JPH0633520B2 - Method for removing Ni ions in phosphate solution - Google Patents

Method for removing Ni ions in phosphate solution

Info

Publication number
JPH0633520B2
JPH0633520B2 JP61130065A JP13006586A JPH0633520B2 JP H0633520 B2 JPH0633520 B2 JP H0633520B2 JP 61130065 A JP61130065 A JP 61130065A JP 13006586 A JP13006586 A JP 13006586A JP H0633520 B2 JPH0633520 B2 JP H0633520B2
Authority
JP
Japan
Prior art keywords
ions
resin
solution
column
phosphate solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61130065A
Other languages
Japanese (ja)
Other versions
JPS62287100A (en
Inventor
正也 提
三郎 古荘
典生 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Nippon Steel Corp
Original Assignee
Nippon Rensui Co
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co, Nippon Steel Corp filed Critical Nippon Rensui Co
Priority to JP61130065A priority Critical patent/JPH0633520B2/en
Publication of JPS62287100A publication Critical patent/JPS62287100A/en
Publication of JPH0633520B2 publication Critical patent/JPH0633520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はキレート樹脂を用いてリン酸塩液中のNiイオ
ンを除去する方法に関し、たとえばZn-Ni系合金電気め
っき鋼板の非めっき面の後処理に用いられる電解液の処
理に応用される。
Description: TECHNICAL FIELD The present invention relates to a method for removing Ni ions in a phosphate solution using a chelate resin, for example, a non-plated surface of a Zn-Ni alloy electroplated steel sheet. It is applied to the treatment of electrolytic solutions used for post-treatment.

(従来の技術) Zn-Ni系合金電気めっき鋼板の片面めっきでは、非めっ
き面に付着した不要、かつ非めっき面に対して有害なZ
n,Niを除去する必要がある。このNi除去のために、リン
酸ナトリウムを主成分とする電解液で非めっき面を陽極
電解することが広く行なわれている。その際、めっき鋼
板の処理量の増加にともない電解液中にNiイオンが蓄積
されてくる。電解液中のNiイオン濃度が200ppm以上にな
ると、めっき鋼板の電解処理中または水洗までの間にNi
イオンが非めっき面に残留し、非めっき面の性状が劣化
する。
(Prior Art) In single-sided plating of Zn-Ni alloy electroplated steel sheet, unnecessary Z attached to the non-plated surface is harmful to the non-plated surface.
It is necessary to remove n and Ni. In order to remove Ni, it is widely practiced to subject the non-plated surface to anodic electrolysis with an electrolytic solution containing sodium phosphate as a main component. At that time, Ni ions are accumulated in the electrolytic solution as the treatment amount of the plated steel sheet increases. If the concentration of Ni ions in the electrolytic solution exceeds 200 ppm, the Ni content during the electrolytic treatment of the plated steel sheet
Ions remain on the non-plated surface and the properties of the non-plated surface deteriorate.

そこで、特願昭59-210584号(特公昭63-8200号)に示さ
れるように電解液中の不純物Ni,ZnおよびCrをカチオン
交換樹脂を用いて除去する方法が提案されている。カチ
オン交換樹脂の再生には、塩酸、硫酸等の強酸が用いら
れるのが一般的である。これら強酸によりカチオン交換
樹脂を再生し、ついで水洗を行なってカチオン交換樹脂
に残存している酸分を追い出す。このあと、処理すべき
電解液の通液を開始する。
Therefore, as disclosed in Japanese Patent Application No. 59-210584 (Japanese Patent Publication No. 63-8200), a method of removing impurities Ni, Zn and Cr in the electrolytic solution using a cation exchange resin has been proposed. For regeneration of the cation exchange resin, a strong acid such as hydrochloric acid or sulfuric acid is generally used. The cation exchange resin is regenerated with these strong acids and then washed with water to drive out the acid content remaining in the cation exchange resin. Then, the passage of the electrolytic solution to be treated is started.

(発明が解決しようとする問題点) しかし、上記Ni等の不純物除去方法では再生後のカチオ
ン交換樹脂の交換基はすべてH形になっているため、通
液開始直後の電解液pHは1〜3と低くなっている。この
結果、電解液はpH管理値であるpH4〜7(特願昭56-136
608(特公昭60-28918号))を大きく外れることにな
る。したがって、通液開始時においては所定のpHに調整
するため調整槽を設けるなどの特別の手段が必要であっ
た。
(Problems to be Solved by the Invention) However, in the above method for removing impurities such as Ni, since the exchange groups of the cation exchange resin after regeneration are all H-type, the pH of the electrolytic solution immediately after the start of the passage is 1 to It is as low as 3. As a result, the electrolyte has a pH control value of pH 4 to 7 (Japanese Patent Application No. 56-136).
608 (Japanese Patent Publication No. 60-28918) will be greatly deviated. Therefore, at the start of liquid passage, a special means such as an adjusting tank was required to adjust the pH to a predetermined level.

そこで、この発明はリン酸塩液処理にあたり、リン酸塩
液を再生処理後イオン交換樹脂に通液開始段階におい
て、pH調整することなく処理浴へリン酸塩液を直接戻す
ことができる方法を提供するものである。
Therefore, the present invention provides a method of directly returning the phosphate solution to the treatment bath without adjusting the pH in the step of starting the passage of the phosphate solution through the ion exchange resin after the regeneration treatment in the phosphate solution treatment. It is provided.

(問題点を解決するための手段) この発明によるリン酸塩液中のNiイオン除去方法では、
所定量の水溶液処理を終えたキレート樹脂をH形交換基
のキレート樹脂に再生し、ついでH形交換基に対するNa
形交換基の比率を25:75〜75:〜25に調整する。キレート
樹脂をH形交換基のキレート樹脂に再生には、上記処理
を終えたキレート樹脂にH2SO4,HCl,HNO3などの鉱酸を通
液する。また、上記比率Na/Hが25/75〜75/25の範囲とな
るように調整するには、所要の比率Na/Hによって決まる
量のNaOH水溶液を上記H形交換基のキレート樹脂に通液
する。
(Means for Solving Problems) In the method for removing Ni ions in a phosphate solution according to the present invention,
The chelate resin that has been treated with a predetermined amount of the aqueous solution is regenerated into a chelate resin having an H-type exchange group, and then Na for the H-type exchange group is regenerated.
Adjust the ratio of form exchange groups to 25:75 to 75: to 25. To regenerate the chelate resin of the H-type exchange group, a mineral acid such as H 2 SO 4 , HCl or HNO 3 is passed through the chelate resin after the above treatment. Further, in order to adjust the ratio Na / H to be in the range of 25/75 to 75/25, an aqueous NaOH solution in an amount determined by the required ratio Na / H is passed through the chelate resin of the H-type exchange group. To do.

比率Na/Hが25/75未満であると、通液開始時の処理液のp
Hが4以下となり、また75/25を越えるとpHが7以上とな
り、処理後のpHは前記許容範囲から外れる。
If the ratio Na / H is less than 25/75, the p
When H becomes 4 or less, and when it exceeds 75/25, the pH becomes 7 or more, and the pH after the treatment is out of the allowable range.

(作用) 比率Na/Hが25/75〜75/25の範囲にある交換基のキレート
樹脂にNiイオンなどを含むリン酸塩液を通すと、主とし
て次の反応が起こっていると考えられる。
(Action) When a phosphate solution containing Ni ions or the like is passed through a chelating resin having an exchange group whose ratio Na / H is in the range of 25/75 to 75/25, it is considered that the following reaction mainly takes place.

(R:樹脂母体,M:Zn,Ni) そのため、リン酸塩液中でNa+とH+による中和反応が生
じることになる。したがって、比率Na/Hを所定の値に設
定することにより、通液開始時よりリン酸塩液のpHは4
〜7に保たれる。
(R: resin matrix, M: Zn, Ni) Therefore, a neutralization reaction between Na + and H + occurs in the phosphate solution. Therefore, by setting the ratio Na / H to a predetermined value, the pH of the phosphate solution will be 4
Maintained at ~ 7.

(実施例) 実施例I キレート樹脂ダイヤイオン(三菱化成工業株式会社登録
商標)CR10のNa形100mlを、直径12mmのカラム5本にそ
れぞれ充填した。
(Example) Example I Chelate resin DIAION (registered trademark of Mitsubishi Kasei Kogyo Co., Ltd.) CR10 (100 ml of Na type) was filled in five columns each having a diameter of 12 mm.

そのうち第1〜第4カラムの4本には、10%H2SO4溶液を
それぞれ200g-H2SO4/-CR10ずつSV(空間流速)2で通
液してCR10をH形に再生し、さらに脱塩水をそれぞれ5
/-CR10の割合でSV5で通液し、水洗した。ついで、
H形になった第1カラムには42g-NaOH/-CR10、第2カ
ラムには28g-NaOH/-CR10、第3カラムには14g-NaOH/
-CR10の割合で4%NaOH溶液を通液し、第4カラムにはN
aOH溶液を通液せず第1〜第4カラムのCR10のNa形の割
合がそれぞれほぼ75%,50%,25%,0%になるような樹脂層を
形成させた。
The 10% H 2 SO 4 solution was passed through each of the first to fourth columns at 200 g-H 2 SO 4 / -CR10 at SV (space velocity) 2 to regenerate CR10 into H form. , 5 more demineralized water each
SV5 was passed through at a ratio of / -CR10 and washed with water. Then,
42g-NaOH / -CR10 for the 1st column, 28g-NaOH / -CR10 for the 2nd column and 14g-NaOH / for the 3rd column
-Permeate 4% NaOH solution at the rate of CR10, and N in the 4th column.
The resin layer was formed such that the Na type ratios of CR10 in the first to fourth columns were approximately 75%, 50%, 25% and 0% respectively without passing the aOH solution.

残っている第5カラムには前述の操作は何も加えなかっ
た。
The above-mentioned operation was not added to the remaining fifth column.

つぎに、各カラムの下部より空気を吹き込んで樹脂層を
十分に混合した後、カラムに第1表で示すような組成の
リン酸ソーダ溶液、すなわち電解液をSV19.7でそれぞれ
通液した。
Next, air was blown from the bottom of each column to thoroughly mix the resin layer, and then a sodium phosphate solution having the composition shown in Table 1, that is, an electrolytic solution was passed through the column at SV19.7.

そして、上記のようにして処理した電解液のpH、Znおよ
びNi濃度を測定した。その結果は第1図および第2図の
ようであった。
Then, the pH, Zn and Ni concentrations of the electrolytic solution treated as described above were measured. The results were as shown in FIGS. 1 and 2.

第1図で示すように、処理した電解液のZn,Niイオン濃
度のうちZnイオンはNiイオンより樹脂の選択性が小さい
ためNiイオンにより先端クロマト的に追い出されている
が、Niイオンは選択性が大きいため処理液量150/-C
R10まではそのリーク量はわずかであった。
As shown in Fig. 1, Zn ions out of the concentration of Zn and Ni ions in the treated electrolyte are expelled by Ni ions because of the smaller resin selectivity than Ni ions, but Ni ions are selected. 150 / -C processing liquid volume due to its high properties
The leak amount was small up to R10.

また、処理した電解液のpHは第2図で示す通りNa形50%
のものは流出当初から規定のpH4.5で一定であり、Na形7
5%,25%のものは、流出初期においてはNa形50%のものに
比較し若干アルカリ側あるいは酸性側にあるが、いずれ
も処理液量4/-CR10付近で規定のpH4.5になってい
る。
The pH of the treated electrolyte is 50% Na as shown in Fig. 2.
The pH of the product was constant at the specified pH 4.5 from the beginning of the spill, and Na form 7
At 5% and 25%, compared to Na form 50% at the initial outflow, it is slightly on the alkaline side or acidic side, but in both cases the treated pH is around 4.5 / CR10 and the specified pH is 4.5. ing.

一方、Na形100%のキレート樹脂の第5カラムで処理した
電解液は高アルカリ性であり、Na形0%の第4カラムは高
酸性であり、pH4.5付近になるのに長時間を要した。
On the other hand, the electrolyte treated with the 5th column of 100% Na form chelate resin is highly alkaline, and the 4th column of 0% Na form is highly acidic, and it takes a long time to reach pH 4.5. did.

実施例II 実施例Iで使用した各カラムに10%H2SO4溶液を200g-H2S
O4/-CR10で通液し、吸着されたNiを溶離してH形にし
た。ついで、脱塩水を各々5/-CR10の割合でSV5で
通液し、水洗した。さらに、Na形が各々100%,75%,50%,2
5%の樹脂層を形成させるため、第1カラム〜第4カラム
の各々に4%NaOH溶液を各々が56g-NaOH/-CR10、42g-Na
OH/-CR10、28g-NaOH/-CR10、14g-NaOH/-CR10の割合
でSV2で通液した。そして、カラムの底部より空気を吹
き込んで樹脂層を十分に混合したのち、前記第1表のリ
ン酸ソーダ液を通液した。
Example II 200 g-H 2 S of 10% H 2 SO 4 solution was applied to each column used in Example I.
After passing through O 4 / -CR10, the adsorbed Ni was eluted to form H. Next, demineralized water was passed through SV5 at a ratio of 5 / -CR10 each and washed with water. Furthermore, Na form is 100%, 75%, 50%, 2
56% -NaOH / -CR10, 42g-Na was added to each of the first to fourth columns to form a 5% resin layer.
SV2 was passed through at a ratio of OH / -CR10, 28g-NaOH / -CR10, 14g-NaOH / -CR10. Then, air was blown from the bottom of the column to thoroughly mix the resin layer, and then the sodium phosphate solution in Table 1 was passed through.

結果は実施例1とほぼ同様であった。The results were almost the same as in Example 1.

第3図はこの発明が応用される装置の一例を示す概略図
である。
FIG. 3 is a schematic diagram showing an example of an apparatus to which the present invention is applied.

処理槽1にはリン酸ナトリウムを主成分とする電解液E
が満たされている。処理されるめっき鋼板Sは導電ロー
ル3により案内されて非めっき面が電解液面に接し、電
解処理される。電解液EのNiイオン濃度が許容範囲を越
えると、電解液Eはフィルタ5を経てキレート樹脂カラ
ム7にに送られる。カラム7内のキレート樹脂は前述の
ように予め再生処理されている。電解液はキレート樹脂
カラム7を通過するときにNiイオンが除去され、ポンプ
9により処理槽1に戻される。なお、Znイオンは濃度が
高くなると処理槽1内で沈殿を生ずるが、これらは殆ど
が上記フィルタ5により除去される。フィルタ5を通過
した極く微量のZnイオンはキレート樹脂カラム7に流入
し、一旦キレート樹脂に吸着されるが、選択性によりク
ロマ的にNiイオンに押し出され電解液中に残る。しか
し、この程度のZnイオンの存在は、電解工程に何ら悪影
響を及ぼさない。
In the treatment tank 1, an electrolytic solution E containing sodium phosphate as a main component is used.
Is satisfied. The plated steel sheet S to be treated is guided by the conductive roll 3 so that the non-plated surface comes into contact with the electrolytic solution surface and is subjected to electrolytic treatment. When the Ni ion concentration of the electrolytic solution E exceeds the allowable range, the electrolytic solution E is sent to the chelate resin column 7 through the filter 5. The chelate resin in the column 7 has been previously regenerated as described above. Ni ions are removed from the electrolytic solution when passing through the chelate resin column 7, and the electrolytic solution is returned to the processing tank 1 by the pump 9. When the concentration of Zn ions increases, precipitation occurs in the processing tank 1, but most of these are removed by the filter 5. A very small amount of Zn ions that have passed through the filter 5 flow into the chelate resin column 7 and are once adsorbed by the chelate resin, but due to the selectivity, they are chromatographically pushed out to Ni ions and remain in the electrolytic solution. However, the presence of Zn ions to this extent has no adverse effect on the electrolysis process.

(発明の効果) この発明によれば、キレート樹脂再生処理後の通液開始
時であっても、処理されたリン酸塩液のpHは4〜7であ
る。したがって、リン酸塩液はpHを調整することなく処
理槽へ直接戻すことができる。
(Effect of the Invention) According to the present invention, the pH of the treated phosphate solution is 4 to 7 even at the start of liquid passage after the chelate resin regeneration treatment. Therefore, the phosphate solution can be directly returned to the treatment tank without adjusting the pH.

【図面の簡単な説明】[Brief description of drawings]

第1図は処理液量と処理された電解液中のNiおよびZn濃
度との関係を示すグラフ、第2図は処理液量と処理され
た電解液のpHとの関係を示すグラフ、ならびに第3図は
この発明が応用される装置の一例を示す概略図である。
FIG. 1 is a graph showing the relationship between the amount of treatment liquid and the concentrations of Ni and Zn in the treated electrolyte, FIG. 2 is a graph showing the relation between the amount of treatment liquid and the pH of the treated electrolyte, and FIG. 3 is a schematic view showing an example of an apparatus to which the present invention is applied.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/42 H C22B 3/42 23/00 // C25D 5/26 P (72)発明者 河野 典生 東京都千代田区丸の内3丁目2番3号 日 本錬水株式会社内 (56)参考文献 特開 昭61−91400(JP,A) 特開 昭57−205313(JP,A) 特開 昭53−127329(JP,A) 特開 昭62−270800(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI Technical display location C02F 1/42 H C22B 3/42 23/00 // C25D 5/26 P (72) Inventor Kono Norio 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Within Nihon Rensui Co., Ltd. (56) Reference JP 61-91400 (JP, A) JP 57-205313 (JP, A) JP 53 -127329 (JP, A) JP-A-62-270800 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リン酸塩を主成分とし不純物としてNiイオ
ンを含有する水溶液中からキレート樹脂を用いてNiイオ
ンを選択的に除去するイオン交換処理法において、所定
量の水溶液処理を終えたキレート樹脂をH形交換基のキ
レート樹脂に再生し、ついでH形交換基に対するNa形交
換基の比率を25:75〜75:25に調整することを特徴とする
リン酸塩液中のNiイオン除去方法。
1. A chelate which has been treated with a predetermined amount of an aqueous solution in an ion exchange treatment method for selectively removing Ni ions from an aqueous solution containing phosphate as a main component and containing Ni ions as impurities by using a chelate resin. Removal of Ni ion in phosphate solution, characterized in that the resin is regenerated into a chelate resin of H type exchange group, and then the ratio of Na type exchange group to H type exchange group is adjusted to 25:75 to 75:25. Method.
JP61130065A 1986-06-06 1986-06-06 Method for removing Ni ions in phosphate solution Expired - Lifetime JPH0633520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130065A JPH0633520B2 (en) 1986-06-06 1986-06-06 Method for removing Ni ions in phosphate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130065A JPH0633520B2 (en) 1986-06-06 1986-06-06 Method for removing Ni ions in phosphate solution

Publications (2)

Publication Number Publication Date
JPS62287100A JPS62287100A (en) 1987-12-12
JPH0633520B2 true JPH0633520B2 (en) 1994-05-02

Family

ID=15025172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130065A Expired - Lifetime JPH0633520B2 (en) 1986-06-06 1986-06-06 Method for removing Ni ions in phosphate solution

Country Status (1)

Country Link
JP (1) JPH0633520B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19918713C5 (en) * 1999-04-26 2005-09-15 Henkel Kgaa Wastewater treatment during phosphating
DE10056628B4 (en) * 2000-11-15 2004-07-22 Henkel Kgaa Fractional regeneration of a weakly acidic ion exchanger loaded with nickel ions
CN109626508A (en) * 2019-01-25 2019-04-16 重庆耐德水处理科技有限公司 A kind of nickel-containing waste water treating column and its application method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127329A (en) * 1977-04-12 1978-11-07 Unitika Ltd Recycling method for washing water from metal surface treating process
JPS57205313A (en) * 1981-06-05 1982-12-16 Kurita Water Ind Ltd Purifying method for brine
JPS6191400A (en) * 1984-10-09 1986-05-09 Nippon Steel Corp Post treatment of non-plating surface of steel sheet having composite organic plating on one surface

Also Published As

Publication number Publication date
JPS62287100A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
US4944851A (en) Electrolytic method for regenerating tin or tin-lead alloy stripping compositions
EP0597460B1 (en) Method of processing organic quaternary ammonium hydroxide-containing waste liquid
DE2850564C2 (en) Method and device for regenerating an etching solution containing copper (II) chloride and / or iron (III) chloride in an electrolytic cell
DE2537757A1 (en) METHOD OF REGENERATING AN ETCHED SOLUTION
EP0075882B1 (en) Process for regenerating cleaning fluid
JP2009185338A (en) Treatment method for electroless nickel plating solution
EP0878561A3 (en) Process and apparatus for the regeneration of tin plating solutions
US3304246A (en) Method of electrolytically descaling steel including selective recovery of dissolved scale products
US4943360A (en) Process for recovering nitric acid and hydrofluoric acid from waste pickle liquors
JPH0633520B2 (en) Method for removing Ni ions in phosphate solution
DE2250072A1 (en) PROCESS FOR RECOVERING COPPER FROM USED ETC SOLUTIONS AND EQUIPMENT FOR CARRYING OUT THE PROCESS
US4082546A (en) Recovery of waste heavy metals from solutions by cementation with aluminum
DE2623277B2 (en) Process and system for treating wastewater containing heavy metals while recovering heavy metals
JPH0442475B2 (en)
KR100209987B1 (en) The reproduction method for sodium sulphate
WO2010078866A2 (en) Method and device for regenerating peroxodisulfate pickling solution
JPS563666A (en) Method and apparatus for regenerating chemical copper plating solution
DE4010265C2 (en) Process for the separate extraction of complex images and uncomplexed metal ions from waste water
JPH028961B2 (en)
JP3025576B2 (en) How to recycle pickling liquid
KR100650232B1 (en) Device and method for extracting nickel from ferric chloride etchant
JPH03323B2 (en)
JPS6144156B2 (en)
RU2133708C1 (en) Method of removing metal salts from wash waters
JP3022276B2 (en) Method for treating waste liquid containing chromium and cerium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term