JPH028961B2 - - Google Patents

Info

Publication number
JPH028961B2
JPH028961B2 JP20090081A JP20090081A JPH028961B2 JP H028961 B2 JPH028961 B2 JP H028961B2 JP 20090081 A JP20090081 A JP 20090081A JP 20090081 A JP20090081 A JP 20090081A JP H028961 B2 JPH028961 B2 JP H028961B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
ions
copper
diffusion
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20090081A
Other languages
Japanese (ja)
Other versions
JPS58104001A (en
Inventor
Yoshiaki Noma
Koji Motomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tokuyama Corp
Original Assignee
Nippon Steel Corp
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Tokuyama Corp filed Critical Nippon Steel Corp
Priority to JP20090081A priority Critical patent/JPS58104001A/en
Publication of JPS58104001A publication Critical patent/JPS58104001A/en
Publication of JPH028961B2 publication Critical patent/JPH028961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は銅イオンとその他の金属イオンを含有
する塩酸溶液、例えば金属酸洗後の廃塩酸溶液か
ら、特定の2段処理により塩酸を回収する方法に
関する。 従来より、軟鋼、ステンレス鋼など各種金属の
表面仕上げ等の前処理として酸洗処理が行なわれ
ており、酸洗液として一般に塩酸が多く用いら
れ、該塩酸は金属洗浄により多量の金属イオンを
含み塩酸効果が低下した時点で廃酸液として中和
処理などにより処分される。しかし、処分される
廃酸液中には、なお高濃度の塩酸を有しているこ
と、或いは酸洗工程では一般に扱う液量が多量で
あることから、これを中和処理などにより処分す
ることは、多量の中和剤及びスラツジ処理設備を
要する経済的でなく、また省資源の面においても
大きな損失である。そこで最近では、廃酸液中に
含まれる金属イオンを除去して塩酸を回収した
後、該塩酸を再び酸洗工程へ循環させ、不足分の
酸だけを供給することが考えられているが、その
ためには、廃酸液中の金属イオンを効率よく除去
することが必要である。 廃酸液中の金属イオンを除去する方法として
は、イオン交換樹脂法或いは電解析出法を用いる
ことにより、理論的に可能であることは公知であ
る。しかし酸洗後の廃酸液のように金属イオン濃
度が非常に高い溶液から、直接上記方法を用い塩
酸を回収する場合には多量のイオン交換樹脂を要
すること或いは多量の電気量を必要とするなどの
ため全く実用的でない。これに対して拡散透析法
により廃酸液から塩酸を回収する方法は極めて実
用的である。該方法によれば廃酸液中の鉄、クロ
ム、ニツケル等の除去については比較的容易であ
り、また仮に回収塩酸中にこれら金属イオンが微
量混入しても、金属の洗浄に際して問題とならな
い。ところが、銅イオンは廃酸液中で錯イオンで
存在し、塩酸と同じ挙動を示すため、拡散透析法
によつて回収塩酸中に多くリークしてくる。かか
る銅イオンが混入した塩酸を循環させ、再び酸洗
液として鋼材等を酸洗した場合には該銅イオンが
鋼の表面に付着して鋼表面が赤味を帯び、酸洗の
効果を著しく低下させるという弊害を招く。 本発明者等は銅イオンとその他の金属イオンと
を含有する塩酸溶液から塩酸を回収する方法につ
いて鋭意研究を重ねた結果、公知の方法を2段組
合せ、特定の条件下に処理することにより、純度
の高い塩酸を効率よく回収できることを見出し、
本発明を提供するに至つた。即ち、本発明は、銅
イオンと銅イオンに対して10倍以上のその他の金
属イオンを含有する塩酸溶液を陰イオン交換膜を
用いた拡散透析処理により拡散液中のその他の金
属イオン濃度を銅イオン濃度に対して10倍以下に
なるように低下させた後、次いで陰イオン交換樹
脂または電解析出により銅イオンを実質的に除去
することを特徴とした塩酸の回収方法である。 本発明の方法は、一般に金属を塩酸で酸洗した
後の廃塩酸溶液で、洗浄に供する金属により銅イ
オンとともに種々の溶出金属イオン例えばNi、
Cr、Mo等が含まれ、特に銅イオンと該イオンの
10倍以上のその他の金属イオンを含有塩酸溶液に
適用される。その中でも特に銅イオンと鉄イオン
を含有した塩酸溶液に適用される。 本発明における第1段処理では銅イオンとその
他の金属イオンが共存含有する廃塩酸溶液から、
まずその他の金属イオンを除去した塩酸液の回収
を目的として拡散透析を行なう。拡散透析法は、
隔膜として陰イオン交換膜を用い、金属イオンを
含む塩酸水溶液と水を接触させる。尚、塩酸を回
収する水には少量の酸又はアルカリを加えたもの
も使用される。また、水は拡散室において塩酸の
拡散により、塩酸水溶液となるが、本発明ではこ
れらの液を拡散液という。 本発明に用いられる陰イオン交換膜は、公知の
ものが特に制限なく使用される。また、拡散透析
装置も公知の構造を有するものが制限なく使用さ
れるが、通常フイルタープレス型が好ましく用い
られている。本発明において特に重要なことは第
1段の拡散透析法により得られる拡散液中その他
の金属イオン濃度を制御することにある。即ち、
拡散透析法により回収された塩酸溶液中のその他
の金属イオンは銅イオン濃度に対して10倍以下好
ましくは5倍以下にすることである。上記その他
の金属イオン濃度が銅イオンに対して10倍以上存
在すると、次の第2段処理における銅イオンの除
去が困難となる。例えば、第2段処理として陰イ
オン交換樹脂法を用いた場合、同一濃度の銅イオ
ンに対して鉄イオン濃度が増加すると陰イオン交
換樹脂への鉄イオンの吸着比率が大となるため、
銅イオンの吸着量が減少し、該鉄イオン濃度が銅
イオンに対して10倍より大きくなるとそれが顕著
となる。また第2段処理として電解析出法を用い
た場合、一般に酸洗廃液中の鉄濃度は、2価・3
価の鉄イオンが混在しており、同一濃度の銅イオ
ン濃度に対して、鉄イオン濃度が増加すると電力
効率、電流効率が低下する。なお、拡散透析処理
による拡散液中の金属イオン及び銅イオン濃度を
調製する方法は拡散透析への銅イオンと金属イオ
ンを含有する塩酸溶液の拡散透析装置への供給速
度の調節、或いは水の供給速度の調節等公知の方
法が用いられる。 本発明に用いる陰イオン交換樹脂は、塩基性で
あれば特に制限されないが、好ましくは強塩基性
イオン交換樹脂、例えば商品名で示せば、ダウエ
ツクス2×8(米国ダウケミカル社製)、ダイアイ
オンSA11A、SA10A(三菱化成工業社製)、
Duolite A−42、A−40(米国ダイアモンドシヤ
ムロツク社製)、IRA−410、900、400(ローム・
アンド・ハース社製)などが好ましく使用され
る。 本発明に使用される強塩基性陰イオン交換樹脂
の使用量は、金属イオンの量のみならず、該樹脂
の性質、例えば樹脂質、官能基の種類、形態・架
橋度・粒度、金属イオンの濃度、接触方式などに
より異なるが、一般に吸着されるべき金属イオン
の1〜20当量の総交換容量を有する樹脂量が用い
られる。また、陰イオン交換樹脂の大きさは、一
般に工業的に用いられている20〜50メツシユのも
のが好ましく用いられるが、粒径が小さいほど除
去効果は良好である。接触方法はバツチ方式、カ
ラム方式が採用されるが、一般にはカラム方式の
方がより効果的に金属イオンを除去することがで
きる。 また、本発明で用いられる電解析出法は通常の
電解質溶液や融解電解質などのイオン伝導体に電
流を通して化学変化をおこさせ、陰極面に金属を
析出させる方法であり、その電解槽としては公知
の構造を有するものが特に制限なく使用できる。
電極についても、単極式、複極式、あるいは流動
床電極のいずれも適用できるが、陽極は、電気伝
導度が良く、電解液となる塩酸液に侵されず、且
つ酸素過電圧が小さく、耐久性を有するものでマ
グネタイト、二酸化鉛、合金被膜白金等が好まし
く用いられる。また陰極は腐食が生じないため、
アルミニウム、鉄、銅など、ほとんど全ての金属
材料を用いることができる。 以下、本発明を更に具体的に説明するため実施
例を示すが、本発明は、これらの実施例に限定さ
れるものではない。 尚、本発明における銅イオン或いは他の金属イ
オン濃度の測定は、原子吸光法により測定した。 実施例 1 塩酸140g/、鉄イオン35g/、銅イオン1.0
g/を含む塩酸酸洗廃液を、フイルタープレス
型拡散透析装置(徳山曹達(株)製、TSD−2型)
を用い、拡散透析を行なつた。拡散透析槽は、有
効膜面積2dm2の陰イオン交換膜(商品名ネオセ
プタAFN 徳山曹達(株)製)20枚を組み込んだ。
20℃の水を拡散透析槽の上部より360ml/Hrで拡
散室に供給し、酸洗廃液は、拡散透析槽の下部か
ら供給した。 その結果、透析槽下部から塩酸144g/、鉄イ
オン5.1g/、銅イオン0.8g/の拡散液を回収
した。 次いで、この拡散液を強塩基性陰イオン交換樹
脂のアンバーライトIRA−410(ロームアンドハー
ス社製)40mlを充填した内径20mmのガラス管に流
速30ml/Hrで通した時、流出液400mlまでは塩酸
140g/、鉄イオン濃度4.5g/以下、銅イオン
濃度0.1g/以下の水溶液が得られた。 実施例 2 実施例1において得られた拡散液200mlをたて
12cm、横7cmのアクリル樹脂製容器に入れ、陽極
に白金メツキしたチタン板、陰極に鉄板を用い、
ポテンシヨスタツトを用いて陰極の電位を−
0.3Vから−0.5Vに設定し、6時間通電した。 その結果、銅0.17gが電着し、溶液の濃度は塩
酸110g/、鉄イオン5g/、銅イオン0.1g/
となつた。 比較例 1 塩酸128g/、鉄イオン140g/、銅イオン
1.0g/を含む塩酸酸洗廃液を実施例1と同様な
条件で拡散透析処理を行い、塩酸155g/、鉄イ
オン16.8g/、銅イオン0.84g/の拡散液を回
収した。 次いで、この拡散液を実施例1と同様な条件下
で陰イオン交換樹脂を通した。その結果、流出液
100mlまでは銅イオン濃度が0.1g/以下であつ
たが、流出液200mlの時には銅イオン濃度が0.6
g/となつた。 比較例 2 比較例1と同様な条件で回収した拡散液を、実
施例2と同様な条件で10時間通電した。その結
果、銅0.1gが電着し、溶液の濃度は塩酸110g/
、鉄イオン5g/、銅イオン0.9g/となつ
た。 実施例 3 塩酸140g/、銅イオン1.0g/で、鉄イオン
濃度が140g/の廃酸液を実施例1と同様な拡散
透析槽を用い、水と廃酸液の供給速度を変えるこ
とにより、第1表に示す鉄イオン/銅イオンの濃
度の拡散回収液を得た。 次いで、これら各々の回収液を実施例2と同一
の樹脂塔に流速30ml/Hrで通した。その結果を第
1表に示した。
The present invention relates to a method for recovering hydrochloric acid from a hydrochloric acid solution containing copper ions and other metal ions, such as a waste hydrochloric acid solution after metal pickling, by a specific two-stage process. Pickling has traditionally been carried out as a pretreatment for surface finishing of various metals such as mild steel and stainless steel. Hydrochloric acid is generally used as the pickling solution, and the hydrochloric acid contains a large amount of metal ions due to metal cleaning. Once the effectiveness of hydrochloric acid has decreased, it is disposed of as a waste acid solution through neutralization. However, because the waste acid solution to be disposed of still contains a high concentration of hydrochloric acid, or because the amount of solution typically handled in the pickling process is large, it is necessary to dispose of it through neutralization treatment, etc. This is not economical as it requires a large amount of neutralizing agent and sludge treatment equipment, and is also a great loss in terms of resource conservation. Therefore, recently, it has been considered to remove the metal ions contained in the waste acid solution and recover the hydrochloric acid, and then circulate the hydrochloric acid again to the pickling process to supply only the missing amount of acid. For this purpose, it is necessary to efficiently remove metal ions from the waste acid solution. It is known that it is theoretically possible to remove metal ions from a waste acid solution by using an ion exchange resin method or an electrolytic deposition method. However, if hydrochloric acid is directly recovered from a solution with a very high concentration of metal ions, such as a waste acid solution after pickling, using the above method, a large amount of ion exchange resin or a large amount of electricity is required. For this reason, it is completely impractical. On the other hand, the method of recovering hydrochloric acid from waste acid solution by diffusion dialysis is extremely practical. According to this method, it is relatively easy to remove iron, chromium, nickel, etc. from the waste acid solution, and even if trace amounts of these metal ions are mixed into the recovered hydrochloric acid, there will be no problem when cleaning the metal. However, since copper ions exist as complex ions in the waste acid solution and exhibit the same behavior as hydrochloric acid, a large amount leaks into the recovered hydrochloric acid by diffusion dialysis. When hydrochloric acid mixed with such copper ions is circulated and used again as a pickling solution to pickle steel materials, the copper ions adhere to the surface of the steel, giving it a reddish tinge and significantly reducing the effectiveness of pickling. This leads to the negative effect of lowering the quality of the product. The present inventors have conducted intensive research on a method for recovering hydrochloric acid from a hydrochloric acid solution containing copper ions and other metal ions, and have found that by combining two known methods and processing under specific conditions, Discovered that highly pure hydrochloric acid could be efficiently recovered,
The present invention has now been provided. That is, in the present invention, the concentration of other metal ions in the diffusion solution is reduced by diffusion dialysis using an anion exchange membrane on a hydrochloric acid solution containing copper ions and other metal ions at least 10 times the amount of copper ions. This method for recovering hydrochloric acid is characterized by reducing the ion concentration to 10 times or less, and then substantially removing copper ions using an anion exchange resin or electrolytic deposition. The method of the present invention generally uses a waste hydrochloric acid solution after pickling metals with hydrochloric acid, and various eluted metal ions such as Ni, Ni,
Contains Cr, Mo, etc., especially copper ions and
Applied to hydrochloric acid solutions containing 10 times more other metal ions. Among these, it is particularly applied to hydrochloric acid solutions containing copper ions and iron ions. In the first stage treatment of the present invention, from a waste hydrochloric acid solution containing copper ions and other metal ions,
First, diffusion dialysis is performed to recover the hydrochloric acid solution from which other metal ions have been removed. The diffusion dialysis method is
An anion exchange membrane is used as a diaphragm, and water is brought into contact with an aqueous hydrochloric acid solution containing metal ions. Note that water to which a small amount of acid or alkali is added is also used for recovering hydrochloric acid. In addition, water becomes an aqueous solution of hydrochloric acid due to the diffusion of hydrochloric acid in the diffusion chamber, and in the present invention, these solutions are referred to as a diffusion liquid. As the anion exchange membrane used in the present invention, any known anion exchange membrane can be used without particular limitation. Further, any diffusion dialysis device having a known structure may be used without any restriction, but a filter press type is usually preferably used. What is particularly important in the present invention is to control the concentration of other metal ions in the diffusion liquid obtained by the first stage diffusion dialysis method. That is,
The concentration of other metal ions in the hydrochloric acid solution recovered by diffusion dialysis should be 10 times or less, preferably 5 times or less, relative to the copper ion concentration. If the concentration of the other metal ions is 10 times or more that of copper ions, it becomes difficult to remove copper ions in the next second stage treatment. For example, when using an anion exchange resin method as the second stage treatment, if the iron ion concentration increases with respect to the same concentration of copper ions, the adsorption ratio of iron ions to the anion exchange resin will increase.
The adsorption amount of copper ions decreases, and this becomes noticeable when the concentration of iron ions is more than 10 times that of copper ions. In addition, when electrolytic deposition is used as the second stage treatment, the iron concentration in the pickling waste liquid generally varies between divalent and trivalent.
Valid iron ions are mixed, and as the iron ion concentration increases for the same copper ion concentration, the power efficiency and current efficiency decrease. The concentration of metal ions and copper ions in the diffusion solution by diffusion dialysis treatment can be adjusted by adjusting the supply rate of a hydrochloric acid solution containing copper ions and metal ions to the diffusion dialysis apparatus, or by supplying water. Known methods such as speed adjustment may be used. The anion exchange resin used in the present invention is not particularly limited as long as it is basic, but preferably strongly basic ion exchange resins, such as Dowex 2×8 (manufactured by Dow Chemical Co., USA), Diaion SA11A, SA10A (manufactured by Mitsubishi Chemical Industries),
Duolite A-42, A-40 (manufactured by Diamond Siam Rock Company, USA), IRA-410, 900, 400 (ROHM
and Haas Inc.) are preferably used. The amount of strongly basic anion exchange resin used in the present invention depends not only on the amount of metal ions, but also on the properties of the resin, such as resin quality, type of functional group, morphology, degree of crosslinking, particle size, and the amount of metal ions. Generally, an amount of resin is used that has a total exchange capacity of 1 to 20 equivalents of the metal ions to be adsorbed, although this will vary depending on the concentration, contact method, etc. Further, the size of the anion exchange resin is preferably 20 to 50 mesh, which is generally used industrially, but the smaller the particle size, the better the removal effect. Batch and column methods are used as the contact method, but generally the column method can remove metal ions more effectively. Furthermore, the electrolytic deposition method used in the present invention is a method in which a current is passed through an ionic conductor such as an ordinary electrolyte solution or a molten electrolyte to cause a chemical change, and metal is deposited on the cathode surface. Those having the following structure can be used without particular restriction.
As for the electrode, any of the monopolar type, bipolar type, or fluidized bed electrode can be applied, but the anode has good electrical conductivity, is not attacked by the hydrochloric acid solution used as the electrolyte, has low oxygen overvoltage, and is durable. Magnetite, lead dioxide, alloy coated platinum, etc. are preferably used. In addition, since the cathode does not corrode,
Almost any metal material can be used, such as aluminum, iron, copper, etc. EXAMPLES Hereinafter, Examples will be shown to further specifically explain the present invention, but the present invention is not limited to these Examples. Incidentally, the concentration of copper ions or other metal ions in the present invention was measured by atomic absorption spectrometry. Example 1 Hydrochloric acid 140g/, iron ion 35g/, copper ion 1.0
The hydrochloric acid pickling waste solution containing g/
Diffusion dialysis was performed using The diffusion dialysis tank was equipped with 20 anion exchange membranes (trade name: NeoSepta AFN, manufactured by Tokuyama Soda Co., Ltd.) with an effective membrane area of 2 dm 2 .
Water at 20°C was supplied to the diffusion chamber from the upper part of the diffusion dialysis tank at a rate of 360 ml/Hr, and the pickling waste liquid was supplied from the lower part of the diffusion dialysis tank. As a result, a diffusion solution containing 144 g of hydrochloric acid, 5.1 g of iron ions, and 0.8 g of copper ions was recovered from the bottom of the dialysis tank. Next, when this diffused liquid was passed through a glass tube with an inner diameter of 20 mm filled with 40 ml of strong basic anion exchange resin Amberlite IRA-410 (manufactured by Rohm and Haas) at a flow rate of 30 ml/Hr, up to 400 ml of the effluent hydrochloric acid
An aqueous solution with an iron ion concentration of 4.5 g/or less and a copper ion concentration of 0.1 g/or less was obtained. Example 2 200ml of the diffusion liquid obtained in Example 1 was poured into a cup.
It was placed in an acrylic resin container measuring 12 cm by 7 cm in width, using a platinized titanium plate for the anode and an iron plate for the cathode.
Use a potentiostat to set the potential of the cathode to -
The voltage was set from 0.3V to -0.5V, and the power was turned on for 6 hours. As a result, 0.17 g of copper was electrodeposited, and the concentration of the solution was 110 g of hydrochloric acid, 5 g of iron ions, and 0.1 g of copper ions.
It became. Comparative example 1 Hydrochloric acid 128g/, iron ion 140g/, copper ion
Diffusion dialysis treatment was performed on the hydrochloric acid pickling waste solution containing 1.0 g/in the same conditions as in Example 1, and a diffusion solution containing 155 g/in hydrochloric acid, 16.8 g/in iron ions, and 0.84 g/in copper ions was recovered. This diffusion liquid was then passed through an anion exchange resin under the same conditions as in Example 1. As a result, the effluent
Up to 100ml, the copper ion concentration was less than 0.1g/, but when the effluent was 200ml, the copper ion concentration was 0.6.
It became g/. Comparative Example 2 A diffusion liquid collected under the same conditions as in Comparative Example 1 was energized for 10 hours under the same conditions as in Example 2. As a result, 0.1 g of copper was electrodeposited, and the concentration of the solution was 110 g of hydrochloric acid/
, iron ion 5g/, copper ion 0.9g/. Example 3 A waste acid solution containing 140 g of hydrochloric acid, 1.0 g of copper ions, and a concentration of 140 g of iron ions was prepared using the same diffusion dialysis tank as in Example 1, and by changing the supply rates of water and waste acid. A diffusion recovery solution having the iron ion/copper ion concentration shown in Table 1 was obtained. Next, each of these recovered liquids was passed through the same resin column as in Example 2 at a flow rate of 30 ml/Hr. The results are shown in Table 1.

【表】 実施例 4 鉄イオン濃度が異なる4種類の廃塩酸を実施例
1と同条件下で拡散透析を行ない、それぞれ第2
表のNo.1〜4に示す鉄イオン濃度と銅イオン濃度
および塩酸濃度120g/の拡散液を回収した。 次いで、上記の回収液200mlをそれぞれ実施例
2と同一の条件下で6時間の通電処理を行ない、
第2表に示す銅イオン濃度を含有する塩酸液を得
た。 第2表においてNo.3〜No.4は実施例に相当し、
No.1〜No.2は比較例に相当する。
[Table] Example 4 Diffusion dialysis was performed on four types of waste hydrochloric acid with different iron ion concentrations under the same conditions as in Example 1.
Diffusion liquids having iron ion concentrations, copper ion concentrations, and hydrochloric acid concentrations of 120 g/1 as shown in Nos. 1 to 4 of the table were collected. Next, 200 ml of the above recovered liquid was subjected to energization treatment for 6 hours under the same conditions as in Example 2.
A hydrochloric acid solution containing copper ion concentrations shown in Table 2 was obtained. In Table 2, No. 3 to No. 4 correspond to Examples,
No. 1 to No. 2 correspond to comparative examples.

【表】【table】

Claims (1)

【特許請求の範囲】 1 銅イオンと銅イオンに対して10倍以上のその
他の金属イオンを含有する塩酸溶液を陰イオン交
換膜を用いた拡散透析処理により、拡散液中のそ
の他の金属イオン濃度を銅イオン濃度に対して10
倍以下になるように低下させた後、次いで陰イオ
ン交換樹脂または電解析出により銅イオンを実質
的に除去することを特徴とした塩酸の回収方法。 2 その他の金属イオンが鉄である特許請求の範
囲第1項記載の塩酸の回収方法。 3 金属の酸洗後の廃塩酸を処理する特許請求の
範囲第1項記載の塩酸の回収方法。
[Claims] 1. A hydrochloric acid solution containing copper ions and other metal ions at least 10 times the amount of copper ions is subjected to diffusion dialysis treatment using an anion exchange membrane to reduce the concentration of other metal ions in the diffusion solution. 10 for copper ion concentration
1. A method for recovering hydrochloric acid, which comprises reducing the amount of hydrochloric acid to less than 100%, and then substantially removing copper ions using an anion exchange resin or electrolytic deposition. 2. The method for recovering hydrochloric acid according to claim 1, wherein the other metal ion is iron. 3. The method for recovering hydrochloric acid according to claim 1, which processes waste hydrochloric acid after pickling metals.
JP20090081A 1981-12-15 1981-12-15 Recovery of hydrochloric acid Granted JPS58104001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20090081A JPS58104001A (en) 1981-12-15 1981-12-15 Recovery of hydrochloric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20090081A JPS58104001A (en) 1981-12-15 1981-12-15 Recovery of hydrochloric acid

Publications (2)

Publication Number Publication Date
JPS58104001A JPS58104001A (en) 1983-06-21
JPH028961B2 true JPH028961B2 (en) 1990-02-28

Family

ID=16432118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20090081A Granted JPS58104001A (en) 1981-12-15 1981-12-15 Recovery of hydrochloric acid

Country Status (1)

Country Link
JP (1) JPS58104001A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6290112B2 (en) * 2015-01-28 2018-03-07 信越化学工業株式会社 Method and apparatus for producing high purity hydrochloric acid
CN113401872B (en) * 2021-06-10 2023-03-24 江阴润玛电子材料股份有限公司 Production process of hydrochloric acid for integrated circuit

Also Published As

Publication number Publication date
JPS58104001A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
US3764503A (en) Electrodialysis regeneration of metal containing acid solutions
KR100207041B1 (en) Method of recovering antimony and bismuth from copper electrolyte
JP2002539927A (en) Water purification process
JPS62297484A (en) Method for purifying zinc sulfate electrolytic bath
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
US3766049A (en) Recovery of metal from rinse solutions
US4572823A (en) Process for rhenium recovery
JPH028961B2 (en)
US5035778A (en) Regeneration of spent ferric chloride etchants
RU2094534C1 (en) Electrolytic method for dissolving platinum, platinum metals' impurities and/or platinum metals' alloys containing radium, palladium, iridium, gold, and silver
JPH0780253A (en) Electrodialytic purifying method
JPH04231487A (en) Regeneration method of pickling waste liquor containing metal salt and acid
JP3350917B2 (en) Method for selective recovery of antimony and bismuth in electrolytic solution in copper electrorefining
JP4787951B2 (en) Method for electrolytic purification of silver
JPS61133192A (en) Treatment of waste copper liquid containing hydrochloric acid
JPS6018760B2 (en) Electrolytic recovery method of metallic zinc from acid solution containing zinc and iron generated from a metallic galvanizing factory
JPH0824586A (en) Method for electrodialysis-treating nitric acid and hydrofluoric acid washing waste liquid and device therefor
JP3653944B2 (en) Method for selective recovery of Sb and Bi from copper electrolyte
JP2965457B2 (en) Regeneration method of iron chloride waste liquid containing nickel
JP3651872B2 (en) Method for removing sulfate and chlorate radicals in brine
JPS6160148B2 (en)
JPH0711074B2 (en) Cleaning method of silver electrolyte
JPS6116000A (en) Method for regenerating spent silver plating solution
JPH06240475A (en) Treatment of iron chloride based etchant containing nickel
JPH1018074A (en) Recovering method of valuable metal from waste liquid containing cyanide and its recovering device therefor