
量とに範囲を設けたのは、原料粉末の粒径が異なるとそ
の表面積も変わり、同一の使用量ではスラリーの性状に
差が生じるので、これを適切に調節するためである。こ
の他に、スラリーの性状に応じて分散剤と消泡剤とを少
量添加した。このような混合物を約24〜48時間ボールミ
ルによって撹拌した後、減圧下で脱気し粘度を調整し、
この後、ドクターブレード装置によってシート成形体を
得た。
【0017】このようにして作製した成形体を約400℃
において脱脂し、この後1200〜1400℃で焼結させ、焼結
特性を求めた。一例として、各温度で2時間焼結させた
ときの焼結特性を図4に示す。収縮率は、焼結温度と原
料粉末の粒径とに関係しており、焼結温度が高いほど大
きな収縮を示すが、ある温度以上の領域では一定の値に
収束する傾向がある(a)。収束する値は原料粉末の粒径
に依存し、粒径の小さい方が収縮率が大きくなる。一
方、収縮率と焼結体の密度との関係を見ると、これらは
ほぼ直線の関係になることがわかる(b)。
【0018】一方、これらと同様の収縮特性を有し、密
度のみを変えた焼結体を得るため、ドクターブレード法
で使用するスラリー中に所定量の炭素粉末を混入させ
た。添加する炭素粉末は粒径1〜3μmの粉末で、添加
量は原料粉末に対し10〜30重量%とした。スラリーを上
記と同様の方法で調製し、シート成形を行い、焼結特性
を求めた。収縮率は炭素の添加によって殆ど影響されな
かったが、焼結体の密度は炭素の添加によって変えるこ
とができた。炭素の添加によって密度は低下し、焼結体
の多孔度の向上を図ることができた。
【0019】次に、上記で得たシート成形体を所定の大
きさに切断した後、加熱、加圧し、中空状の外観を有す
るシート融着体を作製した。なお、このときの加熱・加
圧条件はシートの軟らかさによって変える必要がある
が、概ね70〜80℃、30〜70kg/cm2の条件内で行った。電
解質を形成する面には炭素混入シートを配置し、中空体
の形状は各層に重ねるシートの形状を選択することで任
意の形とすることができた。なお、この際考慮すべきこ
とは、焼結時におけるシート成形体の収縮であり、この
ような収縮を見込んで所定の大きさの焼結体となるよう
に融着体を作製した。具体的には、図6に示したよう
に、シートと中間連結部(b)に炭素混入シート(a)を重ね
て、中空状平板の融着体(c)を作製した。このようにし
て、片側が多孔性で他の面及び中間の連結部が緻密性に
富んだ中空状平板の融着体を作製することができた。こ
のように融着した中空平板を400℃において脱脂し、こ
の後1300℃で焼結して中空平板状基板を作製した。中空
平板の大きさとしては、100×150mm、厚さ5mm程度のも
のが作製できた。
【0020】なお、焼結の進行は使用する原料粉末の粒
径と結合剤、可塑剤の添加量とによって影響されるの
で、これらの影響を考慮して使用原料に応じて温度と時
間とを適宜選定する。粒径が小さい原料は表面積が大き
く、低温領域から焼結が始まるので低温・短時間の条件
で焼成した(例えば、1250℃、2時間)。このように、焼
成条件を原料粉末や結合剤等の添加量に応じ適宜選定し
て焼成することで多孔性部の多孔度を30%前後とした焼
結体を得、このとき、緻密性に富んだ部分の多孔度は5
〜10%前後となった。なお、酸化剤極の導電率は多孔度
によっても左右され、この焼結体の正味の導電率(1000
℃)は以下のようであった。
【0021】 多孔性部 導電率(1000℃) 100 S/cm 緻密部 同上 150〜200 S/cm 本発明の導電性不均一中空平板を用いた SOFC の動作に
当っては、従来の SOFC の場合と同様に、単セルを1000
℃等の温度条件下に設置し、支持体25の内側に酸化剤ガ
スを、外側に水素ガスを供給した。この単セルを使用し
た発電モジュールの構成、及び、発電モジュールにおけ
るガスの供給方法等については特開平5‐36417に示した
方法を好適に用いることができる。
【0022】
【発明の効果】以上述べてきたように、導電性中空平板
を本発明構成の中空平板とすることによって、従来技術
の有していた課題を解決して、SOFC の支持体に適し
た、多孔性が部分的に異なる不均一中空平板の簡易な作
製が可能となった。具体的には、ドクターブレード法を
採用し、スラリー調製時に炭素粉末を混入させることに
よって、収縮率の変化なしに焼結体の多孔度の制御を可
能とした。多孔度を高めることにより、ガスの通過抵抗
が減少し、ガスが流れる必要のない部分では多孔度を低
下させたために導電率が向上して、総体的に優れた性能
を有する SOFC を経済的に作製することが可能となっ
た。
【図面の簡単な説明】
【図1】従来の円筒型燃料電池単位発電セルの構造を示
す一部断面斜視図。
【図2】従来の中空平板支持体を用いた単位発電セルの
構成を示す図で、(a)は外観を示す斜視図、(b)は断面
図。
【図3】本発明の不均一中空平板状支持体を用いた単位
発電セルの概略構成を示す斜視図。
【図4】空気極焼結体の焼結特性を示す図。
【図5】本発明中空平板状空気極基板を用いて作製した
単位発電セルの構造を示す断面図。
【図6】本発明中空平板状基板作製の手順を示す断面
図。
【符号の説明】
1…単位発電セル、2…固体電解質、3…空気極、4…
燃料極、5…集電層、12…酸化剤通路、13…多孔質管、
20…単位発電セル、21…固体電解質、22…燃料極、23…
集電層、24…表面保護層、25…支持体、25‐1…貫通
口、30…不均一支持体、30‐1…多孔度の高い部分、30
‐2…多孔度の低い部分、30‐3…貫通口。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】電極材料から作製され、内部に貫通口を有
    する平板型電極基板を構成する導電性中空平板の片面に
    電解質層と電極層とを積層してなる固体電解質燃料電池
    単セルに用いる導電性中空平板において、該中空平板の
    電解質層に接触している部分の多孔度が電解質層に接触
    していない部分の多孔度よりも大きいことを特徴とする
    導電性不均一中空平板。
JP5128594A 1993-05-31 1993-05-31 導電性不均一中空平板 Pending JPH06338336A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5128594A JPH06338336A (ja) 1993-05-31 1993-05-31 導電性不均一中空平板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5128594A JPH06338336A (ja) 1993-05-31 1993-05-31 導電性不均一中空平板

Publications (1)

Publication Number Publication Date
JPH06338336A true JPH06338336A (ja) 1994-12-06

Family

ID=14988630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5128594A Pending JPH06338336A (ja) 1993-05-31 1993-05-31 導電性不均一中空平板

Country Status (1)

Country Link
JP (1) JPH06338336A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756347A3 (en) * 1995-07-28 1997-03-12 Nippon Telegraph And Telephone Corporation Solid oxide fuel cell
JP2001243966A (ja) * 2000-02-02 2001-09-07 Haldor Topsoe As 固体酸化物燃料電池
EP1209753A1 (de) * 2000-11-23 2002-05-29 Sulzer Hexis AG Brennstoffzelle mit einer Festelelektrolytschicht
JP2005183362A (ja) * 2003-11-26 2005-07-07 Kyocera Corp 燃料電池セル及びその製法並びに燃料電池
US6916569B2 (en) 2000-11-23 2005-07-12 Sulzer Hexis Ag Fuel cell comprising a solid electrolyte layer
JP2015508225A (ja) * 2012-02-24 2015-03-16 アラン・デヴォー 燃料電池デバイスを作製する方法
US9147890B2 (en) 2010-05-11 2015-09-29 Ford Global Technologies, Llc Fuel cell with embedded flow field

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756347A3 (en) * 1995-07-28 1997-03-12 Nippon Telegraph And Telephone Corporation Solid oxide fuel cell
US5786105A (en) * 1995-07-28 1998-07-28 Nippon Telegraph And Telephone Public Corporation Solid oxide fuel cell
JP2001243966A (ja) * 2000-02-02 2001-09-07 Haldor Topsoe As 固体酸化物燃料電池
US6783880B2 (en) * 2000-02-02 2004-08-31 Haldor Topsoe A/S Porous planar electrode support in a solid oxide fuel cell
EP1209753A1 (de) * 2000-11-23 2002-05-29 Sulzer Hexis AG Brennstoffzelle mit einer Festelelektrolytschicht
US6916569B2 (en) 2000-11-23 2005-07-12 Sulzer Hexis Ag Fuel cell comprising a solid electrolyte layer
JP2005183362A (ja) * 2003-11-26 2005-07-07 Kyocera Corp 燃料電池セル及びその製法並びに燃料電池
US9147890B2 (en) 2010-05-11 2015-09-29 Ford Global Technologies, Llc Fuel cell with embedded flow field
JP2015508225A (ja) * 2012-02-24 2015-03-16 アラン・デヴォー 燃料電池デバイスを作製する方法
US9716286B2 (en) 2012-02-24 2017-07-25 Alan Devoe Method of making a fuel cell device
US10355300B2 (en) 2012-02-24 2019-07-16 Alan Devoe Method of making a fuel cell device

Similar Documents

Publication Publication Date Title
KR101162806B1 (ko) 자가-지지형 세라믹 멤브레인 및 전기화학 전지 및 이것을포함하는 전기화학 전지 적층체
KR101083701B1 (ko) 가역 고형 산화물 연료전지 스택 및 이의 제조방법
US8658328B2 (en) Stack structure for laminated solid oxide fuel cell, laminated solid oxide fuel cell and manufacturing method
CN101563805B (zh) 薄层固体氧化物电池
US6534211B1 (en) Fuel cell having an air electrode with decreased shrinkage and increased conductivity
KR20040089536A (ko) 수동 지지체를 갖는 연료 전지 또는 전극
US20040202919A1 (en) Fuel cell and passive support
EP3016190B1 (en) Cell, cell stack, and module
JPH06338336A (ja) 導電性不均一中空平板
JPH08287926A (ja) 固体電解質型燃料電池の製造方法
KR20130050401A (ko) 금속지지체형 고체산화물 연료전지의 제조방법
JP3166888B2 (ja) 固体電解質型燃料電池のスタック
JPH10106608A (ja) 固体電解質型燃料電池及びその製造方法
KR20000005760A (ko) 고체전해질형연료전지
JP2802196B2 (ja) 燃料電池用支持体の製造方法
KR101883401B1 (ko) 금속지지체형 고체산화물 연료전지의 제조방법
JP7202172B2 (ja) 燃料極および固体酸化物形電気化学セル
EP3499616B1 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH06325787A (ja) 固体電解質型燃料電池
JPH076776A (ja) 固体電解質型燃料電池のスタック
JP2002075410A (ja) 固体電解質型燃料電池の集電体およびこれを用いた固体電解質型燃料電池
US9666881B2 (en) Solid electrolyte fuel cell
JP2022156004A (ja) 燃料電池単セル、燃料電池スタック、および燃料電池単セルの製造方法
JP2022028167A (ja) 電気化学反応単セル
KR20010018792A (ko) 용융탄산염 연료전지의 전해질 함침방법

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091227

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101227

LAPS Cancellation because of no payment of annual fees