JP2965457B2 - Regeneration method of iron chloride waste liquid containing nickel - Google Patents

Regeneration method of iron chloride waste liquid containing nickel

Info

Publication number
JP2965457B2
JP2965457B2 JP6065194A JP6065194A JP2965457B2 JP 2965457 B2 JP2965457 B2 JP 2965457B2 JP 6065194 A JP6065194 A JP 6065194A JP 6065194 A JP6065194 A JP 6065194A JP 2965457 B2 JP2965457 B2 JP 2965457B2
Authority
JP
Japan
Prior art keywords
iron
chloride
concentration
nickel
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6065194A
Other languages
Japanese (ja)
Other versions
JPH07268658A (en
Inventor
雅章 庵崎
実 折笠
八州家 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTETSU KOGYO KK
Original Assignee
NITSUTETSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTETSU KOGYO KK filed Critical NITSUTETSU KOGYO KK
Priority to JP6065194A priority Critical patent/JP2965457B2/en
Publication of JPH07268658A publication Critical patent/JPH07268658A/en
Application granted granted Critical
Publication of JP2965457B2 publication Critical patent/JP2965457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば、シャドーマス
ク、リードフレーム等の製造工程から排出されるニッケ
ルを含む塩化鉄系の廃液、更に詳しくは塩化ニッケル、
塩化第2鉄、塩化第1鉄及び塩酸を含んで成るエッチン
グ液から循環工程においてニッケル及び鉄成分を分離回
収し、回収後の液を再生液としてリサイクルする方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron chloride-based waste liquid containing nickel discharged from a manufacturing process of a shadow mask, a lead frame, and the like.
The present invention relates to a method for separating and recovering nickel and iron components from an etching solution containing ferric chloride, ferrous chloride and hydrochloric acid in a circulation step, and recycling the recovered solution as a regenerating solution.

【0002】[0002]

【従来の技術】従来、例えば特開昭59−190367
号公報には、エッチング能力を有さない鉄及びニッケル
を含む溶液を対象とし、当該溶液にオキシム試薬を加え
て、ニッケルを含む組成物を沈殿性錯塩に変性し、鉄を
含む組成物とは反応させることなく水溶性のままとした
上で、当該鉄を含む組成物のみを濾過法により分離し、
この分離された鉄を含む組成物を塩素ガスと反応させる
ことで、エッチング能力を有する塩化第2鉄を含む溶液
に再生する方法が開示されている。
2. Description of the Related Art Conventionally, for example, Japanese Unexamined Patent Application Publication No.
In the publication, a solution containing iron and nickel having no etching ability is targeted, an oxime reagent is added to the solution, the composition containing nickel is modified into a precipitation complex salt, and the composition containing iron is After remaining water-soluble without reacting, only the composition containing the iron was separated by a filtration method,
A method of regenerating a solution containing ferric chloride having an etching ability by reacting the separated composition containing iron with chlorine gas is disclosed.

【0003】このようなオキシム試薬利用法において
は、エッチングによって金属板から溶解する鉄分の増加
に従って次第に液中の鉄成分が過剰になるので、金属元
素のイオン化傾向の差を用いて銅等を還元する所謂セメ
ンテーション法と同様に、ニッケル錯塩析出後の溶液は
塩化第1鉄を主な成分とすることになる。そのためエッ
チング液として再生するためには更に塩素ガスを吹き込
むことが必要となり、短時間で高濃度の溶液となってし
まうので、希釈して余剰分を処理しなければならないと
いう煩わしい問題を抱えている。更に当該方法では、分
離した沈殿物がニッケルの錯塩であるために、現在のと
ころ、そのまま有効利用することができず、当該錯塩を
化学的に処理して、改めて金属ニッケルを回収せざるを
えない。
In such a method using an oxime reagent, the iron component in the liquid gradually increases as the amount of iron dissolved from the metal plate by etching increases. Therefore, the difference in the ionization tendency of the metal element is used to reduce copper and the like. Similarly to the so-called cementation method, the solution after the precipitation of the nickel complex salt contains ferrous chloride as a main component. Therefore, in order to regenerate as an etching solution, it is necessary to further blow chlorine gas, and the solution becomes a highly concentrated solution in a short period of time. . Furthermore, in this method, since the separated precipitate is a nickel complex salt, it cannot be used effectively as it is at present, and the complex salt has to be chemically treated to recover metallic nickel again. Absent.

【0004】また特開昭59−21947号公報には、
中性リン酸エステル等の有機溶媒を用いて本質的にFe
イオンとClイオンを含有する水溶液からFeCl3
HClを選択的に抽出し、これらの鉄塩化物錯体を含む
有機溶媒に対して水による逆抽出を行い、しかる後に逆
抽出液を濃縮してFeCl3液を回収することが開示さ
れている。
Japanese Patent Application Laid-Open No. Sho 59-21947 discloses that
Using an organic solvent such as neutral phosphate ester
FeCl 3 and HCl are selectively extracted from the aqueous solution containing ions and Cl ions, and the organic solvent containing these iron chloride complexes is back-extracted with water. It is disclosed that three liquids are collected.

【0005】当該方法においては、逆抽出液から再生液
をリサイクルするのに濃縮工程を必要とすること、排水
処理設備が必要になることから工業的に実用化するには
困難が伴うという問題を有している。
[0005] In this method, there is a problem that a concentration step is required to recycle the regenerated liquid from the back-extraction liquid, and a wastewater treatment facility is required. Have.

【0006】[0006]

【発明が解決しようとする課題】上記の両方法とは異な
るエッチング廃液を電解処理する方法として、特開昭6
1−104092号公報には、イオン交換膜によって区
画された電解槽の陽極室に第1鉄塩を含み第2鉄塩を有
効成分とするエッチング廃液を供給して連続的に酸化再
生することが開示されている。この方法では2価鉄から
3価鉄への反応を電流効率ほぼ100%で行うことがで
きる。
As a method for electrolytically treating an etching waste liquid different from the above two methods, Japanese Patent Laid-Open No.
Japanese Patent Application Laid-Open No. 1-104092 discloses that an oxidation waste liquid containing a ferrous salt and containing a ferrous salt as an active ingredient is supplied to an anode chamber of an electrolytic cell partitioned by an ion exchange membrane to continuously oxidize and regenerate. It has been disclosed. According to this method, the reaction from ferrous iron to ferrous iron can be performed with a current efficiency of almost 100%.

【0007】しかしながら、当該方法においては、使用
する隔膜が陰イオン交換膜であるために、再生すべき廃
液中の陽イオン、特に2価のニッケルを陰極側へ移動さ
せることができない。
However, in this method, cations, particularly divalent nickel, in the waste liquid to be regenerated cannot be moved to the cathode side because the membrane used is an anion exchange membrane.

【0008】また当該公報の実施例では、FeCl3
追加してNiCl2を一定濃度に保つとしており、当該
方法では、増加する塩化鉄溶液を排出して別途、処理す
ることが必要となる。更に使用されるイオン交換膜は比
較的高価で耐久性に乏しく、取り扱いも煩雑で実用性の
点で難がある。
Further, in the embodiment of the publication, FeCl 3 is added to keep the NiCl 2 at a constant concentration. In this method, it is necessary to discharge an increasing iron chloride solution and perform a separate treatment. Further, the ion-exchange membrane used is relatively expensive and has poor durability, handling is complicated, and there is a difficulty in practicality.

【0009】そこで本発明者らは先に、ニッケルを含む
塩化鉄系溶液を冷却して、塩化第2鉄を主成分とする結
晶を晶析分離し、結晶分離後の液を電解槽の陰極側に導
き鉄-ニッケル合金を電解析出し、合金析出後の液を陽
極側に移して、含有する塩化第1鉄を塩化第2鉄に電解
酸化するとともに、当該陽極側で発生する塩素ガスを酸
化剤として上記とは別のニッケルを含む塩化鉄系溶液を
酸化し、塩素成分分離後の液を電解槽から取り出して、
上記塩化鉄系結晶を溶解して塩化鉄系溶液を再生するこ
とを提案した(特願平5−220114号、平成5年9
月3日出願)。
Therefore, the present inventors previously cooled an iron chloride-based solution containing nickel, crystallized and separated a crystal mainly composed of ferric chloride, and used the liquid after the crystal separation as a cathode of an electrolytic cell. The iron-nickel alloy is electrolytically deposited and the solution after the alloy deposition is transferred to the anode side, and the ferrous chloride contained therein is electrolytically oxidized to ferric chloride while chlorine gas generated on the anode side is removed. Oxidize a different iron chloride-based solution containing nickel as the oxidizing agent, remove the solution after chlorine component separation from the electrolytic cell,
It has been proposed to regenerate an iron chloride solution by dissolving the iron chloride crystal (Japanese Patent Application No. 5-220114, September 1993).
On March 3).

【0010】このような方法によって消費電力を減らし
ながら効率良くニッケル含有の塩化鉄系廃液を再生する
ことができる。しかしながら当該方法を更に詳細に検討
すると、電解段階で2価鉄を一旦3価鉄にした後に再度
2価鉄に戻すことが行われるので、電力的に無駄な部分
をなお有している。
According to such a method, nickel-containing iron chloride waste liquid can be efficiently regenerated while reducing power consumption. However, when the method is examined in more detail, since ferrous iron is once converted to trivalent iron and then returned to divalent iron again in the electrolysis stage, it still has a wasteful portion in terms of electric power.

【0011】そこで本発明は、なお一層低い消費電力
で、ニッケルを含む塩化鉄系の廃液を再生するととも
に、高い回収率でニッケルを回収することを課題とす
る。
It is therefore an object of the present invention to regenerate nickel chloride-containing waste liquid containing nickel at a much lower power consumption and to recover nickel at a high recovery rate.

【0012】[0012]

【課題を解決するための手段】本発明は上記の課題を、
(i)ニッケルを含む塩化鉄系溶液の塩酸濃度を調整し、
(ii)塩化ニッケルを主成分とする結晶を晶析分離し、(i
ii)分離した結晶を電解還元して鉄-ニッケル合金を電解
析出し、(iv)結晶分離後の液を濃縮して塩化水素を蒸発
分離して、及び(v)当該濃縮液を濃度調整することで塩
化鉄系再生液とすることで解決した。
The present invention solves the above problems,
(i) adjusting the hydrochloric acid concentration of the iron chloride solution containing nickel,
(ii) Crystallize and separate the crystal mainly composed of nickel chloride,
ii) electrolytically reducing the separated crystals to electrolytically deposit an iron-nickel alloy, (iv) concentrating the liquid after crystal separation and evaporating and separating hydrogen chloride, and (v) adjusting the concentration of the concentrated liquid. The problem was solved by using an iron chloride-based regenerating solution.

【0013】シャドーマスク等の製造工程から排出され
る塩化鉄系廃液の金属濃度が、上記(ii)の晶析処理の際
に効率良く結晶を得るために必要とされる程に高くない
場合には、上記(i)の塩酸濃度調整に先立ち、ニッケル
を含む塩化鉄系溶液を濃縮するのが良い。その際に発生
する水蒸気を上記(v)の濃縮液の濃度調整のために用い
れば、なお好ましい。
When the metal concentration of the iron chloride waste liquid discharged from the manufacturing process of a shadow mask or the like is not so high as required for efficiently obtaining crystals during the crystallization treatment of (ii) above, Before the adjustment of the hydrochloric acid concentration in (i) above, it is preferable to concentrate the iron chloride-based solution containing nickel. It is more preferable to use the steam generated at that time for adjusting the concentration of the concentrated solution of the above (v).

【0014】上記(iii)の電解処理の際、電解槽の陽極
側で発生する塩素ガスを酸化剤として用いて、上記一連
の再生プロセスに使用される溶液とは別の塩化鉄系溶液
を酸化すれば、好都合である。
In the electrolytic treatment of (iii), chlorine gas generated on the anode side of the electrolytic cell is used as an oxidizing agent to oxidize an iron chloride-based solution other than the solution used in the series of regeneration processes. It would be convenient.

【0015】上記(iv)の濃縮処理の際に発生する塩化水
素を上記(i)の塩酸濃度の調整のために用いるのが好適
である。
It is preferable to use the hydrogen chloride generated during the concentration treatment of the above (iv) for adjusting the hydrochloric acid concentration of the above (i).

【0016】[0016]

【作用】シャドーマスク等の製造工程で排出されるニッ
ケルを含む塩化鉄系の廃液における塩酸濃度は、本発明
の最初の段階で濃縮調整される塩酸濃度に比べて一般的
に非常に低い水準にある(約0.1%濃度)ので、所定
レベルまで濃度を高めるために先ずスタートアップのプ
ロセスが施される。ここにいう所定レベルとは、下記塩
酸濃度調整を行うために工業的に支障のない程度であ
る。予濃縮に際しては、各種公知の濃縮プロセスを用い
ることができるが、液を加熱して水蒸気を発生させる最
も簡単なプロセスが、生じる水蒸気を最終段階での希釈
に用いることができるので好ましい。
The hydrochloric acid concentration in the nickel chloride-containing waste liquid discharged in the manufacturing process of a shadow mask or the like is generally very low compared to the hydrochloric acid concentration adjusted and concentrated in the first step of the present invention. Since there is some (about 0.1% concentration), a start-up process is first performed to increase the concentration to a predetermined level. Here, the predetermined level is a level that does not hinder the industrial operation for performing the following hydrochloric acid concentration adjustment. In the preconcentration, various known concentration processes can be used, but the simplest process of heating the liquid to generate steam is preferable because the generated steam can be used for dilution in the final stage.

【0017】このように予濃縮した塩化鉄系溶液に、(i
v)の濃縮処理の際に発生する塩化水素の蒸気を接触させ
て液の塩酸濃度を調整する。その濃度は、HClとして
約10%である。この塩酸濃度のもとで塩化鉄、塩化ニ
ッケルが飽和となる温度以下に液を冷却すると、塩化ニ
ッケルが晶析することが知られている。
In the pre-concentrated iron chloride solution, (i)
The concentration of hydrochloric acid in the liquid is adjusted by contacting the vapor of hydrogen chloride generated during the concentration treatment of v). Its concentration is about 10% as HCl. It is known that when the liquid is cooled below the temperature at which iron chloride and nickel chloride become saturated under this hydrochloric acid concentration, nickel chloride crystallizes.

【0018】酸濃度を調整された溶液は冷却され、塩化
ニッケルを主成分とする結晶が析出分離される。液中の
塩化ニッケルが飽和状態となる温度以下に、例えば約2
0℃まで冷却する。
The solution whose acid concentration has been adjusted is cooled, and crystals mainly composed of nickel chloride are precipitated and separated. Below the temperature at which the nickel chloride in the solution becomes saturated, for example, about 2
Cool to 0 ° C.

【0019】析出された結晶は、電解槽の陰極側に導か
れる。この陰極側で、鉄イオン及びニッケルイオンは還
元電析され、金属が回収される。例えば、陽極にDSE
電極(RuO2/Ti)、陰極にチタン板を使用し、電
流密度7.5A/dm2、電圧約3.5Vで隔膜電解法
により電解を行う。隔膜には、ポリエステル製濾過布を
用い、電解液の温度を約70℃とすることができる。
The precipitated crystals are led to the cathode side of the electrolytic cell. On the cathode side, iron ions and nickel ions are reduced and electrodeposited, and metals are recovered. For example, DSE on the anode
Using a titanium plate as an electrode (RuO 2 / Ti) and a cathode, electrolysis is performed by a diaphragm electrolysis method at a current density of 7.5 A / dm 2 and a voltage of about 3.5 V. A polyester filter cloth is used for the diaphragm, and the temperature of the electrolytic solution can be set to about 70 ° C.

【0020】結晶分離後の液を再度濃縮して、塩化水素
を蒸発させる。その濃縮方法は、上記予濃縮と同様に、
液を加熱して水蒸気を発生させる最も簡単なプロセスで
十分である。発生した塩化水素を初期の塩酸濃度調整に
用いるのは、既述した通りである。
The liquid after crystal separation is concentrated again to evaporate hydrogen chloride. The enrichment method is similar to the above pre-enrichment,
The simplest process of heating the liquid to generate steam is sufficient. The use of the generated hydrogen chloride for the initial adjustment of the concentration of hydrochloric acid is as described above.

【0021】塩化水素を蒸発させた液を、予濃縮の際に
発生した水蒸気を用いて希釈して、塩化鉄系再生エッチ
ャントとする。
The liquid obtained by evaporating hydrogen chloride is diluted with steam generated during preconcentration to obtain an iron chloride-based regenerated etchant.

【0022】電解の際に発生する塩素ガスをエッチング
工程に導けば、酸化剤としてエッチング有効成分たる塩
化鉄の再生に利用することが可能となる。
If the chlorine gas generated during the electrolysis is led to the etching step, it can be used as an oxidizing agent for regenerating iron chloride, which is an effective etching component.

【0023】[0023]

【実施例】以下に本発明の実施例をあげてさらに具体的
に説明する。
The present invention will be described more specifically with reference to the following examples.

【0024】スタートアップ エッチング工程から、2価の鉄成分12.6g/リット
ル、3価の鉄成分265g/リットル、ニッケル成分1
3.9g/リットル、塩素成分525g/リットルの組
成からなる比重1.543のエッチャントを2000m
l取り出し、120℃で減圧濃縮し、940ml液体に
相当する水蒸気と、2価の鉄成分23.8g/リット
ル、3価の鉄成分500g/リットル、ニッケル成分2
6.2g/リットル、塩素成分966.9g/リットル
の組成からなる1060mlの濃縮液とを得た。当該濃
縮液に35%塩酸(比重1.18)を1000ml加え
て、20℃で濾過して(冷却晶析)、208.08gの
結晶と、2価の鉄成分1.0g/リットル、3価の鉄成
分261.8g/リットル、ニッケル成分2.63g/
リットル、塩素成分676.6g/リットルの組成から
なる比重1.545の1975mlの濾液を得た。
From the start-up etching step, 12.6 g / l of a divalent iron component, 265 g / l of a trivalent iron component, and 1 nickel component
2,000 g of an etchant having a specific gravity of 1.543 and a composition of 3.9 g / liter and a chlorine component of 525 g / liter.
, and concentrated under reduced pressure at 120 ° C., 940 ml of water vapor corresponding to liquid, 23.8 g / liter of divalent iron component, 500 g / liter of trivalent iron component, nickel component 2
1060 ml of a concentrate having a composition of 6.2 g / l and a chlorine component of 966.9 g / l was obtained. To the concentrate, 1000 ml of 35% hydrochloric acid (specific gravity: 1.18) was added, and the mixture was filtered at 20 ° C. (cooling crystallization) to obtain 208.08 g of crystals and a divalent iron component of 1.0 g / liter, trivalent. 261.8 g / liter of iron component and 2.63 g /
1975 ml of a filtrate having a specific gravity of 1.545 and a composition of 676.6 g / liter of a chlorine component was obtained.

【0025】実施例 図1に概念的に示されたフローにおいて、エッチング工
程から、上記スタートアップと同じ組成のエッチャント
を2020ml取り出し、120℃で減圧濃縮し(第1
段階濃縮)、1060ml液体に相当する水蒸気と、2
価の鉄成分26.5g/リットル、3価の鉄成分55
7.6g/リットル、ニッケル成分29.3g/リット
ル、塩素成分1069.1g/リットルの組成からなる
960mlの濃縮液とを得た。
[0025] In flow conceptually shown in Example Figure 1, the etching process is taken out 2020ml an etchant having the same composition as the start-up, then concentrated under reduced pressure at 120 ° C. (first
Water vapor corresponding to 1060 ml liquid, 2
Trivalent iron component 26.5 g / liter, trivalent iron component 55
A 960 ml concentrated liquid having a composition of 7.6 g / liter, a nickel component of 29.3 g / liter, and a chlorine component of 1069.1 g / liter was obtained.

【0026】一方、上記スタートアップの冷却晶析で得
た濾液を同じく120℃で減圧濃縮し、得られた塩化水
素の蒸気を上記濃縮液に接触・吸収させることで酸濃度
を調整し、2価の鉄成分13.8g/リットル、3価の
鉄成分289.4g/リットル、ニッケル成分15.2
g/リットル、塩素成分733.6g/リットルの組成
からなる酸添加液1850mlを得た。当該液を20℃
に冷却・濾過して、2価の鉄成分7.64%、3価の鉄
成分9.39%、ニッケル成分6.63%、塩素成分3
6.0%の組成からなる333.0gの結晶と、痕跡程
度の2価の鉄成分、3価の鉄成分281g/リットル、
ニッケル成分3.5g/リットル、塩素成分695g/
リットルの組成からなる1780mlの濾液とに分離し
た。
On the other hand, the filtrate obtained by the cooling crystallization at the start-up is concentrated under reduced pressure at 120 ° C., and the vapor of hydrogen chloride is brought into contact with and absorbed by the concentrated solution to adjust the acid concentration. 13.8 g / liter of iron component, 289.4 g / liter of trivalent iron component, and 15.2 nickel component
1850 ml of an acid addition liquid having a composition of g / l and a chlorine component of 733.6 g / l was obtained. 20 ° C
The mixture was cooled and filtered to 7.64% of the divalent iron component, 9.39% of the trivalent iron component, 6.63% of the nickel component, and 3 of the chlorine component.
333.0 g of a crystal having a composition of 6.0%, a trace amount of a divalent iron component, a trivalent iron component of 281 g / liter,
3.5g / liter nickel component, 695g / chlorine component
And separated into 1780 ml of filtrate consisting of 1 liter of composition.

【0027】この冷却晶析で得られた結晶を、2価の鉄
成分130.2g/リットル、ニッケル成分50.8g
/リットル、塩素成分226.7g/リットルの組成か
らなる比重1.30の電解液1lに溶解して、2価の鉄
成分138.8g/リットル、3価の鉄成分31.3g
/リットル、ニッケル成分66.3g/リットル、塩素
成分296g/リットルの組成からなる比重1.437
の液として電解槽の陰極側に戻し、電解を行い、陰極側
でFe-Ni合金78.5g、陽極側で塩素ガス98.
8gを得た。Fe-Ni合金の組成を調べたところ、N
i分が28%重量であった。電解に要した電力は回収金
属1g当たり4.5Whであった。陽極側で発生した塩
素ガスを吸収塔においてエッチャント20lに吸収させ
たところ、2価の鉄成分4.8g/リットル、3価の鉄
成分272.8g/リットル、ニッケル成分13.9g
/リットル、塩素成分529.9g/リットルの組成と
なり、再生エッチャントとしてエッチング工程に戻すこ
とができた。
The crystals obtained by the cooling crystallization were subjected to 130.2 g / liter of a divalent iron component and 50.8 g of a nickel component.
Per liter of an electrolytic solution having a specific gravity of 1.30 having a composition of 226.7 g / liter of chlorine component and 138.8 g / liter of divalent iron component and 31.3 g of trivalent iron component.
/ Liter, nickel component 66.3 g / liter, chlorine component 296 g / liter, specific gravity 1.437
The electrolytic solution is returned to the cathode side of the electrolytic cell, and electrolysis is performed.
8 g were obtained. Examination of the composition of the Fe-Ni alloy revealed that N
The i-content was 28% by weight. The power required for the electrolysis was 4.5 Wh per gram of the recovered metal. When the chlorine gas generated on the anode side was absorbed in 20 l of the etchant in the absorption tower, the divalent iron component was 4.8 g / liter, the trivalent iron component was 272.8 g / liter, and the nickel component was 13.9 g.
Per liter and a chlorine component of 529.9 g / liter, and could be returned to the etching step as a regenerated etchant.

【0028】一方、冷却晶析で得られた濾液を、再度1
20℃で濃縮し(第2段階濃縮)、塩化水素の蒸気を分
離した後の、痕跡程度の2価の鉄成分、3価の鉄成分5
62.0g/リットル、ニッケル成分7.0g/リット
ル、塩素成分1018.3g/リットルの組成からなる
濃縮液890mlを得た。この濃縮液を第1段階濃縮で
得た水蒸気を利用して希釈し、3価の鉄成分256.5
g/リットル、ニッケル成分3.2g/リットル、塩素
成分482.3g/リットルの組成からなる比重1.4
27の1950ml液を得た。これを再生エッチャント
としてエッチング工程に戻した。
On the other hand, the filtrate obtained by cooling crystallization is again
After concentration at 20 ° C. (second stage concentration) and separation of hydrogen chloride vapor, trace amounts of divalent iron component and trivalent iron component 5
890 ml of a concentrated liquid having a composition of 62.0 g / l, a nickel component of 7.0 g / l, and a chlorine component of 1018.3 g / l was obtained. This concentrated solution is diluted using steam obtained in the first-stage concentration, and the trivalent iron component 256.5 is used.
g / liter, nickel component 3.2 g / liter, chlorine component 482.3 g / liter, specific gravity 1.4
27 in 1950 ml was obtained. This was returned to the etching process as a regeneration etchant.

【0029】以上の操作はバッチプロセスとして行った
が、工業的には図1に示すように連続処理することが好
ましい。
Although the above operation was carried out as a batch process, it is preferable to carry out continuous treatment industrially as shown in FIG.

【0030】[0030]

【発明の効果】以上説明したことから明らかなように、
本発明は以下の効果を奏するものである。
As is apparent from the above description,
The present invention has the following effects.

【0031】即ち、エッチング工程で循環使用される
エッチャントから溶解した金属成分のみを回収できる
(クローズド化)、電解工程に送る結晶の組成をN
i:Fe≒1:3にできるので、電解工程で
That is, only the dissolved metal component can be recovered from the etchant circulated in the etching step (closed), and the composition of the crystal to be sent to the electrolytic step is set to N.
i: Fe ≒ 1: 3, so that in the electrolytic process

【0032】[0032]

【数1】 (Equation 1)

【0033】[0033]

【数2】 (Equation 2)

【0034】の反応による無駄な消費電力をなくすこと
ができる。本発明者らが先に提案した特願平5−220
114号開示技術等と比べると、表1のようになる。
The unnecessary power consumption due to the above reaction can be eliminated. Japanese Patent Application No. 5-220 previously proposed by the present inventors.
Table 1 shows a comparison with the technology disclosed in Japanese Patent No. 114.

【0035】[0035]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一つの再生工程を示す概略フロー図で
ある。
FIG. 1 is a schematic flow chart showing one regeneration step of the present invention.

【符号の説明】 1 エッチング槽 2 電解槽 3 吸収塔[Explanation of symbols] 1 etching tank 2 electrolytic tank 3 absorption tower

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C23F 1/46 C02F 1/461 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C23F 1/46 C02F 1/461

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (i)ニッケルを含む塩化鉄系溶液の塩酸
濃度を調整し、(ii)塩化ニッケルを主成分とする結晶を
晶析分離し、(iii)分離した結晶を電解還元して鉄-ニッ
ケル合金を電解析出し、(iv)結晶分離後の液を濃縮して
塩化水素を蒸発分離して、及び(v)当該濃縮液を濃度調
整することで塩化鉄系再生液とすることを特徴とする塩
化鉄系廃液の再生方法。
(1) adjusting the hydrochloric acid concentration of an iron chloride-based solution containing nickel, (ii) crystallizing and separating a crystal mainly containing nickel chloride, and (iii) electrolytically reducing the separated crystal. Electrolytic deposition of an iron-nickel alloy, (iv) concentrating the liquid after crystal separation and evaporating and separating hydrogen chloride, and (v) adjusting the concentration of the concentrated liquid to be an iron chloride-based regenerated liquid. A method for regenerating an iron chloride waste liquid.
【請求項2】 上記(i)の塩酸濃度調整に先立ち、ニッ
ケルを含む塩化鉄系溶液を濃縮することを特徴とする請
求項1に記載の再生方法。
2. The method according to claim 1, wherein prior to the step (i) of adjusting the hydrochloric acid concentration, the iron chloride-based solution containing nickel is concentrated.
【請求項3】 上記(iii)の電解処理の際、電解槽の陽
極側で発生する塩素ガスを酸化剤として用いて、上記一
連の再生プロセスに使用される溶液とは別の塩化鉄系溶
液を酸化することを特徴とする請求項1に記載の再生方
法。
3. An iron chloride-based solution different from the solution used in the series of regeneration processes, using chlorine gas generated on the anode side of the electrolytic cell as the oxidizing agent in the electrolytic treatment of (iii). The regeneration method according to claim 1, wherein the oxidation is performed.
【請求項4】 上記(iv)の濃縮処理の際に発生する塩化
水素を上記(i)の塩酸濃度の調整のために用いることを
特徴とする請求項1に記載の再生方法。
4. The method according to claim 1, wherein the hydrogen chloride generated during the concentration treatment in (iv) is used for adjusting the hydrochloric acid concentration in (i).
【請求項5】 上記予濃縮の際に発生する水蒸気を上記
(v)の濃縮液の濃度調整のために用いることを特徴とす
る請求項2に記載の再生方法。
5. The method according to claim 5, wherein the water vapor generated during the preconcentration is converted to the water vapor.
3. The method according to claim 2, wherein the method is used for adjusting the concentration of the concentrated solution of (v).
JP6065194A 1994-03-30 1994-03-30 Regeneration method of iron chloride waste liquid containing nickel Expired - Fee Related JP2965457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6065194A JP2965457B2 (en) 1994-03-30 1994-03-30 Regeneration method of iron chloride waste liquid containing nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6065194A JP2965457B2 (en) 1994-03-30 1994-03-30 Regeneration method of iron chloride waste liquid containing nickel

Publications (2)

Publication Number Publication Date
JPH07268658A JPH07268658A (en) 1995-10-17
JP2965457B2 true JP2965457B2 (en) 1999-10-18

Family

ID=13148458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6065194A Expired - Fee Related JP2965457B2 (en) 1994-03-30 1994-03-30 Regeneration method of iron chloride waste liquid containing nickel

Country Status (1)

Country Link
JP (1) JP2965457B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10300597A1 (en) * 2003-01-10 2004-07-22 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Process for regeneration of acid chloride etching solutions containing copper and/or iron chloride as oxidizing agents involves cathodic separation of dissolved copper from catholyte solution with pumping of anolyte through two-part cell
CN107058929A (en) * 2017-04-26 2017-08-18 彭春来 A kind of steel galvanization quickening liquid auto purification environment-friendly disposal system and method

Also Published As

Publication number Publication date
JPH07268658A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
KR100207041B1 (en) Method of recovering antimony and bismuth from copper electrolyte
JPH0382720A (en) Method for recovering indium
JP3043438B2 (en) Method for producing chromic acid
JP3736618B2 (en) Treatment method of waste acid containing copper
JP2965457B2 (en) Regeneration method of iron chloride waste liquid containing nickel
JP4607303B2 (en) Method for recovering platinum group metals from metal electrodes
US4033838A (en) Recovery of copper from waste nitrate liquors by electrolysis
JP4700815B2 (en) Method for recovering platinum group metals from metal electrodes
JP2777955B2 (en) Desilvering or silver recovery method
JP2965442B2 (en) Regeneration method of iron chloride waste liquid containing nickel
JP2006176353A (en) Method for recovering hydrochloric acid and copper from copper etching waste liquid
JP3088884B2 (en) Regeneration method of iron chloride waste liquid containing copper
KR20220134575A (en) Method for recovering metallic zinc from solid metallurgical waste
JP2002194581A (en) Method for recovering platinum group metal from metal electrode
JP3043437B2 (en) Method for producing chromic acid
JP2698253B2 (en) Treatment method of ferric chloride etching solution containing copper
US5573739A (en) Selective bismuth and antimony removal from copper electrolyte
US3334034A (en) Electrolytic method for the recovery of nickel and cobalt
JP3112807B2 (en) Method of treating iron chloride solution containing nickel
JP3112806B2 (en) Method of treating iron chloride solution containing nickel
JP2885692B2 (en) Separation method of nickel in iron chloride solution
JPS5845316B2 (en) Waste liquid treatment method
JPH06240475A (en) Treatment of iron chloride based etchant containing nickel
JPS6134125A (en) Method for recovering silver
JP3112805B2 (en) Method of treating iron chloride solution containing nickel

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees